
Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 2, November 2007
Generating Visualizations of Enterprise Architectures using Model Transformations 3

Sabine Buckl, Alexander M. Ernst, Josef Lankes, Florian Matthes,
Christian M. Schweda, André Wittenburg

Generating Visualizations of Enterprise
Architectures using Model
Transformations

Giving account to the importance of enterprise architecture (EA) modeling, we identify issues in visualization
handling that we came across during an extensive survey of existing tools for EA management. We then point to the
fundamental principles of software cartography, an approach for EA modeling, including a method for the automatic
creation of visualizations based on EA models. This approach is based on model transformations, which link the data
to be visualized and their graphical representation, thereby circumventing the error-prone and time-consuming task
of manual creation of the visual models. A brief overview of a prototypic implementation of this approach illustrates
the practical applicability for visual modeling and documenting EA.

1 Motivation

With the growing importance of enterprise architec-
ture (EA) management currently experienced in re-
search [LaWe04] and in practice [Jame05], methods
for documenting, evaluating, and planning the appli-
cation landscape as part of the EA management gain
increasing attention. This is reflected by various ap-
proaches, which try to establish and standardize lan-
guages for modelling the EA, furthermore
complemented by a number of vendors claiming the
emerging market of EA management tools. Neverthe-
less, many of these tools show common weaknesses,
especially regarding the approach used for creating
visualizations of the EA or the application landscape,
as we found out during an extensive survey [sebi05]
conducted by sebis. Such visualizations, used for doc-
umenting, evaluating, and planning the application
landscape make up the focus of the research project
Software Cartography, which this paper originates
from.

In this project, we discovered a large number of dif-
ferent visualizations for application landscapes, which
we refer to as software maps. An exemplary software
map used at one of our project partners is given in
Figure 1. The figure is made illegible due to the fact
that it contains confidential information. Neverthe-
less, the figure shows the inherent complexity an ap-
proach for generating visualizations of enterprise

architectures has to cope with. The software map
originates from an insurance company and visualizes
about 160 application systems hosted at the head-
quarter, which are used worldwide. The original map
is commonly used in printout in DIN A0, within pres-
entations, and is available in the corporate intranet.

In order to discuss the requirements an approach for
generating visualizations of EAs must satisfy, an ano-
nymized software map similar to the one of the insur-
ance company is shown in Figure 2. This visualization
shows organizational units of a fictitious department
store as rectangles, nesting the business applications
hosted at the specific organizational unit represented
by smaller rectangles. No established method for the
creation and maintenance of such visualizations yet
exists. Furthermore, most of the EA management
tools show only basic capabilities in the context of au-
tomated positioning [sebi05]. Within the develop-
ment of such a method the following issues have to be
considered:

• The manual creation of the visualizations of
the EA is an error prone and time consuming
task, that leads to software maps containing
aged data. Caused by the missing link
between the present data and the visualiza-
tion, no automated creation process for the
visualization is available to ensure the
up-to-date information of the visualized
data.

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 2, November 2007

Sabine Buckl, Alexander M. Ernst, Josef Lankes, et al.4

• The EA management tools commonly pro-
vide the user with the possibility to introduce
visual elements without defined semantics in
the context of the visualization, thereby
effectively disconnecting the visualization
from the respective data.

We subsequently detail on the topic of EA modeling,
presenting an approach, complemented by a proto-
typic tool implementation, which we regard to be suit-
able for addressing these issues. Thereby, the
approach is based on a technology originating from
the field of model driven development (MDD): model
transformation. This article especially focuses on the
method for creating visualizations of the EA by model
transformation and provides information, how a tool
could actually implement this method. Thereby, the
error prone and labor intensive task of manual cre-
ation of these visualizations is eliminated.

The remainder of the article is structured as follows.
As a starting point, software cartography as a way to
support EA modeling with visual models is presented
in Section 2 as well as an approach using model trans-
formation to create the necessary visual models in
Section 3. The following Section 4 shows the applica-
tion of our approach by providing information on a
prototypic tool implementation. Section 5 emphasizes
on different approaches taken in the context of EA
modeling as well as on aspects of visualization consis-
tency. Finally, Section 6 provides some conclusions
resulting from the taken approach and sketches as-
pects of further research in this field.

2 Software Cartography

Our approach to EA modeling uses concepts and no-
tions originating from the field of cartography. Maps
in the context of cartography can be categorized into

two different map types: topographic maps and the-
matic maps [KrOr96]. Topographic maps mainly deal
with geographic information, whereas thematic maps
show spatial information on a topographic map, as
e.g. the results of a political election.

