
Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1
Drivers and Barriers for Microservice Adoption – A Survey among Professionals in Germany 1

Drivers and Barriers for Microservice Adoption – A Survey
among Professionals in Germany

Holger Knoche*,a, Wilhelm Hasselbringa

a Software Engineering Group, University of Kiel, 24118 Kiel, Germany

Abstract. Microservices are an architectural style for software which currently receives a lot of attention in
both industry and academia. Several companies employ microservice architectures with great success, and
there is a wealth of blog posts praising their advantages. Especially so-called Internet-scale systems use
them to satisfy their enormous scalability requirements and to rapidly deliver new features to their users.
But microservices are not only popular with large, Internet-scale systems. Many traditional companies
are also considering whether microservices are a viable option for their applications. However, these
companies may have other motivations to employ microservices, and see other barriers which could
prevent them from adopting microservices. Furthermore, these drivers and barriers possibly differ among
industry sectors. In this article, we present the results of a survey on drivers and barriers for microservice
adoption among professionals in Germany. In addition to overall drivers and barriers, we particularly
focus on the use of microservices to modernize existing software, with special emphasis on implications for
runtime performance and transactionality. We observe interesting differences between early adopters who
emphasize scalability of their Internet-scale systems, compared to traditional companies which emphasize
maintainability of their IT systems.

Keywords. Microservice architecture • Survey • Software modernization • Microservice adoption

Communicated by S. Strecker. Received 2017-08-05. Accepted after 3 revisions on 2018-11-28.

1 Introduction

Microservices are an architectural style which has
gained much attention in the last few years. Broad
interest in microservices started around 2014 and
has been steadily rising ever since (Balalaie et al.
2016). However, implementations of this archi-
tectural style have been around for a much longer
time, although the term itself was coined only
in 2012 (Lewis and Fowler 2014). For instance,
one of the best-known early adopters, the video
streaming provider Netflix, started introducing
a microservice architecture in 2008 in order to
leverage the advantages of cloud computing.1

* Corresponding author.
E-mail. hkn@informatik.uni-kiel.de
1 See Ruslan Meshenberg’s talk at GOTO 2016, available at
https://www.youtube.com/watch?v=57UK46qfBLY

As of today, numerous well-known companies,
such as Amazon,2 Spotify,3 and Uber,4 use
microservices. With this architectural style, these
companies claim to have achieved the scalability
required for providing their services to millions
of users all over the world. In addition to scal-
ability (Hasselbring 2016), microservices may
furthermore enable both agility and reliability
(Hasselbring and Steinacker 2017).

What is particularly noteworthy about the de-
velopment of microservices is the fact that many
companies are making their knowledge and tools

2 See Chris Munns’s talk at I Love APIs 2015, slides avail-
able at https://www.slideshare.net/apigee/i-love-apis-2015-
microservices-at-amazon-54487258
3 See Kevin Goldsmith’s talk at GOTO 2015, available at
https://www.youtube.com/watch?v=7LGPeBgNFuU
4 See https://eng.uber.com/soa

http://dx.doi.org/10.18417/emisa.14.1
hkn@informatik.uni-kiel.de
https://www.youtube.com/watch?v=57UK46qfBLY
https://www.youtube.com/watch?v=7LGPeBgNFuU
https://eng.uber.com/soa

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

2 Holger Knoche, Wilhelm Hasselbring

publicly available. For instance, Netflix5 and
Otto6 publish technology blogs, on which current
ideas and experiences are presented. In addition,
many libraries and infrastructure components to
develop and run microservices at scale are pub-
lished free of charge as open source software. Ex-
amples of such software include the Archaius
library for configuration management,7 the Zuul
edge gateway,8 or the container instrumentation
platform Kubernetes.9 Finally, cloud providers
such as Amazon Web Services allow to obtain
the required computing resources quickly and with
little effort. Thus, the entry threshold for adopting
microservices is quite low.

As a consequence, many companies are cur-
rently considering whether microservices are a
viable option for their software systems. However,
many of these systems are not “Internet-scale”;
instead, they are used by a known, limited, and
stable number of users. Therefore, these compa-
nies may consider microservices for other reasons
than the early adopters. Even more interesting
are expected barriers which may prevent these
companies from adopting microservices. Several
authors warn against considering microservices
as viable for every software system, as there are
numerous trade-offs to consider (Killalea 2016;
Singleton 2016). Furthermore, the reasons for
and against microservices may vary considerably
between different industries.

Although microservice adoption is discussed
extensively in blog posts and other online me-
dia, there is yet little research data on the subject.
While some studies on microservice adoption in
practice exist, many of them have only been con-
ducted with few participants, and several open
questions still remain. In order to gain insight
into the reasons why “traditional” companies are
considering the adoption of microservices, we
conducted a survey among software development
professionals in Germany. Since many companies

5 https://medium.com/netflix-techblog
6 https://dev.otto.de
7 https://github.com/Netflix/archaius
8 https://github.com/Netflix/zuul
9 http://kubernetes.io/

already have existing software assets, we further-
more investigated to what extent microservices
are perceived as a tool for software modernization,
which goals are pursued by introducing microser-
vices into existing software, and how the potential
impact on runtime performance and transactional-
ity is rated.

The remainder of this paper is structured as fol-
lows. In Sect. 2, background information about mi-
croservices and related concepts is presented. Re-
lated work is discussed in Sect. 3, and our research
approach and design is outlined in Sect. 4. Results
and findings are presented in Sect. 5. Threats to va-
lidity and implications of the results are discussed
in Sect. 6. Sect. 7 concludes the paper.

2 Background

2.1 Properties of Microservice
Architectures

There is no commonly accepted definition of mi-
croservice architectures. Instead, they are usually
characterized by a set of common properties,10
which are described in detail by Lewis and Fowler
(2014). These properties are summarized briefly
below. Afterwards, a working definition of the
term for the scope of our study is presented.

As the term “microservice” suggests, services
are the building blocks and main means of modu-
larization in microservice architectures. Services
run in separate process contexts, and can be in-
dividually deployed, replaced, and retired. Each
microservice focuses on providing a single busi-
ness function, following the single responsibility
principle (SRP). The services are built around
business capabilities by cross-functional teams,
which are responsible for every aspect of the ser-
vice from development to productive operation.
The teams furthermore keep this responsibility
for the entire lifetime of the service, as opposed
to traditional projects where the responsibility
is usually handed over to another team after the
project’s completion. This difference is commonly
summarized as “products, not projects”.

10As mentioned in Martin Fowler’s talk at GOTO 2014, avail-
able at https://www.youtube.com/watch?v=wgdBVIX9ifA

http://dx.doi.org/10.18417/emisa.14.1
https://medium.com/netflix-techblog
https://dev.otto.de
https://github.com/Netflix/archaius
https://github.com/Netflix/zuul
http://kubernetes.io/
https://www.youtube.com/watch?v=wgdBVIX9ifA

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1
Drivers and Barriers for Microservice Adoption – A Survey among Professionals in Germany 3

In turn, the teams are granted a high degree of
autonomy. In particular, centralized governance
and data management are abandoned to the extent
possible and feasible. This allows the team to
choose the right tools for the job, such as, for
instance, appropriate programming languages or
databases. Furthermore, decisions can be changed
or reverted without affecting other teams. A high
degree of deployment and infrastructure automa-
tion allows the teams to deploy new versions of
their services at their own decision.

This team autonomy, however, is only possible
due to strict technical isolation and loose coupling.
Each microservice is technically self-contained,
which means that its deployment unit contains
everything to run the service, often even includ-
ing the operating system. Unlike so-called Self-
Contained Systems,11 microservices do not need
to be functionally self-contained, i. e. they may in-
voke other microservices to provide their business
function. The required inter-service communica-
tion occurs only using defined interfaces based on
platform-independent data formats and technolo-
gies. Microservice implementations commonly
rely on lightweight communication technologies,
mostly web technologies such as HTTP/REST
or messaging solutions such as Kafka or Rab-
bitMQ. Feature-rich solutions such as enterprise
service buses are usually discouraged, as they may
tempt to move business logic from the services
into the communication infrastructure. Instead,
microservices advocate to keep the business logic
completely inside the services (“smart endpoints
and dumb pipes”).

Being a highly distributed architecture, mi-
croservices are particularly suspectible to partial
failures. Therefore, microservices must be de-
signed to cope gracefully with the unavailability
of required services to prevent cascading failures,
a property commonly referred to as resilience.
Several patterns have emerged for this purpose
(Nygard 2007), and well-tested implementations

11 http://scs-architecture.org

are available in libraries such as Hystrix.12 Ex-
amples of such patterns are circuit-breaker13 and
bulkhead14 , which are commonly used to alleviate
the effects of unavailable or slow dependencies.
Another important advantage of this resiliency is
that it allows to deploy the services in an arbitrary
order.

To ensure that their microservices are suffi-
ciently resilient, some companies even deliberately
inject failures into their productive environments,
a discipline sometimes referred to as “Chaos En-
gineering”.15 For instance, Netflix’s Simian
Army16 consists of a number of tools to cause
different types of errors. The best-known of these
is the Chaos Monkey tool, which randomly
terminates virtual machines and application con-
tainers.

Microservice implementations are essentially
stateless, with the exception of short-time caches
for performance improvement and resilience. To-
gether with the arbitrary deployment order, this
allows automated deployment infrastructures (see
Sect. 2.3) to start, stop, and move service in-
stances with little restrictions. Databases and
distributed caches, sometimes referred to as “state-
ful services”, are usually separated into dedicated
containers. Often, especially databases are even
operated traditionally.

To summarize, we use the following definition
for the term “microservice” for the remainder of
this paper.

Definition 1 (Microservice) A microservice is
a technically self-contained and independently
deployable software component that runs in its
own process context and has its own means of
persistency. It is developed and run by a cross-
functional, autonomous team responsible for its

12 https://github.com/Netflix/Hystrix
13 https://docs.microsoft.com/en-us/azure/architecture/pa←↩
tterns/circuit-breaker
14 https://docs.microsoft.com/en-us/azure/architecture/pa←↩
tterns/bulkhead
15 http://principlesofchaos.org/
16 https://github.com/Netflix/SimianArmy

http://dx.doi.org/10.18417/emisa.14.1
http://scs-architecture.org
https://github.com/Netflix/Hystrix
https://docs.microsoft.com/en-us/azure/architecture/pa!tterns/circuit-breaker
https://docs.microsoft.com/en-us/azure/architecture/pa!tterns/circuit-breaker
https://docs.microsoft.com/en-us/azure/architecture/pa!tterns/bulkhead
https://docs.microsoft.com/en-us/azure/architecture/pa!tterns/bulkhead
http://principlesofchaos.org/
https://github.com/Netflix/SimianArmy

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

4 Holger Knoche, Wilhelm Hasselbring

entire lifecycle. A microservices provides a sin-
gle business function, which is exposed using
platform-independent interfaces.

2.2 Microservices, DevOps, and
Continuous Delivery

It is obvious that the previously described pro-
perties cannot be provided by only technological
means, such as a particular software architecture.
The requirement of autonomous, cross-functional
teams able to quickly and automatically deploy
their services at their own discretion shows that
microservices are tightly connected to the notions
of DevOps (Hüttermann 2012) and Continuous
Delivery (Humble and Farley 2011). However,
there are different opinions on how precisely these
notions relate. Fowler (2014) sees DevOps culture
as a prerequisite for microservice adoption, while
Wolff (2016) argues that microservices do not
necessitate DevOps adoption. Bass et al. consider
Continuous Delivery as a DevOps practice and
remark that many companies which already have
adopted Continuous Delivery are now moving
towards a microservice architecture (Bass et al.
2015, p. 66). Balalaie et al. (2016), on the other
hand, see microservices as an enabler for DevOps.

We agree most with the last opinion, as, to our
experience, the organizational changes required for
DevOps are almost impossible to implement with-
out concrete proof of the technological benefits for
the particular organization. We therefore also con-
sider organizational implications of microservices
in our survey, such as the role of microservices as
an enabler for DevOps or the change of tasks for
both development and operations teams.