In the context of EA modeling, visualizations resem-
bling the buildup of thematic maps can be considered
to be important, as they can be used to visualize dif-
ferent aspects of the enterprise. These visualizations,
called software maps, are subject of research in our
project software cartography. Aspects in the context
of EA modeling that can be used to support the docu-
mentation, planning, and evaluating of the application
landscape can be found in [MaWi04]. Thereby, met-
rics that point out aspects can be visualized on soft-
ware maps to address specific concerns. In our
research project, we gathered different visualizations
of the EA and categorized them into three different
types [Witt07]:

• A cluster map is a type of software map that
uses positioning to show how objects (e.g.
applications) are grouped into larger logical
units (e.g. organizational units) on the base
map. Thereby, the graphical representation
of the object is clustered into the the repre-
sentation of the logical unit. An example for
a software map of type cluster map is shown
in Figure 2.

• A cartesian map is characterized by ele-
ments that are aligned along an x- and an
y-axis on the base map. Two prominent
examples of cartesian maps exist. Firstly, the
process support map, which utilizes position-
ing to show which business processes
(x-axis) are supported by which application
and used at which location (y-axis). Sec-
ondly, the time interval map, which is closely
related to Gantt-like diagrams, as it uses
bars for representing the life cycle on the
x-axis (representing periods of time) of
objects (e.g. applications) on the y-axis.

• A graph layout map is a map using a typical
nodes-and-edges buildup of the base map,
not exerting additional restrictions on posi-
tioning to convey information. Therefore, the
positioning is for example used for minimiz-
ing the numbers of lines crossing.

These different types of software maps can be used to
visualize different aspects of the enterprise. Thereby,
considerable aspects in the context of enterprise
modeling that can be used to support the documenta-
tion, planning, and evaluating of the application land-
scape can be classified in the following categories
[MaWi04]:

Figure 1: Exemplary software map of an insurance
company

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 2, November 2007
Generating Visualizations of Enterprise Architectures using Model Transformations 5

• Planning aspects deal with the evolution of
the application landscape. Projects change
applications of the landscape to reach
defined goals and objectives. Different
stakeholders as e.g. project managers need
to get an overview about current and future
changes in the application landscape to iden-
tify demands in the context of adjustment
and communication. Thereby, application life
cycles, versions and interfaces between dif-
ferent applications constitute a major field of
interest.

• Functional aspects can be distinguished into
organizational and process-oriented aspects,
that influence each other. As organizational
units are responsible for the realization of a
business process and at the same time the
steps of a business process are conducted by
persons, which belong to an organizational
unit. An example of the visualization of a
functional aspect is visualized in Figure 2,
where application systems are clustered
according to their relation to organizational
units.

• Technical aspects include attributes, like the
implementation language of an application,
the interfaces, the architecture, and the used
middle ware. In the context of application
landscapes interfaces between applications
are highly relevant, to identify transitive
dependencies to plan the evolution of the
landscape.

• Economical aspects cover different invest-
ments as e.g. development, operating, or
maintenance costs. These different invest-
ments can be combined with each other and
linked to the application landscape. There-
fore, software maps can be used to support
IT controlling.

• Operative aspects deal with the operating
issues of the applications and associated
events. Relevant aspects in this context are
for example the hosting location of a specific
application (physical location, host com-
puter, etc.), which often differs from the
usage location.

To support the visualization of different aspects on a
software map [LaMW05], the layering principle as
shown in Figure 3 can be utilized.

The exemplary software map in Figure 3 consists of a
base map including organizational units, and multiple
layers, which are used to visualize relationships be-
tween different objects. In Figure 3, the layers con-
tain applications on the first layer, interconnections
representing a technical aspect on the second layer as
well as measures on the third layer, visualizing oper-
ational or economical aspects. Thereby, each layer
has a reference layer to which the elements relate.

Within the process of EA management, software maps
are used e.g. for the documentation of the current,
planned, and target landscapes. Thereby, these soft-
ware maps are mostly manually drawn with modeling
tools like MS Visio or MS PowerPoint. Circumventing

Figure 2: Exemplary software map

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 2, November 2007

Sabine Buckl, Alexander M. Ernst, Josef Lankes, et al.6

the error prone and manual creation process an ap-
proach for generating software maps reduces the ex-
pense of the creation and maintenance process.

3 A model transformation
approach

As described above, we pursue an approach for EA
modeling based on model transformation in order to
ensure the consistency between information (e.g.
data in an EA management repository) and visualiza-
tions of the EA. Therefore, a strict separation of the
content to be visualized – the semantic model – and
its representation – the symbolic model – is required.
Additionally, a well-defined link between these mod-
els – the transformation – is needed. Figure 4 shows
the basic idea of the model transformation approach.
Subsequently, the individual concepts are explained
in detail.

3.1 Semantic model and information
model – the left side

The semantic model and the information model deal
with the information describing the EA and its struc-
ture. Thereby, the different models represent differ-
ent levels of abstraction, similar to the notion of MOF
(e.g. class and instance). The focal point of the se-
mantic model lies on the actual information objects,
which describe the EA irrespective of its representa-
tion. These information objects are instances – in
terms of object orientation – of the classes of the in-
formation model, thus the information model is the
metamodel on which the semantic model is based.

To exemplify the two tiered structure of the left side,
we refer to the cluster map in Figure 2, i.e. the re-
spective information about the EA contained therein.
This information can be summarized as “which loca-
tion hosts which business application”. “Munich”, for
example, which is an instance of Location, hosts

among others “Online Shop (100)”, an instance of
BusinessApplication. Figure 5 shows on the left side
some of the information objects, which are instances
of the classes from the corresponding information
model on the right side.

The respective information model thus contains the
classes BusinessApplication and Location, related by
the association hostedAt. The attributes of the classes
in the information model are not described in detail
here, as only three of them are shown exemplarily. A
more detailed description of information models and
their related visualizations for EA management can be
found in [BEL+07].

3.2 Symbolic model and visualization
model – the right side

In order to provide means for describing visualiza-
tions, as the cluster map shown in Figure 2, we intro-
duce a visualization model containing elements
representing graphical concepts. These graphical con-
cepts may on the one hand be map symbols, as e.g.
the rectangle and on the other hand be visualization
rules. These rules exert certain demands on the posi-
tioning, size, or overall appearance of the map symbol
instances. E.g. the nesting rule, used in the exempla-
ry visualization, demands that a symbol representing
a business application is fully contained in the outer
symbol. Utilizing these concepts, the visualization can
be described by a symbolic model (see Figure 6 left
side), that consists of instances from the exemplary
visualization model (see Figure 6 right side). Never-
theless, it must be noted, that there exist more visu-
alization rules, even in this simple example. An
example is the rule demanding the different symbols
representing business applications not to intersect
each other. A complete model, able to describe visu-
alizations as introduced above, is contained in
[ELSW06].

The object-oriented visualization model, alluded to
above, greatly leverages the model transformation
approach, but nevertheless is not capable of giving a

Figure 3: Layering principle of a software map

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 2, November 2007
Generating Visualizations of Enterprise Architectures using Model Transformations 7

strict definition for the visualization specific semantics
of the map symbols and visualization rules. Therefore,
we complement each class of the model with an ex-
pression in predicate calculus, describing the graphi-
cal implications in an unambiguous way. These
definitions, further detailed in [ELSW06], can be used
for computing the actual visualization from a symbolic
model. Such a system might pursue different ap-
proaches for the computation. An exemplary one is
outlined in Section 4.

3.3 Model transformation and
metamodel – the middle

To allow an automated creation of visual models of
the application landscape and to ensure the consist-
ency between these models and the underlying data,
a link between the left side, representing the informa-
tion and the right side, the representation, is re-
quired. This link is created by a transformation, which
translates the information objects of the semantic
model into visualization objects of the symbolic mod-
el. Selecting a transformation language specification,
the concepts used in information models for EA man-
agement and the bidirectionality of the transforma-
tion, to allow changes in the semantic model by
interacting withthe visualization, should be consid-
ered. Figure 7 gives a short example of a transforma-
tion, resembling a notation as proposed by MOF
Query, View, Transformation (QVT) [OMG05a].

Due to the fact that a common metamodel for the in-
formation model and the visualization model greatly
simplifies the transformation specification, such a
model is subsequently introduced. We extensively an-
alyzed different EA management information models
developed by industry partners in [Buck05], which

pointed to the OMG’s Meta Object Facility (MOF)
[OMG06a] as a suitable metamodel. The MOF model
contains two core packages, Essential MOF (EMOF)
and Complete MOF (CMOF), the former providing the
core capabilities usually associated with object orien-
tation, the latter extending them with advanced con-
structs, as e.g. constraints. However, EA
management information models at our industry part-
ners did not turn out to heavily rely on CMOF con-
cepts, but more showed that these advanced
concepts where used inconsistently. A common sense
of usage only exists concerning the core concepts as
contained in EMOF.

Based on the results of the analysis alluded to above,
we regard EMOF to be sufficient for information mod-
eling in the field of EA, as well as a good choice in
terms of an easy mapping of models to implementa-
tion. Verifying this choice, the following section details
aspects of our prototypic tool realizing the approach
outlined above.

4 SoCaTool: a tool for enterprise
architecture modeling

Subsequently, we show the applicability of the model
transformation approach for generating visual models
of the enterprise architecture. Therefore, we provide
information on a prototypic tool, which has been de-
veloped by sebis – giving an implementation of the
approach. Prior to describing the core components of
the tool and their interaction in generating visualiza-
tions, we provide a summary of our basic assump-
tions, which greatly influenced the software
architecture of the tool.