2.3 Deployment Infrastructure for
Microservices

The popularity of the microservice architecture
has also led to some important technological deve-
lopments in the field of deployment and operations.
One of these developments is the rise of contai-
ner-based virtualization, often used synonymous
with its best-known implementation, Docker.17

17 https://www.docker.com/

This lightweight virtualization mechanism allows
for the provisioning of a new service instance in
seconds, whereas setting up a traditional virtual
machine usually takes several minutes. There-
fore, container-based virtualization has become
an important tool to achieve high elasticity.

In order to fully leverage this elasticity, auto-
mated cluster management tools have emerged.
Well-known examples of such tools are Kuber-
netes,18 Docker Swarm, and DC/OS.19 These
tools provide features such as autoscaling, service
discovery, and redeployment in case of node fail-
ure, and thus greatly facilitate the operation of
microservice-based applications. But as men-
tioned before, such automated management usu-
ally requires the microservices to be deployable
in an arbitrary order.

2.4 Consistency Implications of
Microservices

As previously noted, the autonomy granted to
microservice teams includes the choice of the
underlying database(s). While this polyglot persis-
tence approach allows to leverage the strengths of
different database types such as relational or graph
databases, it also has some important downsides,
especially regarding consistency.

One major downside is that consistent updates
across service boundaries are very difficult to
achieve. In traditional, centralized databases, such
updates are implemented using database trans-
actions, which guarantee the well-known ACID
(Atomicity, Consistency, Isolation, and Durability)
properties.

Unfortunately, these properties are notoriously
difficult to uphold for distributed persistency,
where multiple different databases can be affected
by a single transaction. Such cases are usually
handled using a two-phase commit (2PC) protocol,
where the participants first vote on whether the
transaction can be committed before – provided
that there are no objections – proceeding to the
actual commit. Due to the high amount of co-
ordination and synchronization required for this

18 http://kubernetes.io/
19 https://dcos.io/

http://dx.doi.org/10.18417/emisa.14.1
https://www.docker.com/
http://kubernetes.io/
https://dcos.io/

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1
Drivers and Barriers for Microservice Adoption – A Survey among Professionals in Germany 5

protocol, two-phase commits can severely limit
scalability.

Not every database provides transactions, not
to mention the ability to participate in distributed
transactions. Especially many so-called NoSQL
databases have little to no transaction support in
exchange for high scalability. Since strong consis-
tency cannot be guaranteed, systems using such
databases are often built to provide eventual con-
sistency, meaning that if no further updates to a
data item occur, all reads to this item will even-
tually return the value of the last update (Vogels
2009).

As a consequence, transactionless coordination
between services is preferred for microservices
(Lewis and Fowler 2014). In these settings, strate-
gies like explicit compensation or the Try-Cancel-
Confirm (TCC) approach (Pardon and Pautasso
2014) are employed to address data consistency.
With explicit compensation, changes are made
optimistically, and explicitly reverted using a com-
pensating operation if necessary (e. g., a previously
created customer is deleted). TCC makes use of
entities explicitly representing temporary locks
(e. g., a flight reservation valid for 5 minutes)
which needs to be confirmed in case of success
(e. g., the reservation is turned into a booking).

Another downside is that it can be very diffi-
cult to create consistent backups of the different
data stores. This can have a significant impact
on disaster recovery strategies, since the system
cannot be reverted to a consistent state just by
restoring backups. Therefore, appropriate mea-
sures must be taken to ensure the safety of the
stored data. Technically, replication can decrease
the risk of data loss due to failures, thus reduc-
ing the probability of having to restore backups.
Conceptionally, temporal versioning of the data
allows to reconstruct consistent states at least up
to a specific point in time.

2.5 Microservices as a Means for
Software Modernization

A particularly interesting aspect of microservices
is that several authors, such as Newman (2015)
and Wolff (2016), consider them as a viable means

for modernizing existing, monolithic software ap-
plications. Furthermore, there are experience
reports of several companies who have success-
fully replaced (parts of) their existing software by
microservices, or are in the process of doing so.
Although some companies, for instance German
online retailer Otto, have succeeded in a com-
plete re-write of their application (Hasselbring
and Steinacker 2017), most authors recommend
using an incremental approach (Knoche and Has-
selbring 2018); some authors even consider a
non-incremental approach as bad practice (Car-
rasco et al. 2018). To provide a concrete example,
Stine (2015) proposes an approach comprising
three major phases:

1. New features are implemented only as microser-
vices. No new features are added to the mono-
lith.

2. An interface layer is created which allows the
newly created microservices to access the mono-
lith’s functionality. This interface layer serves
as an anti-corruption layer (see Evans 2007) to
clearly separate the old and new domain models.

3. Functionality is gradually removed from the
monolith and re-implemented as microservices.
Stine suggests to start with the services with the
highest need for change. This process continues
until the monolith is either completely replaced
or contains only stable functionality which does
not justify the extraction effort.

A closer look at this approach reveals several
important challenges, and highlights that such a
modernization is far from trivial. In particular,
the monolith itself starts depending on the new
microservices with the third phase. This can have
important consequences:

• The anti-corruption layer is now used bidirec-
tionally.

• Formerly native calls inside the monolith may
have to be replaced by service calls, and can
become significantly slower due to invocation
overhead.

http://dx.doi.org/10.18417/emisa.14.1

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

6 Holger Knoche, Wilhelm Hasselbring

• Database accesses inside the monolith may have
to be restructured or replaced by service calls.

• The monolith must now also be able to cope
with unavailable dependencies.

Furthermore, the previously discussed restrictions
on transactionality and consistency now also apply
to the monolith itself, as it can, for instance, no
longer assume that all its changes are contained
within ACID transactions. These restrictions may
pose a significant challenge for modernizations to
microservices, and are therefore also investigated
in our survey.

3 Related Work

Being a discipline that has only recently received
academic attention, there is yet little empirical
research that particularly targets microservices.
Systematic mapping studies of the existing litera-
ture on microservices have been conducted by Pahl
and Jamshidi (2016), Alshuqayran et al. (2016),
and Di Francesco et al. (2017). The latter two
studies also list implementation challenges and
problems targeted by microservices that are com-
monly addressed in the literature. However, these
challenges and problems are not discussed in de-
tail. Furthermore, they may not be representative
of the actual situation in practice, as Di Francesco
et al. find that the majority of publications was
written only by authors from academia.

Schermann et al. (2016) conducted a survey
with 42 professional participants on the current
state of practice in service-based applications.
This study, however, aimed primarily at imple-
mentation details such as used protocols and data
formats, collected monitoring metrics, and pre-
ferred programming languages. Motivations and
barriers for adopting microservices are not ad-
dressed.

Taibi et al. (2017) report on a study based on
interviews with 21 professional participants on
motivations, issues, and processes for adopting mi-
croservices. Although this study has some overlap
with ours, it does not address the aspect of mi-
grating existing software towards a microservice
architecture. Furthermore, there are fundamental

differences regarding the methodology. While
Taibi et al. chose a more qualitative approach with
few participants, our study uses a quantitative
approach with a significantly larger number of
participants.

A survey with 25 professional participants on
challenges in microservice design as well as sug-
gestions on how to resolve them has been con-
ducted by Ghofrani and Lübke (2018). While
this study addresses drivers and challenges for
microservice adoption, the results are only dis-
cussed very shortly, and especially the challenges
are based on only a few responses.

Di Francesco et al. (2018) report on a survey
with 18 professional participants regarding the
activities and challenges while migrating an ex-
isting piece of software to microservices using
an adapted variant of the horseshoe model (Raza-
vian and Lago 2010). Although this study also
addresses modernization using microservices, we
see some important differences to our study. While
Di Francesco et al. investigate concrete actions
and issues while applying a given modernization
strategy, we focus on identifying reasons that lead
to the decision to modernize. The issue of changes
in transactionality and data consistency, which we
investigate in our study, is not addressed.

In addition to these academic studies, there are
also industrial surveys partially concerned with
microservices. Surveys conducted by NGINX
(2016) and Lightbend, Inc. (2016) report on the
usage of microservices in production. The latter
study also briefly investigates drivers and barriers
to microservice adoption, but only in very little
detail.

To summarize, while there is already some
empirical research on microservice adoption in
practice, we still see many opportunities as well as
need for further research in this area. Many of the
existing studies have been conducted with quite
few participants, and should therefore be comple-
mented by further studies to verify the findings
(see Sect. 6.2). Furthermore, the implications
for transactionality and consistency, which differ
significantly between traditional monoliths and
microservices (see Sect. 2.4), have not yet been
investigated.

http://dx.doi.org/10.18417/emisa.14.1

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1
Drivers and Barriers for Microservice Adoption – A Survey among Professionals in Germany 7

4 Research Design and Method

4.1 Research Questions
In this study, we aim at investigating drivers and
barriers for microservices in general as well as
goals for using microservices as a means of soft-
ware modernization. This resulted in the selection
of the following research questions:

RQ1: What are primary drivers for companies to
adopt microservices?

RQ2: What are primary barriers preventing com-
panies from adopting microservices?

RQ3: What are important goals for using mi-
croservices to modernize existing software as-
sets and do they differ from the overall drivers
for adoption?

RQ4: How is the potential impact on runtime per-
formance and transactionality/data consistency
in modernization settings rated?

4.2 Research Method
To answer the presented research questions, we
conducted a survey among professionals from Ger-
many. In order to increase the relevance of the an-
swers, we decided to primarily target professionals
who were already concerned with microservices.

Therefore, we visited industry meetings and
conferences concerned with microservices to ac-
quire respondents personally, and contacted speak-
ers of such conferences by mail and professional
social networks. We also advertised our survey on
a well-known German developer news site, heise
developer.20 Furthermore, the respondents
were asked to forward the survey to other profes-
sionals concerned with microservices. An attempt
to acquire respondents from microservice-themed
groups in the professional social network XING
was unsuccessful due to very poor response rates.

For the survey, we used both paper and web-
based questionnaires. The paper questionnaire
was used at meetings where we were able to recruit
respondents personally, while the web question-
naire was used for contact via electronic media.

20 https://www.heise.de/developer/

The questionnaires comprised a total of 19 ques-
tions (see Appendix A), and were designed to
take 10 to 15 minutes to complete. The questions
were selected by one of the authors of the study
based on findings in the literature, experience from
discussions with professionals, and his own pro-
fessional experience in software modernization.
The questionnaire was then reviewed by another
researcher and a professional software developer,
both already concerned with microservices. After
the review, the questionnaire was tested by two
professional software developers for usability and
understandability.

4.3 Methodological Remarks
Several questions of our questionnaire asked the
respondents to rank the importance of different as-
pects for particular decisions. Since we expected
some aspects to be decisive, i. e., considered so
important that they alone might lead to a decision,
we used a four-point rating scale capable of captur-
ing such extreme responses. We chose to use four
points as this allowed for clearly separated, easy-
to-understand labels and, being an even number,
avoided central tendencies.

For comparing the importance of the items,
we calculated a score as the weighted mean of
responses for each item, as well as the standard
deviation of the score. Thereby, we implicitly
interpreted these ordinal items as interval-scaled.
We are aware that this interpretation of such items
is disputed and, from a statistical point of view,
not fully sound (see Knapp 1990). As pointed
out by Stevens (1946), this is mainly due to the
intervals between the options being of unequal
size. This is particularly true for our scale due to
the extremal options, which are, as a consequence,
underweighted in the scores. We therefore use the
scores and standard deviations only for a rough
ordering of the aspects as well as indications for
the degree to which responses differed for a given
item.