Figure 4: Basic principles of the software cartography method

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 2, November 2007

Sabine Buckl, Alexander M. Ernst, Josef Lankes, et al.8

With an approach strongly centered on the usage of
object-oriented models and representations thereof,
a main factor is the metamodel, all these models are
based on. Considerations as in Section 3.2 advocate
the usage of EMOF as a common metamodel for the
information model and the visualization model. An im-
plementation of the metamodel has therefore to be
incorporated in the tool. With different implementa-
tions at hand, we decided to rely on the implementa-
tion provided in the Eclipse Modeling Framework
(EMF) [MDG+04]. This framework was chosen, as its
metamodel, the ECore-metamodel, can be considered
to be very similar to the EMOF-metamodel1. Addition-
ally, the EMF provides serialization and editing related
functionalities at “no cost”, as well as an active user
and developer community. From this community var-
ious extensions to the core EMF have arisen, as e.g. a
support for queries using the Object Constraint Lan-
guage (OCL) as specified by the OMG [OMG06b]. Es-
pecially, the OCL plugin [Ec07a] is used in the tool
primarily for realizing derived attributes and relation-
ships especially in the information model. Thereby,
metrics basing on the model concepts can be estab-
lished in these attributes and relationships, i.e. by
providing a rule for deriving a metric value. Addition-
ally, OCL is used for augmenting the information mod-
el with invariants. They can be used to avoid
conceptual inconsistent information to be modeled.

Notwithstanding, the Eclipse Rich Client Platform is
not only a suitable basis for the modeling related as-
pects of the prototypic tool, but also leverages the
visualization aspect to be realized in the tool. Here,
the Graphical Editor Framework (GEF) [MDG+04]
provides an easy to use system for managing and in-
teracting with visualizations. Especially, the second
point can be seen as valuable for our approach, as the
visualization model can be used for validating seman-
tic preserving changes to the symbolic model objects.

Based on the eclipse rich client platform, a component
architecture containing four core components has

been realized – complementing the approach outlined
in Section 3 with an implementation. An important
cornerstone of this architecture is the concept of the
model service, which makes up the base for the trans-
former and layouter component. These components
are considered to be model services, as they take
self-describing2 object-oriented models as input and
create self-describing object-oriented output models.

Subsequently, the core components of the prototypic
tool are detailed.

4.1.1 Repository

The repository component is used for storing and
managing object-oriented models, as e.g. the seman-
tic model. This component also maintains the relation
between a model 1Only minor differences concerning
naming and the usage of references exist. and its cor-
responding metamodel, as e.g. the information mod-
el. Concerning the set of functionalities offered by a
repository, different types of repositories can be con-
sidered. Whereas the simplest type only enables
reading access to the models as well as creating a
completely new model from a set of objects, a more
sophisticated repository would e.g. support editing
operations on the objects contained. The support for
multiple users acting on object-oriented models raises
additional demands on a repository, especially con-
cerning transaction related issues as well as issues
concerning notification about model changes. More
detailed considerations on the functionalities support-
ed by a repository can be found in [OMG04].

As the prototypic implementation neither needs
transaction support nor notification capabilities, a
simple file-based repository has been chosen, there-
by, every object-oriented model is serialized as a sin-
gle xml-file. Nevertheless, this repository is used via
the eclipse emf Resource-interface, which is also sup-
ported by repository projects providing more func-

1 Only minor differences concerning naming and the usage of
references exist.

2 Self-describing in this context means, that the model
retains an explicit connection to the corresponding
metamodel. Additionally, the metamodel can be accessed
programmatically.

Online Shop : BusinessApplication Munich : Location: hosted at

Monentary Transaction System (Germany) : BusinessApplication

Accounting System : BusinessApplication

Costing System : BusinessApplication

: hosted at

: hosted at

: hosted at

Online Shop : BusinessApplication Munich : Location: hosted at

Monentary Transaction System (Germany) : BusinessApplication

Accounting System : BusinessApplication

Costing System : BusinessApplication

: hosted at

: hosted at

: hosted at

Location BusinessApplication

name : String name : String
id : Integer

: hosted at

1 *
Location BusinessApplication

name : String name : String
id : Integer

: hosted at

1 *

Figure 5: The semantic model and the corresponding information model

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 2, November 2007
Generating Visualizations of Enterprise Architectures using Model Transformations 9

tionalities, as e.g. the elver persistency project
[Ec07b].

4.1.2 Transformer

The transformer component is capable of interpreting
visualization definitions as rules describing the trans-
formation from an object-oriented model to another.
When analyzing the transformation rules between the
semantic and the symbolic model, as outlined in Sec-
tion 3.3, we identified basic functional requirements,
as e.g. a support for queries on the semantic model
data as well as a support for parametrizing rules. Ad-
ditionally, a framework for bidirectional transforma-
tions would greatly leverage the approach from
Section 3, as it would provide means for editing se-
mantic model data via changes to the symbolic model.
These requirements mainly focus on the expressive-
ness of the transformation language. Nevertheless,
further requirements regarding the usage context
have to be considered. This is especially important, as
the transformation rules should be easily definable for
users without “full-scale” programming knowledge,
allowing users, as far as possible, to define auto gen-
erated custom visualizations. We deem it best, to
have a graphical notation for defining these rules.

Taking into consideration languages for defining mod-
el-to-model (M2M) transformations, especially prom-
inent in the field of MDA, the Atlas Transformation
Language (ATL), as described in [ATLA06], is at first
sight an interesting candidate. Pursuing a strongly de-
clarative approach in notating the rules, and not pro-
viding a graphical notation for defining the
transformation, some of the functional requirements
stated above are met by ATL. Nevertheless, ATL has
only a limited support for querying concepts and, as
with version 0.7, did not provide support for para-
metrized rules3.

The Bidirectional Object Transformation Language
(BOTL) [BrMa03], pursuing a strongly declarative ap-
proach, provides an UML-based graphical notation for

defining transformation rules. Furthermore, it lever-
ages bidirectionality regarding the rules, as far as the
operations performed during transformation do sup-
port this. Nevertheless, BOTL uses an independent
metamodel, faintly “inspired” by the EMOF metamod-
el, leaving out concepts that are of importance in in-
formation modeling, as e.g. inheritance. Furthermore,
querying and external parametrization are not direct-
ly supported.

Having thus ruled out two promising transformation
languages from the field of MDA, we decided to use
ECore reflection and java code to realize a first proto-
typic implementation of the transformer based on
“hard coded” transformation implementations. While
this approach comprises obvious drawbacks concern-
ing the simplicity of visualization definition by the us-
er, it greatly leverages the definition of closely related
visualization variants by inheritance and the utiliza-
tion of object-oriented design patterns. Additionally,
the maximum expressiveness of java helped us to
gain further insights, which language concepts are
necessary in constructing model transformation rules
for defining EA management visualizations.

4.1.3 Layouter

The layouter component, providing the capability to
actually layout visualizations described as symbolic
models, can be considered the core component of the
prototypic tool. This component leverages the utiliza-
tion of object-oriented visualization specifications and
thus enables the realization of visual modeling facili-
ties without burdening the model creator with the im-
plementation of layouting algorithms. When relying
on the concepts provided by the visualization model
as outlined in Section 3, the layouter is capable of cal-
culating the positions, dimensions, and other visual
parameters of symbol instances in accordance to the
visualization rule instances in the symbolic model. In
performing this calculation many different approaches
can be pursued. Two of them have been explored
in-depth in the prototypic tool implementation, which
are subsequently detailed.

3 The current version of ATL does support external
parametrization.

Rectangle Nesting

x : Real
y : Real
width : Real
heigh : Real
backgroundColor : Color
borderColor : Color
text : String

inner

outer

1

1

*

*

Rectangle Nesting

x : Real
y : Real
width : Real
heigh : Real
backgroundColor : Color
borderColor : Color
text : String

inner

outer

1

1

*

*

Online Shop : Rectangle : Nesting: inner

Monentary Transaction System (Germany) : Rectangle

Accounting System : Rectangle

Costing System : Rectangle

: inner

: inner

: inner

Munich : Rectangle

: Nesting

: Nesting

: Nesting

: outer

: outer

: outer

: outer

Online Shop : Rectangle : Nesting: inner

Monentary Transaction System (Germany) : Rectangle

Accounting System : Rectangle

Costing System : Rectangle

: inner

: inner

: inner

Munich : Rectangle

: Nesting

: Nesting

: Nesting

: outer

: outer

: outer

: outer

Figure 6: The symbolic model and the corresponding visualization model

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 2, November 2007

Sabine Buckl, Alexander M. Ernst, Josef Lankes, et al.10

The first approach relies on the fact, that for every
symbolic model a representation as an optimization
problem can be found. This optimization problem uses
the positions, dimensions, and other visual parame-
ters of the symbol instances as variables, while con-
straints and target functions are derived from the
visualization rule instances [ELSW06]. Solving the
corresponding optimization problem is therefore
equivalent to finding a valid layout for the visualiza-
tion. Nevertheless, as these optimization problems
are often high-dimensional as well as non-convex,
specialized algorithms for solving do not commonly
exist. For this reason, the first approach employed a
genetic algorithm for searching an optimal solution.
Due to the high genericity of such an algorithm, this
approach is of limited performance.

The second approach takes advantage of the fact,
that there exist recurring elements in the object-ori-
ented symbolic models, called patterns. One of these
patterns could e.g. be a clustering pattern, in which a
variable number of symbol instances is demanded to
be nested into a surrounding symbol instance, with
the nested instances demanded to be separated from
each other. This pattern is prominently used in the vi-
sualization in Figure 2. For such patterns specialized
layouting algorithms can be found, which incorporate
the specifics of the pattern to provide superior layout-
ing performance. A layouter pursuing this approach
has been implemented as component in the tool (see
[Laus07]), performing significantly better as the ge-
netic algorithm. Nevertheless, the layouter is limited
concerning the variety of symbolic models, which can
be addressed, although the most prominent types of
visualizations as outlined in Section 2 can be layout-
ed.

4.1.4 Renderer

The renderer component is used to present a layouted
symbolic model in a specific output format. Concern-
ing the format especially the PDF and the scalable
vector graphics (SVG) format are of interest due to
the inherent or potential support for layering and their
vector graphic nature. Supplementary, a renderer for
direct screen output in the tool can be implemented,
with additional functionalities of interest, as the op-
tion to support interactions with the rendered visuali-
zations, e.g. via moving symbols.