For checking hypotheses regarding the items,
we employ statistical tests appropriate for ordinal
data (sign tests and Wilcoxon rank sum tests). In
order to keep the text coherent, we report only the

http://dx.doi.org/10.18417/emisa.14.1
https://www.heise.de/developer/

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

8 Holger Knoche, Wilhelm Hasselbring

p-values in the text; details on the tests (hypotheses
and test statistics) can be found in Appendix B. A
test label (e. g., T1) is provided for each p-value to
facilitate the navigation in the appendix.

Furthermore, a few numbers in the stacked bar
plots had to be adjusted by one percentage point
to account for rounding as the plots required the
percentages to sum up to exactly 100%.

5 Results and Findings

5.1 Demographical Information
In total, 71 respondents took part in our survey. As
shown in Tab. 1, about half the respondents were
concerned with microservices for less than a year,
one third for one to two years, and one fifth for
more than two years. The remaining respondents
provided no or invalid answers.

Table 1: Time concerned with microservices

Experience # of
respondents

% of
respondents

Up to 6 months 17 24%
6 months to 12 months 14 20%
12 to 24 months 20 28%
More than 24 months 12 17%
Invalid / no answer 8 11%

As for job roles and departments, 70% of the
respondents stated working as architects, 13% as
consultants, 56% as developers, and 15% as team
leads. The vast majority of the respondents, almost
96%, worked in development departments, 21%
worked in operations departments. The detailed
numbers are shown in Tab. 2 and Tab. 3. The
respondents were allowed to give multiple answers
to both questions.

Table 2: Respondents and job roles

Role # of
respondents

% of
respondents

Architect 50 70%
Consultant 9 13%
Developer 40 56%
Team Lead 11 15%

The respondents were furthermore asked to
name the industry they work in.

Table 3: Respondents and departments

Department # of
respondents

% of
respondents

Development 68 96%
Operations 15 21%

The responses were grouped manually into the
following industry categories:

• Software Development and Consulting: Respon-
dents from companies whose primary product
is software. Since many such companies also
do software-related consulting, this industry
was also added to this category.

• Energy and Manufacturing: This category rep-
resents companies from traditional branches of
industry, such as car manufacturers and energy
suppliers.

• Financial Services: In this category, respon-
dents from banks and insurance companies are
grouped.

• Retailing and E-Commerce: Respondents from
online retailing and other E-Commerce compa-
nies.

• Other or no answer: Respondents working in
other industries and respondents that did not
answer this question.

The grouping was done as to avoid small groups
with only few participants. The category “Re-
tailing / E-Commerce” was established despite
having very few participants, since especially on-
line retailing is one of the pioneering industries of
microservices. These categories and the respec-
tive figures are shown in Tab. 4.

Table 4: Respondents and industries

of
respondents

% of
respondents

Development / Consulting 16 23%
Energy / Manufacturing 11 15%
Financial Services 20 28%
Retailing / E-Commerce 6 8%
Other / No answer 18 25%

http://dx.doi.org/10.18417/emisa.14.1

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1
Drivers and Barriers for Microservice Adoption – A Survey among Professionals in Germany 9

5.2 Current Usage of Microservices
At the beginning of our questionnaire, we were
concerned with the current extent of microservice
usage in the respective companies and industries.
As evident from Fig. 1, almost one third (27%) of
all respondents stated that they or their customers
already use microservices to a large extent.21 The
remaining respondents stated using microservices
to a lesser extent, or not using microservices at
all, in equal parts (37%).

A look at the industry-specific figures reveals
that the degree of usage differs considerably be-
tween industries. While microservices seem to
be heavily used by the retailing and e-commerce
industry (median: usage to a large extent), they
are only sparingly used by the financial services
industry (median: no usage). When weighting
the answers from −1 (no usage) to 1 (usage to
a large extent), these differences are statistically
significant (T1: p = 0.002 and T2: p = 0.010,
respectively).

5.3 Drivers for Microservice Adoption
To identify important drivers for microservice
adoption, we asked the respondents to rate nine
properties commonly attributed to microservices
with respect to their importance on the decision
to adopt microservices. These potential drivers
are discussed below; the actual properties are
highlighted in italics.

One of the most commonly cited property of
microservices is high scalability and elasticity
(see, for instance, Hasselbring and Steinacker
2017) due to the services being independently
deployable. Thus, instances can be automati-
cally added and removed by cluster management
tools like Kubernetes. A property closely re-
lated to scalability is that microservices are con-
sidered a cloud-native architecture, i. e., they al-
low to leverage the advantages of the Cloud and
container-based virtualization. As noted in the
introduction, well-known adopter Netflix in-
troduced microservices for this very reason, and

21 Note that customers were included to account for consul-
tants who might only be concerned with microservices in
customer projects.

we therefore expect companies to consider mi-
croservices as a tool for their endeavor towards
the Cloud. Due to the strong component separa-
tion, microservices are expected to be less prone
than traditional monoliths to develop entangled
dependencies, thus improving maintainability (see
Newman 2015). This is particularly important
for business applications, which are typically in
use for several years, and may therefore be an
important driver for adopting microservices. We
were furthermore interested in whether the free
choice of programming language and persistence
(see Lewis and Fowler 2014), often referred to as
polyglot programming and polyglot persistence,
are actually considered as a driver for microser-
vice adoption, as they also have several downsides
as discussed later on.

As described in Sect. 2.2, microservices are
also closely related to the more organizational
notions of DevOps and Continous Delivery. Com-
panies might embrace microservices to serve as
an enabler for DevOps and Continuous Delivery
(see Chen 2018). In particular, these approaches
promise a short “time to market” for new features,
which can be crucial for companies facing intense
competition (Chen 2015). A further organiza-
tional advantage attributed to microservices is a
better alignment of the development teams and the
software artifacts (see Newman 2015; Wolff 2016),
referred to as organizational improvement below.
Since organizational misalignment is known to
be detrimental to quality (Nagappan et al. 2008),
improving this alignment is expected to cause an
increase in quality. Finally, being a state-of-the-art
architecture, microservices might be adopted by
companies to increase their attractiveness as an
employer.
The rating of these drivers was done using our four-
point rating scale, with labels crucial, relevant,
hardly relevant, and irrelevant. The respondents
were asked to choose the crucial option for proper-
ties which, in their opinion, would on their own
suffice to adopt microservices.

Tab. 5 summarizes the answers from the differ-
ent industries, ordered by the overall score. The
score is calculated as the weighted average of

http://dx.doi.org/10.18417/emisa.14.1

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

10 Holger Knoche, Wilhelm Hasselbring

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Overall

Development / Consulting

Energy / Manufacturing

Financial Services

Retail / E-Commerce

Other / Unknown

37%

31%

27%

55%

39%

36%

44%

55%

35%

17%

28%

27%

25%

18%

10%

83%

33%

Large extent Lesser extent No usage

Figure 1: Current microservice usage in different industries (% of respondents)

the responses, with the weights ranging from 3
(crucial) to 0 (irrelevant).

As evident from the table, the primary overall
drivers for microservice adoption were found to
be scalability, maintainability, and time to market,
which were each rated as crucial by roughly one
third of the respondents. The difference between
the primary and secondary drivers is statistically
significant (T3: p < 0.001). Secondary drivers
are the potential role as an enabler for Continuous
Delivery and DevOps, the suitedness for cloud
environments and container-based virtualization,
and organizational improvement. Polyglot persis-
tence and polyglot programming are rated a bit
less relevant. The potential effect of increasing
the attractiveness as an employer is perceived as
least important; the gap to the secondary drivers
is significant (T4: p = 0.004).

The industry-specific figures from Tab. 5 show
that for development and consulting companies,
the suitedness for virtualization platforms is rated
significantly higher than in the other industries
(T5: p = 0.014). These companies also appear
to perceive maintainability as the key driver for
microservices; however, the difference to the other
primary drivers is not significant (T12). Polyglot
programming is rated considerably higher in the
energy and manufacturing (T6: p = 0.012) and
e-commerce industries (T7: p = 0.027). The lat-
ter also rates the attractiveness as an employer
much higher than the rest (T8: p = 0.018), which
is particularly interesting due to the high degree

of adoption in this industry. There is, however,
no significant difference regarding this question
between “heavy users” and others across all indus-
tries (T13).

Some drivers are also rated notably low in
certain industries. Particularly striking are time
to market and suitedness for virtualization in the
energy and manufacturing industry, which are
rated considerably lower than in other industries
(T10: p = 0.023 and T9: p = 0.012, respectively).

Cross-correlating the items using Spearman’s
rank correlation coefficient revealed some notable,
but medium to low correlations. The highest was
between polyglot programming and persistence
(rs = 0.47, p < 0.001), which we found to be sur-
prisingly low as both notions seem closely related.
All cross-correlation results are shown in Tab. 10
in the appendix. However, the figures from Tab. 5
suggest that these two items may be perceived
differently in different industries. While polyglot
programming is ranked significantly higher than
polyglot persistence in the energy and manufac-
turing industry (T11: p = 0.029), the polyglot
persistence is rated notably, but not significantly
higher the financial services industry as well as
the other industries (T14).

5.4 Barriers for Microservice Adoption
In order to identify important barriers for microser-
vice adoption, we proceeded in the same way as for
the drivers. However, barriers to adoption are far
less discussed in the literature. Therefore, we had

http://dx.doi.org/10.18417/emisa.14.1

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1
Drivers and Barriers for Microservice Adoption – A Survey among Professionals in Germany 11

Table 5: Drivers for microservice adoption in different industries

Overall Development /
Consulting

Energy /
Industry

Financial
Services

Retail /
E-Commerce

Other /
Unknown

Score
(mean) SD Score

(mean)
Score
(mean)

Score
(mean)

Score
(mean)

Score
(mean)

High Scalability and Elasticity 2.14 0.72 2.19 2.18 2.15 2.67 1.89
High Maintainability 2.11 0.75 2.31 2.10 2.15 2.17 1.89
Short Time to Market 2.07 0.82 2.12 1.45 2.10 2.67 2.17
Enabler for CD and DevOps 1.61 0.89 1.69 1.27 1.70 1.83 1.56
Suitedness for Cloud and Docker 1.55 0.89 2.00 1.09 1.35 1.50 1.67
Organizational Improvement 1.37 0.81 1.31 1.18 1.50 1.83 1.22
Polyglot Programming 1.28 0.90 1.00 1.82 1.15 2.00 1.11
Polyglot Persistence 1.27 0.83 1.06 1.09 1.40 1.33 1.39
Attractiveness as Employer 0.87 0.86 1.00 0.55 0.85 1.67 0.72

to rely more on personal experience from an in-
dustrial project and discussions with practicioners
as for the drivers. Since the items contain abstract
barriers, such as resistance to change, as well as
challenges implementing concrete measures, we
decided to separate them into two separate ques-
tions. The items we asked the respondents to rate
are discussed below. Again, the items themselves
are highlighted in italics.

Based on our experience, resistances by both
operations staff and developers can be a great
barrier to microservice adoption, as microservices
are in some ways very different from what the
developers and operators are used to. For instance,
we observe that the concept of eventual consistency
is difficult to accept for developers who have
been working with strict consistency for many
years. Furthermore, especially the operations staff
are often skeptical of the maturity of the new
technologies, as well as the compatibility with
existing software systems.

In addition to resisting to change, both develop-
ers and operators may lack the skills for adopting
microservices. The high degree of team auto-
nomy comes with a high degree of responsibility.
The teams may now have to take care of numer-
ous cross-cutting concerns that were previously
done by specialized teams, such as security, data
protection, monitoring, database administration,
consistency, and backups. Especially the latter can
be challenging with distributed persistence, as con-
sistent backups – which are simple in centralized

databases – are difficult to achieve. Notions like
polyglot programming and persistence require de-
velopers to be proficient in multiple programming
languages and persistence solutions. And due
to their highly distributed nature, microservices
yield more complex deployments than traditional
monoliths (see Wolff 2016), i. e., a higher num-
ber of running instances as well as more frequent
deployments and more complex interactions.

Another issue with teams autonomously choos-
ing their tools is that companies must ensure
sufficient licensing and support contracts. For
microservice architectures, software components
that are licensed per running instance, such as
some commercial monitoring solutions, can be
particularly costly. The organizational implica-
tions of adopting microservices may further be
incompatible with compliance and regulations.
For instance, companies may be required to ad-
here to given release processes, perform obligatory
code reviews, or have change advisory boards (see
Chen 2015) which can be difficult to reconcile
with teams releasing software at their own de-
cision. Furthermore, responsibility issues may
arise, especially when running microservices in
the Cloud (see Esposito et al. 2016).
The rating of these items was done similar to the
drivers, with the difference that the relevance for
refraining from adopting microservices was to be
rated.

As evident from Tab. 6, insufficient skills of
both operations and development staff as well

http://dx.doi.org/10.18417/emisa.14.1

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

12 Holger Knoche, Wilhelm Hasselbring

as resistance by operations are seen as the pre-
mier overall barriers to microservice adoption,
followed by deployment complexity. However,
the overall scores of the items are quite low, with
only insufficient skills of the operations staff being
rated significantly as relevant (T15: p = 0.036).
The remaining items are rated quite low overall.
However, compliance and regulations as well as re-
sistances by developers are seen very differently in
different industries, as shown by the high standard
deviations for these items.

The cross-correlation of the items revealed se-
veral significant, but medium to low correlations.
The highest were between the skill set and resis-
tance of development and operations (rs = 0.42,
p < 0.001 and rs = 0.40, p < 0.001), which come
at no surprise.

The industry-specific figures suggest that the
lack of consistent backups is especially important
to financial services companies, where it received
the third-highest score of all barriers. It was
rated relevant by 60% of the respondents, and
received a significantly higher score than in the
other industries (T16: p = 0.003).

Compliance and regulations might be an issue
in the development and consulting industry, where
it was rated crucial by 25% of the respondents, and
in the financial services industry, where it received
the highest score in all industries with a median of
relevant. However, the score differences in both
industries are not statistically significant (T18 and
T19, respectively). In contrast, this item received
by far the lowest overall in the energy and manu-
facturing industry, and significantly lower than in
the other industries (T17: p = 0.005).

The role- and department-specific figures,
which are not included for brevity, reveal that
consultants and leads ranked lack of skills par-
ticularly high. For instance, 44% of the consul-
tants rated insufficient operations skills as crucial
(score: 2.11). Leads were particularly sceptical
about insufficient developer skills, which were
rated crucial by 36% (score: 1.82). A remarkable
observation from the department-specific figures
is that both departments agree on the insufficient

skill sets being the most important barriers, with
very similar scores (1.71, 1.70, 1.71, and 1.64).
The concrete implementation challenges were also
rated on a four-point scale. However, since the
respondents were to rate the difficulty of the im-
plementation, the labels were simple, medium,
difficult, and impossible. The challenges to be
rated are described below.

In order to achieve the desired degree of team
autonomy, delivery speed, and time to market,
automated deployment pipelines are required. As
observed by Leppänen et al. (2015), such pipelines
prove to be difficult to implement in practice and
may therefore pose a significant implementation
challenge. As noted by Gmeiner et al. (2015),
deployment pipelines require a high degree of test
automation due to their frequent execution. This
does not only apply to unit tests, but integration
tests and further test stages also need to be auto-
mated. To our experience, many companies still
rely heavily on manual testing in these stages.

For running the pipelines and tests as well as
achieving elasticity in production, it is necessary
to provide resources quickly on demand. This
often means a significant technological and orga-
nizational change, as we observe that providing
new resources and creating test environments is of-
ten a bureaucratic process involving manual work
and a considerable amount of red tape. Similar to
test automation, the creation and configuration of
the necessary infrastructure needs to be automated
as well, leading to formal descriptions of environ-
ments commonly referred to as Infrastructure as
Code.

The second set of challenges we investigated
is concerned with the shift of operations tasks to
the development teams. On the one hand, this
entails that operations tasks are done by develop-
ment teams, including unpopular tasks such as
pager duty. On the other hand, there is a change
of tasks for operations teams, since several of
their common tasks are automated as part of the
deployment pipelines or taken over by the cross-
functional teams. A closely related challenge is
that running distributed applications is not easy,
and can be very different from running traditional

http://dx.doi.org/10.18417/emisa.14.1

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1
Drivers and Barriers for Microservice Adoption – A Survey among Professionals in Germany 13

Table 6: Barriers for microservice adoption in different industries

Overall Development /
Consulting

Energy /
Industry

Financial
Services

Retail /
E-Commerce

Other /
Unknown

Score
(mean) SD Score

(mean)
Score
(mean)

Score
(mean)

Score
(mean)

Score
(mean)

Insufficient Ops Skills 1.71 0.82 2.06 1.27 1.53 1.67 1.89
Resistance by Ops 1.66 0.87 1.88 1.64 1.68 1.33 1.56
Insufficient Dev Skills 1.63 0.95 1.69 1.00 1.79 1.67 1.78
Deployment Complexity 1.41 0.79 1.62 0.73 1.35 1.00 1.83
Compliance and Regulations 1.21 1.11 1.38 0.45 1.50 1.17 1.22
Compatibility Issues 1.13 0.96 1.06 1.09 1.05 0.50 1.50
Consistent Backups 1.13 0.88 1.00 0.73 1.60 1.00 1.00
Maturity of Technology 0.97 0.78 1.06 0.73 1.05 0.83 1.00
Resistance by Devs 0.97 1.06 1.06 1.18 1.10 0.50 0.78
Support Contracts / Licenses 0.89 0.77 0.56 0.73 1.20 0.50 1.06

monoliths. Therefore, the tasks do not just shift,
but change as well.

We furthermore selected a few technological
challenges we considered as potential barriers
based on our experiences from industrial projects.
Many companies have employed centralized per-
sistence for several years. Therefore, implemen-
ting decentralized and polyglot persistence can be
a major paradigm change. Similarly, supporting
polyglot programming may require additional tool-
ing, processes, and knowledge. And as microser-
vices are suspectible to partial failure, sufficient
runtime monitoring is required, which allows to
detect and locate problems quickly. However,
such monitoring requires careful preparation in
order to gather the required information without
significant degradation of runtime performance.
As shown in Tab. 7 below, running distributed
applications and the change of tasks for operations
teams received the highest overall score from the
respondents, followed by monitoring, ad-hoc re-
source provisioning, and decentralized persistence.
But none of the challenges seems to be perceived
as a “show stopper”, since the overall scores are
low and none of the items received a notable
amount of impossible ratings. There are, however,
considerable differences between the industries
regarding particular challenges. For instance, ad-
hoc provisioning received a much higher score in
the financial services industry than in the other
industries (T20: p = 0.037), in particular, the deve-
lopment and consulting industry (T21: p = 0.003).

Supporting polyglot programming is also rated
notably more difficult by respondents from the
financial services industry (T22: p < 0.001).

Cross-correlating the items did not reveal any
particularly notable correlations. In order to
analyze whether the participants attributed chal-
lenges to specific barriers, we furthermore cross-
correlated the items of both questions. Surpris-
ingly, the strongest correlation was found between
consistent backups and polyglot programming
(rs = 0.49, p < 0.001), which may indicate that
some respondents confused polyglot programming
with polyglot persistence.

5.5 Applicability of Microservices
Business applications are often run as on-premise
installations, and not in the Cloud. This is due to
multiple reasons, a prominent one being concerns
or regulations regarding the storage of personal
data potentially anywhere in the world. As mi-
croservices are usually considered a cloud-native
software architecture, the respondents were asked
to rate the suitedness of microservices for on-
premise installations for self-developed as well as
licensed software, i. e. software developed by a
third party. The major intention behind this ques-
tion was to investigate to what extent microservices
are considered viable for software products that are
sold or licensed to be run at and by the respective
customer. As noted by Olsson et al. (2012), con-
tinuously delivering software to customers may
require new engagement models. Therefore, the

http://dx.doi.org/10.18417/emisa.14.1

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

14 Holger Knoche, Wilhelm Hasselbring

Table 7: Implementation challenges for microservice adoption in different industries

Overall Development /
Consulting

Energy /
Industry

Financial
Services

Retail /
E-Commerce

Other /
Unknown

Score
(mean) SD Score

(mean)
Score
(mean)

Score
(mean)

Score
(mean)

Score
(mean)

Running Distributed Apps 1.49 0.63 1.62 1.36 1.35 1.50 1.61
Change of Ops Tasks 1.46 0.73 1.75 1.09 1.45 1.67 1.39
Establishing Monitoring 1.38 0.64 1.38 1.00 1.40 1.17 1.67
Resource Provisioning 1.31 0.77 0.88 1.27 1.55 1.00 1.56
Decentralized Persistence 1.31 0.73 1.25 1.00 1.30 1.50 1.50
Test Automation 1.22 0.65 1.31 1.09 1.15 1.17 1.28
Ops Tasks by Dev Teams 1.13 0.78 1.25 1.00 1.16 1.17 1.06
Building Pipelines 1.10 0.74 0.81 1.27 1.15 0.83 1.28
Infrastructure as Code 1.04 0.79 0.81 0.82 1.10 0.83 1.41
Polyglot Programming 0.87 0.84 0.69 0.73 1.45 0.33 0.67

participants were hinted at elasticity and frequent
deployments, and could rate microservices to be
suited perfectly, well, moderately, or not at all for
the respective scenario.

As shown in Tab. 8, the large majority (81%) of
respondents considers microservices well-suited
for self-developed software running on-premise.
On the contrary, only 39% of the respondents rate
them as such for licensed software. Based on
discussions and the hints given to the participants,
we assume that this difference is largely due to
expected difficulties of running and frequently
updating complex, distributed applications that
are developed and delivered by a third party.

5.6 Modernization Goals for Existing
Applications

As previously noted, microservices are also con-
sidered as a viable option for modernizing existing
software. Two thirds of the respondents stated
that there were plans or projects to introduce mi-
croservices to existing applications; the detailed
numbers are shown in Fig. 2.

Particularly notable was that 92% of the respon-
dents who stated to use microservices to a lesser
extent answered this question with yes, as opposed
to “heavy users” (79%) and non-users (32%).
These numbers suggest that companies who are
already using microservices to some extent are
planning to increase their usage of microservices,
while those who have not yet adopted microser-
vices at all are unlikely to do so in the near future.

Asked whether they would only add new func-
tionality or also replace existing functionality by
microservices, 85% of the respondents stated that
they would also replace existing functionality.

Similar to the drivers for microservice adoption,
we intended to identify important modernization
goals pursued by companies. For this purpose,
we asked the respondents whether they would pur-
sue the following modernization goals primarily,
secondarily, or not at all by introducing microser-
vices. The selection of goals is based on the drivers
from Sect. 5.3 to allow comparisons between the
results:

1. Improve the maintainability of the applications
2. Improve the time to market for new features
3. Improve the scalability of the applications
4. Improve the overall quality of the applications
5. Make preparations for Continuous Delivery or

DevOps
6. Introduce new technology to the applications
7. Improve the team motivation

The answers are summarized in Tab. 9; the weights
for the score range from 2 (primarily) to 0 (not at
all). As obvious from the table, the premier overall
modernization goal is improving the maintainabil-
ity, followed by improving the time to market for
new features and scalability. The score difference
between maintainability and time to market is
statistically significant (T23: p = 0.003). Quality
improvement and preparing Continuous Delivery

http://dx.doi.org/10.18417/emisa.14.1

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1
Drivers and Barriers for Microservice Adoption – A Survey among Professionals in Germany 15

Table 8: Applicability of microservices for on-premise installations

Overall Development /
Consulting

Energy /
Industry

Financial
Services

Retail /
E-Commerce

Other /
Unknown

Score
(mean) SD Score

(mean)
Score
(mean)

Score
(mean)

Score
(mean)

Score
(mean)

Self-developed software on-premise 1.95 0.57 2.13 1.80 2.05 1.83 1.73
Licensed software on-premise 1.36 0.68 1.31 1.36 1.45 1.33 1.34

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Overall

Development / Consulting

Energy / Manufacturing

Financial Services

Retail / E-Commerce

Other / Unknown

33%

31%

27%

44%

39%

67%

69%

73%

56%

100%

61%

Yes No

Figure 2: Plans for introducing microservices to existing applications in different industries (% of respondents)

and DevOps are also considered important. The
introduction of new technology and motivational
improvement are rated significantly less important
than the other goals (T24: p = 0.002). An accompa-
nying open question as to which new technologies
the respondents wanted to introduce yielded no
notable results.