In the prototypic implementation a renderer for static
visualizations on screen has been implemented using
the eclipse Graphical Editor Framework (GEF). The
output of this renderer in the graphical user interfaces
of the tool is shown in Figure 8, displaying an exem-
plary software map of type cartesian map as outlined
in Section 2.

5 Related Work

With an approach for visual modeling presented
above, the following section links to related work from
the area of software engineering and EA modeling as
well as issues regarding consistency of visual models.

In the field of software engineering, the unified mod-
eling language (UML) [OMG05c, OMG05b] provides
the common sense for modeling single software sys-
tems, which is lacking in the field of enterprise archi-
tecture modeling. Therefore, the attempt of
transferring the concepts and notations of UML to EA
modeling could be undertaken. Nevertheless, the spe-
cific concerns of this area of modeling are not well
supported by UML, as e.g. concepts like business ap-
plications or business processes are not known. While
these concepts could be introduced via UML profiles,
specific diagramming semantics are not easily realiz-
able using the concepts of UML, effectively ruling out
the unified modeling language as a language for EA
modeling. This fact is also reflected by the variety of
different approaches for enterprise architecture mod-
eling regarding languages, methods, and tools, which
can be found in the academic community.

One approach is outlined in [TLD+04, Lank07] and
specially focuses on a formal way of defining visuali-
zations of the application landscape. This approach
relies on the concept of signatures to establish a
well-defined relation between the visualization and
the underlying model of the enterprise architecture.
While this approach also considers aspects of interest
in the context of visualizations, e.g. relative position-
ing, no simple to use notation for a model describing
the visualizations is provided. Further the approach
does not provide an executable way for creating visu-
alizations from the information.

Figure 7: Exemplary transformation rule set

rule Location2Rectangle {
from

infoObject : Semantic.Location
to

symbol : Symbolic.Rectangle {
text = infoObject.name,
backgroundColor = #CCCCCC

}
}
rule BusinessApp2Rectangle {

from
infoObject : Semantic.BusinessApplication

to
symbol : Symbolic.Rectangle {
text = infoObject.name + “(” + infoObject.id + “)"

},
rule : Symbolic.Nesting {
inner = symbol,
outer = transforming (infoObject.hostedAt)

}
}

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 2, November 2007
Generating Visualizations of Enterprise Architectures using Model Transformations 11

Regarding the absence of a state of the art, [Fran02]
suggests another approach to enterprise architecture
modeling, emphasizing the necessity to support dif-
ferent views on the enterprise. These views use differ-
ent special purpose modeling languages to meet the
concerns of the different stakeholders. These lan-
guages are defined in metamodels, which correspond
to a common meta-metamodel to support integration.
Nevertheless, as the approach is more focused on the
provision of an integrated meta-metamodel for the
different languages, it does not provide a method for
generating the required views of the EA. The ap-
proach presented in Section 3 can been seen as sup-
portive in this context, for realizing tool support for
the special purpose modeling languages and their vis-
ual models, as outlined above.

An approach centered around an EA metamodel (in-
formation model in our terms) can be found in
[BrWi05]. The model contains over 50 classes and
thus spanns various aspects of interest in EA mode-
ling. Additionally, this information model is comple-
mented by means for structuring, which can be
considered very helpful in reducing the inherent com-
plexity of the modeling subject. Nevertheless, with
the emphasis of the approach on the information
model, aspects of visual models and their creation are
not addressed in the article. Again, we see the ap-
proach presented in Section 3 as a valuable contribu-
tion in the context, actually providing a way for
supporting visual modeling based on the EA meta-
model provided in [BrWi05].

Enhancing the approach presented in [BrWi05] Kurp-
juweit and Winter introduce an approach based on the
integration of information model fragments [KuWi07].

Thereby, the information model fragments are select-
ed according to the concerns of different stakeholders
and integrated to a metamodel. While the approach
focuses on the different concerns of the various stake-
holders, the issue of utilizing the information kept
within the information model is left out. The approach
presented in Section 3 can be seen as supportive in
this context, as it can be leveraged to generate visu-
alizations of the EA which can be used to address the
concerns presented by the various stakeholders.

Regarding the inconsistency issue between visualiza-
tions and the underlying data, an approach to ensure
visualization consistency is pursued in [DoVa02] and
especially focuses on aspects of executability. In or-
der to provide an “open visualization framework ap-
plicable to metamodel based modeling languages” the
issue is approached from the direction of visual lan-
guages (visualization models). Pointing out, that
many domain specific visualization environments ex-
ist, the approach quickly calls to XML as a lingua fran-
ca for representing the concepts of these languages.
Furthermore, information to be visualized is also seri-
alized as XML, such that concepts of transforming be-
tween XML document, as e.g. XSLT can be used for
visualizing the information. Nevertheless, the article
does not encompass a visual language suitable for ex-
pressing the aspects of relative positioning, as the ap-
plication presented in therein concerns petri-nets and
their representation as nodes-and-edges.

Targeting EA modeling, an approach using object-ori-
ented models for describing the EA and the visualiza-
tions is given in [SADL04]. These models are, similar
to the approach presented in Section 3 connected via
transformations. Nevertheless, these transformations

Figure 8: The GUI of the prototypic tool implementation

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 2, November 2007

Sabine Buckl, Alexander M. Ernst, Josef Lankes, et al.12

are limited to object-to-object transformations, while
the links (instances of associations) are not taken into
consideration – again leaving out an aspect crucial for
modeling the EA. Furthermore, a language for de-
scribing the visualizations as outlined in Section 3.2,
especially concerning relative positioning, is not pro-
vided.

6 Outlook

In this article, we emphasized on the importance of
EA models. As we outlined, various approaches and
information models for this modeling task exist, with
no model or approach being prominent and all-em-
bracing. Complementarily, we outlined the impor-
tance of visual models of the enterprise architecture
to make the information about the EA perceivable.
With the absence of the one information model for the
EA and the need for visual models obviously existing,
the approach presented in Section 3 targets to bridge
this gap. Utilizing model transformation concepts and
providing a flexible model for describing visualiza-
tions, our approach can be seen as an extension to
the information modeling approaches as presented in
Section 5.

The applicability of the model transformation ap-
proach is shown in Section 4 by providing details of a
prototypic tool implementation, which is able to en-
sure consistency between the data modeled according
to an arbitrary information model and the visualiza-
tion representing this data. Nevertheless, the proto-
typic implementation can be seen as a first step
towards a visual modeling tool supporting a variety of
information models. Concerning the modeling capa-
bilities further extension for e.g. semantic-preserving
editing of the visualizations as well as for propagating
semantic changes in the visualization to the underly-
ing semantic model have to be explored and are cur-
rently subject of research at sebis.

Besides the issues of generating visualizations of the
EA, we regard the utilization of software maps within
the EA management process as an interesting field of
research. In our Enterprise Architecture Management
Viewpoint Survey, we are consolidating viewpoints for
EA management existing in research and in practice
in order to find the most prominent ones, which will
then be consolidated into an EA management pattern
catalogue. As viewpoints are not sufficient to address
the concerns arising in EA management, we build this
pattern catalogue constituting of viewpoints, method-
ologies, and information models.

Extending the scope of the approach presented, an
even broader field for application can be thought of.
As the information model is freely configurable, mod-
els originating from other fields, especially from a less

informatics related background, could be employed in
the tool. Here, information models from traffic flow
modeling or enterprise modeling can be thought of. In
these fields capabilities to interact with the visualiza-
tions could be even more interesting and beneficial,
especially, when graphical methods for defining filters
on the information are of interest. In this area, we see
potential relations to the field of interactive visual
analysis, which both areas could benefit from.

References

[ATLA06] ATLAS group at LINA & INRIA. ATL: Atlas Transfor-
mation Language, 2006.

[BEL+07] Buckl, S.; Ernst, A.M.; Lankes, J.; Schneider, K.;
Schweda, C.M.: A Pattern based Approach for con-
structing Enterprise Architecture Management Informa-
tion Models. In Oberweis, A.; Weinhardt, C.; Gimpel,
H.; Koschmider, A.; Pankratius, V.; Schnizler, B.
(Eds.): Wirtschaftsinformatik 2007, pp. 145–162,
Karlsruhe, Germany, 2007. Universitätsverlag
Karlsruhe.

[BrMa03] Braun, P.; Marschall, F.: BOTL – The Bidirectional
Object Oriented Transformation Language. http://www-
bib.informatik.tu-muenchen.de/infberichte/2003/
TUMI0307.pdf, cited 2007-01-26, 2003.

[BrWi05] Braun, C.; Winter, R.: MA Comprehensive Enter-
prise Architecture Metamodel and Its Implementation
Using a Metamodeling Platform. In Enterprise Modelling
and Information System Architectures (EMISA),
pp. 64-79, 2005.

[Buck05] Buckl, S.: Modell-basierte Transformationen von
Informationsmodellen zum Management von Anwend-
ungslandschaften. Diploma thesis, Fakultät für Informa-
tik, Technische Universität München, 2005.

 [DoVa02] Domokos, P.; Varro, D.: An Open Visualization
Framework for Metamodel-Based Modeling Languages.
Electronic Notes in Theoretical Computer Science,
72(2), 2002.

[Ec07a] Eclipse Foundation: Modeling Development Tools
(MDT) – OCL. http://www.eclipse.org/modeling/mdt/?
project=ocl, cited 2007-11-09.

[Ec07b] Eclipse Foundataion: Eclipse Modeling Framework
Technology (EMFT) – Teneo. http://www.eclipse.org/
modeling/emft/?project=teneo, cited 2007-11-09.