Cross-correlation revealed a notable correlation
between improving maintainability and improving
quality (rs = 0.42, p < 0.001), which comes at no
surprise. Further notable, but lower correlations
were found between improving team motivation
and the introduction of new technology (rs = 0.34,
p = 0.003) as well as improving the time to market
(rs = 0.33, p = 0.005).

As shown in Tab. 9, the relevance of goals dif-
fers slightly among industries. This is true for the
roles as well. The most notable observation from
the role-specific figures, which are not included for
space reasons, is that leads rank quality and prepa-
ration for Continuous Delivery / DevOps (both
73% primarily, score: 1.73) significantly higher
(T25: p = 0.030 and T26: p = 0.042, respectively)
than the remaining roles.

5.7 Performance and Transactionality
One fundamental property of microservices is that
each service runs in its own process context. Thus,
service calls imply at least inter-process, in most
cases even network communication.

Especially network communication is known
to be orders of magnitude slower than in-process
method calls (Litoiu 2004). Containers and over-
lay networks, which are commonly used in mi-
croservice architectures, can add an additional
performance penalty (Kratzke 2015). Therefore,
moving existing functionality into microservices
might cause a considerable performance degrada-
tion of the existing software.

However, only 36% of the respondents expected
this degradation to be serious or even critical.
51% expected only a minor degradation, 13% no
degradation at all. Detailed numbers are shown
in Fig. 3.

The introduction of remote service calls can
also affect application performance in a second
way. As shown by Knoche (2016), prolongat-
ing existing transaction contexts can increase the
degree of lock contention inside a database and
reduce overall transaction throughput. As noted in

http://dx.doi.org/10.18417/emisa.14.1

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

16 Holger Knoche, Wilhelm Hasselbring

Table 9: Modernization goals for existing applications

Overall Development /
Consulting

Energy /
Industry

Financial
Services

Retail /
E-Commerce

Other /
Unknown

Score
(mean) SD Score

(mean)
Score
(mean)

Score
(mean)

Score
(mean)

Score
(mean)

Improve Maintainability 1.79 0.48 1.81 2.00 1.85 1.50 1.67
Improve Time to Market 1.54 0.63 1.88 1.09 1.60 1.83 1.33
Improve Scalability 1.46 0.58 1.44 1.64 1.60 1.50 1.22
Improve Quality 1.39 0.64 1.06 1.64 1.50 1.50 1.39
Prepare CD and DevOps 1.39 0.69 1.56 1.45 1.25 1.67 1.28
Introduce New Technology 1.04 0.75 0.88 1.09 0.90 1.50 1.17
Improve Team Motivation 0.97 0.68 0.94 0.82 1.10 1.50 0.78

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Overall

Development / Consulting

Energy / Manufacturing

Financial Services

Retail / E-Commerce

Other / Unknown

13%

12%

18%

5%

17%

17%

51%

62%

64%

45%

50%

39%

31%

13%

18%

50%

33%

33%

5%

13%

11%

Critical Serious Minor No

Figure 3: Expected performance degradation due to inter-process and network communication (% of respondents)

the exemplary modernization process in Sect. 2.5,
service invocations are incrementally inserted into
the modernized monolith, which still contains its
original transactional contexts. Even if the invoked
services do not participate in the transaction, the
invocation overhead may lead to a prolongation of
the monolith’s transaction contexts.

The majority of the respondents (66%) consid-
ered this a potential problem, but expected it to
occur only in specific cases. 18% of the respon-
dents saw this as a serious problem, especially in
the financial services industry, where 30% of the
respondents rated it as such. The least concern
was expressed by respondents from the energy and
manufacturing industry. The detailed numbers are
shown in Fig. 4.

As discussed earlier, cross-service ACID trans-
actionality is discouraged in microservice archi-
tectures and usually not available. Since ACID
transactions are ubiquitous in business software,

this can be perceived as a loss, especially in moder-
nization settings. Overall, 13% of the respondents
rated the unavailability of such transactions as a
critical, and 45% as a serious issue. 32% con-
sidered this a minor problem, and 10% did not
see a problem at all. As obvious from Fig. 5, the
issue is seen particularly critical in the energy and
manufacturing sector, where it was rated as such
by 36% of the respondents.

Unlike cross-service transactions, service-
internal transactions are not discouraged at all
in microservice architectures. 79% of the re-
spondents considered it very important (27%)
or important (52%) to incorporate transactional
boundaries during service design. No respondent
considered this issue unimportant. As evident
from Fig. 6, the numbers vary among industry
sectors, with a notably low rating in the retailing
and e-commerce sector.

http://dx.doi.org/10.18417/emisa.14.1

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1
Drivers and Barriers for Microservice Adoption – A Survey among Professionals in Germany 17

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Overall

Development / Consulting

Energy / Manufacturing

Financial Services

Retail / E-Commerce

Other / Unknown

16%

18%

27%

10%

17%

66%

63%

73%

60%

100%

61%

18%

19%

30%

22%

Serious Only in specific cases No

Figure 4: Expected performance degradation in existing transactional contexts (% of respondents)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Overall

Development / Consulting

Energy / Manufacturing

Financial Services

Retail / E-Commerce

Other / Unknown

10%

18%

19%

17%

6%

32%

38%

18%

35%

33%

33%

45%

44%

27%

55%

50%

44%

13%

36%

10%

17%

Critical Serious Minor No

Figure 5: Relevance of the unavailability of cross-service ACID transactionality (% of respondents)

5.8 Answers to the Research Questions
To conclude the findings of the survey, we present
the answers to the research questions introduced
in Sect. 4.1 below.

RQ1: The primary drivers for companies to
adopt microservices were found to be scalability,
maintainability, and time to market. The ability
to serve as an enabler for Continuous Delivery
and DevOps, the suitedness for virtualization,
and organizational improvements were rated as
secondary drivers.

RQ2: Insufficient skill sets of both developers
and operations as well as resistance of the oper-
ations staff are perceived as the most important
barriers to microservice adoption. Depending
on the industry, backup and compliance issues
are considered important as well. Furthermore,
the deployment scenario of the application may
prevent the adoption of microservices. In particu-
lar, microservices are considered not well-suited

for third-party software running as an on-premise
installation.

RQ3: The primary goal for software moderni-
zation using microservices was found to be im-
proved maintainability, followed by shorter time
to market and better scalability. Modernization
appears to be a relevant scenario for microser-
vice adoption, as two thirds of the respondents
stated that there are plans or projects to introduce
microservices to existing applications.

RQ4: While the potential performance impact
in modernization settings was not considered very
relevant by the respondents, the impact on trans-
actionality was found to be an important issue.
The majority of the respondents rated the loss of
cross-service ACID transactionality as a serious
limitation, and more than three fourths consider it
important to incorporate the transactional bound-
aries into the service design.

http://dx.doi.org/10.18417/emisa.14.1

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

18 Holger Knoche, Wilhelm Hasselbring

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Overall

Development / Consulting

Energy / Manufacturing

Financial Services

Retail / E-Commerce

Other / Unknown

21%

25%

9%

20%

50%

17%

52%

50%

73%

50%

33%

50%

27%

25%

18%

30%

17%

33%

Very important Important Not too important Unimportant

Figure 6: Importance of transaction boundaries for service design (% of respondents)

6 Discussion

6.1 Threats to Validity

In order to discuss the threats to the validity of
this survey, we rely on the scheme presented by
Runeson and Höst (2008). We see the greatest
threat to construct validity in misinterpretation of
the survey questions, in particular, different under-
standings of the items that the participants were
to rate. This threat was mitigated by careful ques-
tionnaire design, internal discussion, and testing.
Furthermore, the questionnaire contained several
terms that may be considered as “buzz words”
(including the term “microservices” itself), which
may be particularly suspectible to misinterpreta-
tion. However, we decided to use these terms as
we felt that these terms were what the participants
were most familiar with and using different terms
might have caused additional confusion.

As for external validity, we see the most im-
portant threat in the size and structure of the
sample. Since the sample only contained prac-
ticioners from Germany, the generalizability of
the results to other countries may be limited. As
the respondents were acquired by a combination
of convenience and snowball sampling, the sam-
ple was not representative. We think, however,
that due to the very specific target population,
this sampling method was the best choice with
respect to accuracy and response rate. A compari-
son with the sample structure of a large, but also

non-representative survey22 by developer portal
Stack Overflow indicates that in particular the
financial services industry may be overrepresented
in our sample. Furthermore, different degrees of
company heterogeneity in the different industry
sectors must be expected, but cannot be quantified
due to the anonymity of the study. It is therefore
possible that some results are biased by a large
number of participants from the same company.

A further threat may result from the size of the
sample. Although we are very content with the
overall number of respondents, some groups were
too small to get statistically significant results.
In particular, the “Retail / E-Commerce” group,
which was only established due to the pioneering
role of this industry for microservices, had very
few participants, and the results may therefore be
skewed.

As we perform multiple statistical tests on the
same data set, the results may furthermore be
subject to alpha error accumulation, i. e., the
probability of incorrectly rejecting the null hy-
pothesis in one of these tests is actually higher
than the individual alpha error rate for each test.
This effect is particularly important when conclu-
sions are drawn from multiple tests at the same
time (e. g., a drug is considered efficacious when
it leads to a significant improvement of one of sev-
eral diseases). However, as no conclusions of this

22 See https://www.stackoverflowbusiness.com/de/talent/
ressourcen/die-stack-overflow-entwicklerumfrage-2017 (in
German)

http://dx.doi.org/10.18417/emisa.14.1
https://www.stackoverflowbusiness.com/de/talent/ressourcen/die-stack-overflow-entwicklerumfrage-2017
https://www.stackoverflowbusiness.com/de/talent/ressourcen/die-stack-overflow-entwicklerumfrage-2017

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1
Drivers and Barriers for Microservice Adoption – A Survey among Professionals in Germany 19

sort are drawn in this study, the effect of falsely
significant findings is limited to that particular
result.

Another threat results from the decision to pri-
marily target practicioners already concerned with
microservices. While their existing knowledge on
microservices may reduce the risk of misinterpre-
tation and increase the soundness of their answers,
it may also lead to a positive bias towards this ar-
chitectural style. We therefore also included data
from seven respondents who reported not to have
significant knowledge of microservices. However,
as microservices are currently a “hype” topic, a
certain bias in favor of microservices could be
expected.

A threat to reliability may result from the fact
that we acquired a significant number of respon-
dents by speaking to them personally. Although
we took great care not to suggest anything re-
garding the questions to the respondents, this risk
cannot be completely ruled out.

6.2 Comparison with Results from other
Studies

As discussed in Sect. 3, there are several other
studies whose results complement the findings
of this study. In the following paragraphs, we
discuss the similarities and differences between
the findings of those studies and ours.

Similar to our study, Taibi et al. (2017) find
maintainability and scalability to be the primary
drivers for microservice adoption. According to
their results, an improvement in maintainability
is also the most important benefit that is actually
achieved. Short time to market, the third primary
driver identified by our study, is not investigated.
Suitedness for DevOps as well as improved team
organization are identified as secondary drivers
by their study as well. As for barriers, moving
functionality from the monolith to microservices
and splitting the database are found to be most im-
portant. People-related barriers such as resitances
or lack of skills, which received the highest score
in our study, were only marginally investigated.

Ghofrani and Lübke (2018) identify scalabil-
ity and agility as the primary drivers, while the

distributed nature of microservices is rated as the
primary challenge. Response time and perfor-
mance, together with security, raised the greatest
concerns with respect to non-functional properties.
This is a notable difference to our results, as our
respondents did not expect performance to be an
issue when introducing microservices, and also
differs from other reports from practice such as
(Gouigoux and Tamzalit 2017). The aspect of mo-
dernization using microservices is not investigated
in this survey.

Di Francesco et al. (2018) report on several
challenges with pre-existing software systems that
can be considered as drivers for the moderniza-
tion. While long time to market is found to be
the top challenge, three of the top five challenges
refer directly or indirectly to a lack of maintain-
ability (high coupling, unexpected side effects of
changes). As for microservice implementation,
setting up the required infrastructure, the change
to the developer’s mindset and distributed mon-
itoring are found to be the top three challenges.
This maps reasonably well to our findings that
insufficient developer skills, running distributed
applications as well as monitoring are significant
barriers to microservice adoption. Barriers due to
the operations staff, which were rated highest by
our participants, are not named in this study.

The industrial survey by NGINX (2016) reports
that roughly one third of their respondents are
using microservices in production, one third are
investigating microservices, and one third is not
using them at all. This matches quite well with our
numbers on microservice adoption, but due to the
different sampling method and target population,
these similarities must be considered with care.

A study by Lightbend, Inc. (2016) reports simi-
lar numbers on plans for microservice usage. It
also reports on drivers for microservice adoption
and names development agility and velocity as
well as elasticity as the most important ones, and
states that the use of microservices for moderniza-
tion is particularly important for large companies.
Cultural change is named as one of the major
barriers to microservice adoption, especially for
large companies. Other barriers are not named.

http://dx.doi.org/10.18417/emisa.14.1

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

20 Holger Knoche, Wilhelm Hasselbring

The importance of cultural change, which may
result in resistance, is also highlighted by empiri-
cal research on DevOps (Riungu-Kalliosaari et al.
2016; Smeds et al. 2015) as well as experience
reports on the adoption of Continuous Delivery
(Neely and Stolt 2013).

When comparing our study with earlier studies
on the adoption of service-oriented architectures
(SOA), it becomes apparent that the motivations
for SOA adoption were quite different from the
motivations to employ microservices. A study by
MacLennan and Van Belle (2014) reports impor-
tant drivers to be improved organizational agility,
reuse, standardized data representation, legacy
system integration, and improved business pro-
cesses. While improved agility is closely related
to notions like short time to market (Becker et al.
2009), legacy integration and business processes
are scarcely discussed in the context of microser-
vices. Similarly, several of the challenges in the
study refer to (centralized) governance, which is
avoided as much as possible in microservice set-
tings. The strong focus on (business) integration is
also supported by the findings of Joachim (2011).

6.3 Implications of the Results
The results of our study indicate several impli-
cations for companies considering the adoption
of microservices. Based on our results on barri-
ers and implementation challenges presented in
Sect. 5.3 and Sect. 5.4, companies should pay par-
ticular attention to the cultural and people-related
changes implied by microservices. Potential re-
sistance by both developers and operations staff
should be investigated and addressed early. And
care must be taken that the development teams
are actually capable of performing the new tasks
assigned to them, which may now include aspects
of operation such as ensuring safety and security.

Furthermore, we observe that the issue of com-
pliance and regulations may be underrated. Al-
though this item did not receive a particularly high
score (1.21), the high standard deviation (1.11)
indicates that there are different opinions on this
topic.

As for modes of operation, the results from
Sect. 5.5 imply that microservices are not deemed
very viable for traditionally licensed software, i. e.
software that is developed by a third party and run
by the customer. Vendors of such software might
therefore want to contemplate offering it as a ser-
vice (SaaS) when moving to microservices instead
of providing it for operation by the customer.

The results from Sect. 5.7 further indicate that
consistency and transactionality should be care-
fully considered during service design. Especially
when polyglot persistency is to be employed, it
must be decided whether and where ACID transac-
tions are required, and where eventual consistency
is sufficient. For the latter case, it is furthermore
necessary to choose and implement strategies for
dealing with inconsistencies (see Sect. 2.4).

7 Conclusions and Future Work

In this paper, we have identified important drivers
and barriers to microservice adoption in the Ger-
man software industry, and highlighted some no-
table differences among industry sectors. The
premier drivers were found to be scalability, main-
tainability, and time to market, while the skill
set of both development and operations staff was
identified as the main barrier. Although several
implementation challenges were considered diffi-
cult by the respondents, no “show stoppers” were
identified.

Concerning drivers, we observe interesting dif-
ferences between early adopters who emphasize
scalability of their “Internet-scale” systems, com-
pared to traditional companies who emphasize
maintainability of their IT systems. In particular,
for the adoption of microservices as a means for
software modernization, maintainability appears
to be the leading driver. Performance degradation
due to remote invocations is considered a minor
issue, while the lack of cross-service transaction-
ality appears to be a serious concern.

As future work, a replication of a similar study
with the software industry in other countries, and
comparison with the German situation would be

http://dx.doi.org/10.18417/emisa.14.1

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1
Drivers and Barriers for Microservice Adoption – A Survey among Professionals in Germany 21

valuable. The study material is available on Zen-
odo,23 so that other researchers can replicate and
extend our work. A technical report in German
on the results of this study is also available.24

Further opportunities for future work include
a more detailed investigation of the drivers and
barriers identified in this study. For instance, fur-
ther insight on the precise reasons for resistances
would be valuable in order to be able to address
them properly. Another interesting topic would
be to investigate whether the use of modern ap-
proaches like microservices may indeed be a way
to increase the attractiveness as an employer.

References

Alshuqayran N., Ali N., Evans R. (2016) A Sys-
tematic Mapping Study in Microservice Archi-
tecture. In: Proceedings of the 9th International
Conference on Service-Oriented Computing and
Applications (SOCA). IEEE, pp. 44–51

Balalaie A., Heydarnoori A., Jamshidi P. (2016)
Microservices Architecture Enables DevOps: Mi-
gration to a Cloud-Native Architecture. In: IEEE
Software 33(3), pp. 42–52

Bass L., Weber I., Zhu L. (2015) DevOps: A
Software Architect’s Perspective. Addison-Wesley,
New York

Becker A., Buxmann P., Widjaja T. (2009) Value
Potential and Challenges of Service-Oriented Ar-
chitectures – A User and Vendor Perspective. In:
Proceedings of the 17th European Conference on
Information Systems (ECIS). 88. AIS eLibrary
https://aisel.aisnet.org/ecis2009/88

Carrasco A., van Bladel B., Demeyer S. (2018)
Migrating Towards Microservices: Migration and
Architecture Smells. In: Proceedings of the 2nd
International Workshop on Refactoring (IWoR).
ACM, New York, pp. 1–6

Chen L. (2015) Continuous Delivery: Huge Bene-
fits, but Challenges Too. In: IEEE Software 32(2),
pp. 50–54

23 https://doi.org/10.5281/zenodo.820146
24 see http://eprints.uni-kiel.de/38682/

Chen L. (2018) Microservices: Architecting for
Continuous Delivery and DevOps. In: Proceedings
of the 2018 IEEE International Conference on
Software Architecture (ICSA). IEEE, pp. 39–397

Di Francesco P., Lago P., Malavolta I. (2017)
Research on Architecting Microservices: Trends,
Focus, and Potential for Industrial Adoption. In:
Proceedings of the 2017 IEEE International Con-
ference on Software Architecture (ICSA). IEEE,
pp. 21–30

Di Francesco P., Lago P., Malavolta I. (2018) Mi-
grating towards Microservice Architectures: an
Industrial Survey. In: Proceedings of the 2018
IEEE International Conference on Software Ar-
chitecture (ICSA). IEEE, pp. 29–2909

Esposito C., Castiglione A., Choo K. R. (2016)
Challenges in Delivering Software in the Cloud as
Microservices. In: IEEE Cloud Computing 3(5),
pp. 10–14

Evans E. (2007) Domain-Driven Design: Tackling
Complexity in the Heart of Software. Addison-
Wesley, Upper Saddle River

Fowler M. (2014) Microservice Prerequisites http:
//martinfowler.com/bliki/MicroservicePrerequi←↩
sites.html Last Access: 2018-11-30

Ghofrani J., Lübke D. (2018) Challenges of Mi-
croservices Architecture: A Survey on the State of
the Practice. In: Proceedings of the 10th Central
European Workshop on Services and their Com-
position (ZEUS). CEUR Workshop Proceedings,
Aachen, pp. 1–8

Gmeiner J., Ramler R., Haslinger J. (2015) Auto-
mated Testing in the Continuous Delivery Pipeline:
A Case Study of an Online Company. In: Proceed-
ings of the 8th IEEE International Conference
on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE, pp. 1–6

Gouigoux J. P., Tamzalit D. (2017) From Monolith
to Microservices: Lessons Learned on an Indus-
trial Migration to a Web Oriented Architecture.
In: Proceedings of the 2017 IEEE International
Conference on Software Architecture Workshops
(ICSAW). IEEE, pp. 62–65

http://dx.doi.org/10.18417/emisa.14.1
https://aisel.aisnet.org/ecis2009/88
https://doi.org/10.5281/zenodo.820146
http://eprints.uni-kiel.de/38682/
http://martinfowler.com/bliki/MicroservicePrerequi!sites.html
http://martinfowler.com/bliki/MicroservicePrerequi!sites.html
http://martinfowler.com/bliki/MicroservicePrerequi!sites.html

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

22 Holger Knoche, Wilhelm Hasselbring

Hasselbring W. (2016) Microservices for Scala-
bility: Keynote Talk Abstract. In: Proceedings of
the 7th ACM/SPEC International Conference on
Performance Engineering (ICPE). ACM, pp. 133–
134

Hasselbring W., Steinacker G. (2017) Microser-
vice Architectures for Scalability, Agility and Re-
liability in E-Commerce. In: Proceedings of the
2017 IEEE International Conference on Software
Architecture Workshops (ICSAW). IEEE, pp. 243–
246

Humble J., Farley D. (2011) Continuous Delivery.
Addison-Wesley, Upper Saddle River

Hüttermann M. (2012) DevOps for Developers.
Apress, New York

Joachim N. (2011) A Literature Review of Re-
search on Service-Oriented Architectures (SOA):
Characteristics, Adoption Determinants, Gover-
nance Mechanisms, and Business Impact. In: Pro-
ceedings of the 7th Americas Conference on In-
formation Systems (AMCIS). 339. AIS eLibrary
https://aisel.aisnet.org/amcis2011_submissions/
339

Killalea T. (2016) The Hidden Dividends of Mi-
croservices. In: Communications of the ACM
59(8), pp. 42–45

Knapp T. R. (1990) Treating Ordinal Scales as
Interval Scales: An Attempt to Resolve the Con-
troversy. In: Nursing Research 39(2), pp. 121–
123

Knoche H. (2016) Combining Application-Level
and Database-Level Monitoring to Analyze the
Performance Impact of Database Lock Contention.
In: Softwaretechnik-Trends 36(4), pp. 25–27

Knoche H., Hasselbring W. (2018) Using Mi-
croservices for Legacy Software Modernization.
In: IEEE Software 35(3), pp. 44–49

Kratzke N. (2015) About Microservices, Contain-
ers and their Underestimated Impact on Network
Performance. In: Proceedings of the 6th Interna-
tional Conference on Cloud Computing, GRIDs
and Virtualization. IARIA, pp. 165–169

Leppänen M., Mäkinen S., Pagels M., Eloranta
V. P., Itkonen J., Mäntylä M. V., Männistö T. (2015)
The Highways and Country Roads to Continuous
Deployment. In: IEEE Software 32(2), pp. 64–72

Lewis J., Fowler M. (2014) Microservices http:
/ /martinfowler.com/articles/microservices.html
Last Access: 2018-11-30