[ELSW06] Ernst, A.; Lankes, J.; Schweda, C. M.;
Wittenburg, A.: Using Model Transformation for Gener-
ating Visualizations from Repository Contents – An
Application to Software Cartography. Technical report,
Technische Universität München, Chair for Informatics
19 (sebis), Munich, 2006.

[Fran02] Frank, U.: Multi-Perspective Enterprise Modeling
(MEMO) – Conceptual Framework and Modeling Lan-
guages. In Proceedings of the 35th Annual Hawaii Inter-
national Conference on System Sciences 35,
pp. 1258-1267, 2002.

[Jame05] James, G.: Magic Quadrant for Enterprise Architec-
ture Tools, 4Q04, 2005.

[KrOr96] Kraak, M. J.; Ormeling, F.: Cartography: Visualiza-
tion of Spatial Data. Addison Wesley Longman, 1996.

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 2, November 2007
Generating Visualizations of Enterprise Architectures using Model Transformations 13

[KuWi07] Kurpjuweit, S.; Winter, R.: Viewpoint-based Meta
Model Engingeering. In Reichert, M.; Strecker, S.; Tur-
owski, K. (Eds.). Enterprise Modelling and Information
Systems Architectures Concepts and Applications , Pro-
ceedings of the 2nd International Workshop on Enter-
prise Modelling and Information Systems Architectures
(EMISA'07), St. Goar, Germany, 2007.

[LaMW05] Lankes, J.; Matthes, M.; Wittenburg, A.: Soft-
warekartographie: Systematische Darstellung von
Anwendungslandschaften. In Wirtschaftsinformatik
2005, Bamberg, Germany, 2005.

[Lank07] Lankhorst, M.: Enterprise Architecture at Work:
Modelling, Communication, and Analysis. Springer Ver-
lag, Berlin, Heidelbert, 2005.

[Laus07] Lauschke, S.: Automatische Generierung von Soft-
warekarten: Entwicklung eines Ansatzes zum Layout
deklarativ beschriebener Visualisierungen. Master’s the-
sis, Fakultät für Informatik, Technische Universität
München, 2007.

[LaWe04] Langenberg, K.; Wegmann, A.: Enterprise Archi-
tecture: What Aspects is Current Research Targeting?
Technical report, Ecole Polytechnique Fédérale de
Lausanne, Laboratory of Systemic Modeling, 2004.

[MaWi04] Matthes, F.; Wittenburg, A.: Softwarekarten zur
Visualisierung von Anwendungslandschaften und ihrer
Aspekte. Technical report, Technische Universität
München, Chair for Informatics 19 (sebis), Munich,
2004.

[MDG+04] Moore, B.; Dean, D.; Gerber, A.; Wagenknecht,
G.; Vanderheyden, P.: Eclipse Development using the
Graphical Editing Framework and the Eclipse Modeling
Framework. http://www.redbooks.ibm.com/redbooks/
pdfs/sg246302.pdf, cited 2007-07-04, 2004.

[OMG04] OMG. MOF 2.0 Facility and Object Lifecycle Specifi-
cation, ad/2004-04-02, 2004.

[OMG05a] OMG. Revised Submission for MOF 2.0 Query/
View/Transformation (ptc/05-11-01), 2005.

[OMG05b] OMG. UML 2.0 Infrastructure Specification (for-
mal/05-07-05), 2005.

[OMG05c] OMG. Unified Modeling Language: Superstructure,
version 2.0 (formal/05-07-04), 2005.

[OMG06a] OMG. Meta Object Facility (MOF) Core Specifica-
tion, version 2.0 (formal/06-01-01), 2006.

[OMG06b] OMG, Object Constraint Language (OCL) Specifi-
cation, version 2.0 (formal/06-05-01), 2006.

[SADL04] Steen, M. W. .A.; Akehurst, D. H.; ter Doest, H.;
Lankhorst, M. M.: Supporting Viewpoint-Oriented Enter-
prise Architecture. Technical report, Information Centre
of Telematica Instituut AND University of Kent,
Enschede, Netherlands & Canterbury, United Kingdom,
2004.

[sebi05] sebis. Enterprise Architecture Management Tool
Survey 2005, Fakultät für Informatik, Technische Uni-
versität München, 2005.

[TLD+04] van der Torre, L.; Lankhorst, M. M.; ter Doest, H.;
Campschroer, J.; Arbab, F.: Landscape Maps for Enter-
prise Architectures. Technical report, Information Cen-
tre of Telematica Instituut, Enschede, Netherlands,
2004.

[Witt07] Wittenburg, A.: Softwarekartographie: Modelle und
Methoden zur systematischen Visualisierung von
Anwendungslandschaften. Phd thesis, Fakultät für
Informatik, Technische Universität München, 2007.

Sabine Buckl, Alexander M. Ernst, Josef Lankes,
Florian Matthes, Christian M. Schweda, André
Wittenburg

Software engineering
for business information systems (sebis)
Technische Universität München
Boltzmannstr. 3
85748 Garching
Germany
{buckls|ernst|lankes|matthes|
 schweda|wittenbu}@in.tum.de