Lightbend, Inc. (2016) Enterprise Development
Trends 2016 https:// info.lightbend.com/COLL-
20XX- Enterprise - Development - Trends - 2016 -
Report_RES-LP.html Last Access: 2018-11-30

Litoiu M. (2004) Migrating to Web Services: A
Performance Engineering Approach. In: Journal
of Software Maintenance and Evolution: Research
and Practice 16(1–2), pp. 51–70

MacLennan E., Van Belle J.-P. (2014) Factors
Affecting the Organizational Adoption of Service-
Oriented Architecture (SOA). In: Information Sys-
tems and e-Business Management 12(1), pp. 71–
100

Nagappan N., Murphy B., Basili V. (2008) The
Influence of Organizational Structure on Software
Quality. In: Proceedings of the 30th ACM/IEEE
International Conference on Software Engineering
(ICSE). IEEE, pp. 521–530

Neely S., Stolt S. (2013) Continuous Delivery?
Easy! Just Change Everything (Well, Maybe It Is
Not That Easy). In: Proceedings of the 2013 Agile
Conference. IEEE, pp. 121–128

Newman S. (2015) Building Microservices.
O’Reilly, Sebastopol

NGINX (2016) The Future of Application Deve-
lopment and Delivery Is Now https://www.nginx.
com/resources/library/app-dev-survey/ Last Ac-
cess: 2018-11-30

Nygard M. T. (2007) Release It! – Design and De-
ploy Production-Ready Software. The Pragmatic
Bookshelf, Raleigh

http://dx.doi.org/10.18417/emisa.14.1
https://aisel.aisnet.org/amcis2011_submissions/339
https://aisel.aisnet.org/amcis2011_submissions/339
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://info.lightbend.com/COLL-20XX-Enterprise-Development-Trends-2016-Report_RES-LP.html
https://info.lightbend.com/COLL-20XX-Enterprise-Development-Trends-2016-Report_RES-LP.html
https://info.lightbend.com/COLL-20XX-Enterprise-Development-Trends-2016-Report_RES-LP.html
https://www.nginx.com/resources/library/app-dev-survey/
https://www.nginx.com/resources/library/app-dev-survey/

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1
Drivers and Barriers for Microservice Adoption – A Survey among Professionals in Germany 23

Olsson H. H., Alahyari H., Bosch J. (2012) Climb-
ing the “Stairway to Heaven” – A Mulitiple-Case
Study Exploring Barriers in the Transition from
Agile Development towards Continuous Deploy-
ment of Software. In: Proceedings of the 38th
Euromicro Conference on Software Engineering
and Advanced Applications. IEEE, pp. 392–399

Pahl C., Jamshidi P. (2016) Microservices: A
Systematic Mapping Study. In: Proceedings of the
6th International Conference on Cloud Computing
and Services Science (CLOSER). ACM, pp. 137–
146

Pardon G., Pautasso C. (2014) Atomic Distributed
Transactions: A RESTful Design. In: Proceedings
of the 23rd International Conference on World
Wide Web. ACM, pp. 943–948

Razavian M., Lago P. (2010) Understanding SOA
Migration Using a Conceptual Framework. In:
Journal of Systems Integration 1(3), pp. 33–44

Riungu-Kalliosaari L., Mäkinen S., Lwakatare
L. E., Tiihonen J., Männistö T. (2016) DevOps
Adoption Benefits and Challenges in Practice: A
Case Study. In: Proceedings of the International
Conference on Product-Focused Software Pro-
cess Improvement (PROFES). Springer, Berlin,
pp. 590–597

Runeson P., Höst M. (2008) Guidelines for Con-
ducting and Reporting Case Study Research in
Software Engineering. In: Empirical Software En-
gineering 14(2), p. 131

Schermann G., Cito J., Leitner P. (2016) All
the Services Large and Micro: Revisiting Indus-
trial Practice in Services Computing. In: Pro-
ceedings of the International Conference on
Service-Oriented Computing (ICSOC) Work-
shops. Springer, Berlin, pp. 36–47

Singleton A. (2016) The Economics of Microser-
vices. In: IEEE Cloud Computing 3(5), pp. 16–
20

Smeds J., Nybom K., Porres I. (2015) DevOps: A
Definition and Perceived Adoption Impediments.
In: Proceedings of the International Conference
on Agile Processes in Software Engineering and
Extreme Programming (XP). Springer, Berlin,
pp. 166–177

Stevens S. S. (1946) On the Theory of Scales and
Measurement. In: Science 103(2684), pp. 677–
680

Stine M. (2015) Migrating to Cloud-Native Ap-
plication Architectures. O’Reilly, Beijing

Taibi D., Lenarduzzi V., Pahl C. (2017) Processes,
Motivations, and Issues for Migrating to Microser-
vices Architectures: An Empirical Investigation.
In: IEEE Cloud Computing 4(5), pp. 22–32

Vogels W. (2009) Eventually Consistent. In: Com-
munications of the ACM 52(1), pp. 40–44

Wolff E. (2016) Microservices – Flexible Software
Architectures. Addison-Wesley, Boston

This work is licensed under
a Creative Commons
“Attribution-ShareAlike 4.0
International” license.

http://dx.doi.org/10.18417/emisa.14.1
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

24

A Survey Questions

A translation of the questions used in the survey
with their answer options are listed below. Ques-
tions whose results are not used in this paper are
marked with an asterisk (∗).
Question 1
Since when are you concerned with microser-
vices?

• Since □ months / □ years
• Not yet

Question 2
Is your company or customer already employing
microservices?

• Yes, to a large extent
• Yes, to a lesser extent
• No

Question 3
How relevant do you think the following proper-
ties commonly attributed to microservices are for
the decision to employ microservices? (Answer
options for each item: irrelevant, hardly relevant,
relevant, crucial)

1. Easy and specific scalability / elasticity
2. Short “time to market” (i. e. time from deve-

lopment to productive deployment)
3. High maintainability
4. Service-specific choice of programming lan-

guage (“Polyglot Programming”)
5. Service-specific choice of database / persis-

tence solution (“Polyglot Persistence”)
6. Enabler for Continuous Delivery / DevOps
7. Suitedness for Cloud deployment and container-

based virtualization
8. Improvement of organizational structures
9. Improvement of attractiveness as an employer

Question 4
How relevant do you think the following barriers
are for the decision to employ microservices?
(Answer options for each item: irrelevant, hardly
relevant, relevant, crucial)

1. Resistance by development teams
2. Insufficient developer skills
3. Resistance by operations teams
4. Insufficient operations skills
5. Increased effort for supporting and licensing

databases, etc
6. Increased deployment complexity
7. Incompatibility with compliance and regula-

tions
8. Insufficient maturity of technologies
9. Difficulty of consistent backups due to dis-

tributed persistence
10. Incompatibilities with existing software

Question 5
How difficult do you think it is to implement
the following aspects related to microservices?
(Answer options for each item: simple, medium,
difficult, impossible)

1. Creation of an automated deployment pipeline
2. Ad-hoc provisioning of resources (e. g., for

automated integration tests)
3. Decentalized / distributed persistence
4. Have ops tasks performed by development

teams
5. Change of tasks and responsibilites for ops

teams
6. Running heavily distributed applications in

production
7. Automation of integration tests and further test

stages
8. Formal description of infrastructure (“Infras-

tructure as Code”)
9. Support for several programming languages

(“Polyglot Programming”)
10. Establishment of sufficient monitoring

Question 6 (∗)
Microservices are commonly related to web ap-
plications, but are not limited to them. How well

http://dx.doi.org/10.18417/emisa.14.1

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

25

do you think microservices are suited for the fol-
lowing types of applications? (Answer options for
each item: not at all, moderately, well, perfectly)

1. Public web applications
2. Internal web applications
3. Client-server applications
4. Legacy applications
5. Batch applications

Question 7
Most well-known microservice applications are
run in the Cloud. However, many companies run
self-developed or licensed software on their own
hardware. How well do you think microservices
are suited for such situations (e. g., with respect
to elasticity and frequent deployments)? (Answer
options for each item: not at all, moderately, well,
perfectly)

1. Running self-developed software on own hard-
ware

2. Running licensed software on own hardware

Question 8
Are there already plans or projects in your com-
pany to introduce microservices to existing appli-
cations?

• Yes
• No

Question 9
Which goals would you pursue by introducing
microservices to an existing application? (Answer
options for each item: primarily, secondarily, not
at all)

1. Improve scalability
2. Improve “time to market”
3. Improve maintainability
4. Improve quality
5. Gain access to new technologies
6. Pave the way for Continuous Delivery / DevOps
7. Improve employee motivation

Question 10
(If you chose “Gain access to new technologies”
above): To which technologies would you like to
gain access to? (Open question)

Question 11
Would you only add new functionality or would
you also replace existing functionality by microser-
vices?

• No, I would only add new functionality
• Yes, I would also replace existing functionality

Question 12 (∗)
(If you would also replace existing functionality):
Do you expect to be able to re-use parts of the
existing implementation?

• Yes, to a large extent
• Yes, to a lesser extent
• No, but I would like to
• No, I do not want to even if I could

Question 13
Microservices lead to an increase in inter-process
or network communication. Do you expect this to
cause a decrease in runtime performance?

• Yes, critical
• Yes, serious
• Yes, but minor
• No

Question 14
The distributed persistence of microservices com-
monly requires to eschew ACID transactionality
across services. How do you rate this eschewal?

• Critical
• Relevant
• Hardly relevant
• Irrelevant

Question 15
Introducing service invocations to existing trans-
action contexts may elongate their runtime, thus
reducing throughput. Do you think this is a prob-
lem?

http://dx.doi.org/10.18417/emisa.14.1

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

26

• Yes, a serious problem
• Yes, but only in specific cases
• No

Question 16
How important do you think it is to incorporate
transactional boundaries into the service design?

• Very important
• Important
• Not too important
• Unimportant

Question 17
In what line are you / is your company in (e. g.,
Banking, Consulting)? (Open question)
Question 18
What position(s) do you hold?

• Management
• Software Architect
• Software Developer
• Consultant
• Other: (Room for answer)

Question 19
In what department(s) / area(s) do you work?

• Development
• Operations
• Specialist Department
• Other: (Room for answer)

http://dx.doi.org/10.18417/emisa.14.1

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

27

B Details on Statistical Tests

Details on the individual statistical significance tests in the paper are provided below. For each test, the test
type, the alternative hypothesis, the relevant data and the p-value of the test are provided. For specifying the
alternative hypothesis, we use the following notation:

• ls(p1, p2) refers to the location shift between the distributions of the subsamples defined by the selection
predicates p1 and p2

• median(p) refers to the median of the score of the subsample defined by the selection predicate p

Selection predicates for responses are specified as follows:

• Groups (e. g., “finance” for “Financial Services”), are written with non-capital letters. If only a group is
given (only valid for yes/no questions), it refers to the positive responses

• Complements of groups are written with an overline (e. g., “finance” for all responses not from the
financial services domain)

• Aspects (e. g., “Time to Market”) are written with capitalized first letters. If no group is given, it refers to
all responses for this aspect

• Aspects in a group are written as “Aspect@Group”, e. g., “Time to Market@finance”

For brevity, we use the following abbreviations for groups and aspects:

Abbreviation Full Name
devcons Development / Consulting
enermfg Energy / Manufacturing
finance Financial Services
heavyuser “heavy users”
retail Retailing / E-Commerce

Abbreviation Full Name
Attr. Employ. Attractivenes as Employer
Backups Consistent Backups
CD / DevOps Enabler for CD and DevOps
Compliance Compliance and Regulations
Docker/Cloud Suitedness for Cloud and Docker
Maintainability High Maintainability
New Technology Introduce New Technology
Ops Skills Insufficient Ops Skills
Poly. Persist. Polyglot Persistence
Poly. Program. Polyglot Programming
Provisioning Resource Provisioning
Quality Improve Quality
Scalability High Scalability and Elasticity
Time to Market Short Time to Market

http://dx.doi.org/10.18417/emisa.14.1

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

28

B.1 Tests on Question 2
Test T1

Two-sample Test
Test Type Wilcoxon rank sum test
Alternative ls(retail, retail) > 0
Data n1 = 6 ; n2 = 65

m1 = 1 ; m2 = 0
W = 328.5000

p-Value 0.001656

Test T2
Two-sample Test

Test Type Wilcoxon rank sum test
Alternative ls(finance, finance) < 0
Data n1 = 20 ; n2 = 51

m1 = −1 ; m2 = 0
W = 339

p-Value 0.009998

B.2 Tests on Question 3
Test T3

Two-sample Test
Test Type Wilcoxon rank sum test
Alternative ls(Time to Market,CD / DevOps) > 0
Data n1 = 71 ; n2 = 71

m1 = 2 ; m2 = 2
W = 3261

p-Value 0.000597

Test T4
Two-sample Test

Test Type Wilcoxon rank sum test
Alternative ls(Attr. Employ., Poly. Program.) < 0
Data n1 = 71 ; n2 = 71

m1 = 1 ; m2 = 1
W = 1898

p-Value 0.003724

Test T5
Two-sample Test

Test Type Wilcoxon rank sum test
Alternative ls(Docker/Cloud@devcons,Docker/Cloud@devcons) > 0
Data n1 = 16 ; n2 = 55

m1 = 2 ; m2 = 1
W = 592

p-Value 0.013572

http://dx.doi.org/10.18417/emisa.14.1

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

29

Test T6

Two-sample Test
Test Type Wilcoxon rank sum test
Alternative ls(Poly. Program.@enermfg, Poly. Program.@enermfg) > 0
Data n1 = 11 ; n2 = 60

m1 = 2 ; m2 = 1
W = 463.5000

p-Value 0.012416

Test T7

Two-sample Test
Test Type Wilcoxon rank sum test
Alternative ls(Poly. Program.@retail, Poly. Program.@retail) > 0
Data n1 = 6 ; n2 = 65

m1 = 2 ; m2 = 1
W = 283

p-Value 0.027161

Test T8

Two-sample Test
Test Type Wilcoxon rank sum test
Alternative ls(Attr. Employ.@retail,Attr. Employ.@retail) > 0
Data n1 = 6 ; n2 = 65

m1 = 2 ; m2 = 1
W = 290.5000

p-Value 0.017768

Test T9

Two-sample Test
Test Type Wilcoxon rank sum test
Alternative ls(Time to Market@enermfg,Time to Market@enermfg) < 0
Data n1 = 11 ; n2 = 60

m1 = 2 ; m2 = 2
W = 200

p-Value 0.012007

Test T10

Two-sample Test
Test Type Wilcoxon rank sum test
Alternative ls(Docker/Cloud@enermfg,Docker/Cloud@enermfg) < 0
Data n1 = 11 ; n2 = 60

m1 = 1 ; m2 = 2
W = 211

p-Value 0.022894

http://dx.doi.org/10.18417/emisa.14.1

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

30

Test T11

Two-sample Test
Test Type Wilcoxon rank sum test
Alternative ls(Poly. Program.@enermfg, Poly. Persist.@enermfg)
Data n1 = 11 ; n2 = 11

m1 = 2 ; m2 = 1
W = 87.5000

p-Value 0.029442

Test T12

Two-sample Test
Test Type Wilcoxon rank sum test
Alternative ls(Maintainability@devcons, Scalability@devcons) > 0
Data n1 = 16 ; n2 = 16

m1 = 2 ; m2 = 2
W = 134

p-Value 0.401466

Test T13

Two-sample Test
Test Type Wilcoxon rank sum test
Alternative ls(Attr. Employ.@heavyuser,Attr. Employ.@heavyuser) > 0
Data n1 = 19 ; n2 = 52

m1 = 1 ; m2 = 1
W = 515.5000

p-Value 0.383101

Test T14

Two-sample Test
Test Type Wilcoxon rank sum test
Alternative ls(Poly. Persist.@finance, Poly. Persist.@finance) > 0
Data n1 = 20 ; n2 = 51

m1 = 1 ; m2 = 1
W = 574

p-Value 0.191551

B.3 Tests on Question 4
Test T15

One-sample Test
Test Type Sign test
Alternative median(Ops Skills) > 1
Data np = 43 ; n = 70

p-Value 0.036119

http://dx.doi.org/10.18417/emisa.14.1

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

31

Test T16
Two-sample Test

Test Type Wilcoxon rank sum test
Alternative ls(Backups@finance,Backups@finance) > 0
Data n1 = 20 ; n2 = 51

m1 = 2 ; m2 = 1
W = 716

p-Value 0.002539

Test T17
Two-sample Test

Test Type Wilcoxon rank sum test
Alternative ls(Compliance@enermfg,Compliance@enermfg) > 0
Data n1 = 11 ; n2 = 60

m1 = 0 ; m2 = 1
W = 175.5000

p-Value 0.005322

Test T18
Two-sample Test

Test Type Wilcoxon rank sum test
Alternative ls(Compliance@devcons,Compliance@devcons) > 0
Data n1 = 16 ; n2 = 55

m1 = 1 ; m2 = 1
W = 483.5000

p-Value 0.266709

Test T19
Two-sample Test

Test Type Wilcoxon rank sum test
Alternative ls(Compliance@finance,Compliance@finance) > 0
Data n1 = 20 ; n2 = 51

m1 = 1.5 ; m2 = 1
W = 627.5000

p-Value 0.059079

B.4 Tests on Question 5
Test T20

Two-sample Test
Test Type Wilcoxon rank sum test
Alternative ls(Provisioning@finance, Provisioning@finance) > 0
Data n1 = 20 ; n2 = 51

m1 = 2 ; m2 = 1
W = 639

p-Value 0.037406

http://dx.doi.org/10.18417/emisa.14.1

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

32

Test T21
Two-sample Test

Test Type Wilcoxon rank sum test
Alternative ls(Provisioning@finance, Provisioning@devcons) > 0
Data n1 = 20 ; n2 = 16

m1 = 2 ; m2 = 1
W = 240.5000

p-Value 0.002504

Test T22
Two-sample Test

Test Type Wilcoxon rank sum test
Alternative ls(Poly. Program.@finance, Poly. Program.@finance)
Data n1 = 20 ; n2 = 51

m1 = 2 ; m2 = 0
W = 783.5000

p-Value 0.000010

B.5 Tests on Question 9
Test T23

Two-sample Test
Test Type Wilcoxon rank sum test
Alternative ls(Maintainability,Time to Market) < 0
Data n1 = 71 ; n2 = 71

m1 = 2 ; m2 = 2
W = 3057.5000

p-Value 0.002817

Test T24
Two-sample Test

Test Type Wilcoxon rank sum test
Alternative ls(New Technology,CD / DevOps) < 0
Data n1 = 71 ; n2 = 71

m1 = 1 ; m2 = 2
W = 1873

p-Value 0.002166

Test T25
Two-sample Test

Test Type Wilcoxon rank sum test
Alternative ls(Quality@leads,Quality@leads) > 0
Data n1 = 11 ; n2 = 60

m1 = 2 ; m2 = 1
W = 436

p-Value 0.030351

http://dx.doi.org/10.18417/emisa.14.1

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

33

Test T26
Two-sample Test

Test Type Wilcoxon rank sum test
Alternative ls(CD / DevOps@leads,CD / DevOps@leads) > 0
Data n1 = 11 ; n2 = 60

m1 = 2 ; m2 = 1
W = 428

p-Value 0.042106

C Cross-Correlation Tables

The cross-correlaton tables of Questions 3 to 5 and 9 are shown below.

H
ig

h
Sc

al
ab

ili
ty

an
d

El
as

tic
ity

Sh
or

tT
im

e
to

M
ar

ke
t

H
ig

h
M

ai
nt

ai
na

bi
lit

y

Po
ly

gl
ot

Pr
og

ra
m

m
in

g

Po
ly

gl
ot

Pe
rs

ist
en

ce

En
ab

le
rf

or
C

D
an

d
D

ev
O

ps

Su
ite

dn
es

sf
or

C
lo

ud
an

d
D

oc
ke

r

O
rg

an
iz

at
io

na
lI

m
pr

ov
em

en
t

A
ttr

ac
tiv

en
es

sa
sE

m
pl

oy
er

High Scalability and Elasticity — -0,13 0,04 0,21 0,13 -0,06 0,11 -0,09 0,02
Short Time to Market -0,13 — 0,01 -0,17 0,05 0,20 -0,13 0,07 0,01
High Maintainability 0,04 0,01 — 0,07 0,11 0,18 0,04 0,33 0,10
Polyglot Programming 0,21 -0,17 0,07 — 0,47 -0,06 -0,05 0,05 0,02
Polyglot Persistence 0,13 0,05 0,11 0,47 — -0,08 -0,04 0,05 0,11
Enabler for CD and DevOps -0,06 0,20 0,18 -0,06 -0,08 — 0,38 0,03 0,07
Suitedness for Cloud and Docker 0,11 -0,13 0,04 -0,05 -0,04 0,38 — 0,08 0,15
Organizational Improvement -0,09 0,07 0,33 0,05 0,05 0,03 0,08 — 0,28
Attractiveness as Employer 0,02 0,01 0,10 0,02 0,11 0,07 0,15 0,28 —

Table 10: Cross-correlation table for Question 3

http://dx.doi.org/10.18417/emisa.14.1

International Journal of Conceptual Modeling
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

34

Re
si

sta
nc

e
by

D
ev

s

In
su

ffi
ci

en
tD

ev
Sk

ill
s

Re
si

sta
nc

e
by

O
ps

In
su

ffi
ci

en
tO

ps
Sk

ill
s

Su
pp

or
tC

on
tra

ct
s/

Li
ce

ns
es

D
ep

lo
ym

en
tC

om
pl

ex
ity

C
om

pl
ia

nc
e

an
d

Re
gu

la
tio

ns

M
at

ur
ity

of
Te

ch
no

lo
gy

C
on

si
ste

nt
B

ac
ku

ps

C
om

pa
tib

ili
ty

Is
su

es

Resistance by Devs — 0,42 0,16 -0,04 -0,01 -0,20 0,11 0,02 -0,04 0,03
Insufficient Dev Skills 0,42 — 0,11 0,23 -0,08 -0,03 0,20 0,13 0,07 -0,09
Resistance by Ops 0,16 0,11 — 0,40 0,13 -0,08 0,24 0,29 -0,17 -0,01
Insufficient Ops Skills -0,04 0,23 0,40 — 0,05 0,31 0,32 0,21 -0,07 -0,07
Support Contracts / Licenses -0,01 -0,08 0,13 0,05 — 0,30 0,16 0,13 0,28 0,07
Deployment Complexity -0,20 -0,03 -0,08 0,31 0,30 — 0,31 0,12 0,18 0,09
Compliance and Regulations 0,11 0,20 0,24 0,32 0,16 0,31 — 0,21 0,14 0,08
Maturity of Technology 0,02 0,13 0,29 0,21 0,13 0,12 0,21 — 0,15 0,15
Consistent Backups -0,04 0,07 -0,17 -0,07 0,28 0,18 0,14 0,15 — 0,05
Compatibility Issues 0,03 -0,09 -0,01 -0,07 0,07 0,09 0,08 0,15 0,05 —

Table 11: Cross-correlation table for Question 4

B
ui

ld
in

g
Pi

pe
lin

es

Re
so

ur
ce

Pr
ov

is
io

ni
ng

D
ec

en
tra

liz
ed

Pe
rs

ist
en

ce

O
ps

Ta
sk

sb
y

D
ev

Te
am

s

C
ha

ng
e

of
O

ps
Ta

sk
s

Ru
nn

in
g

D
ist

rib
ut

ed
A

pp
s

Te
st

A
ut

om
at

io
n

In
fr

as
tru

ct
ur

e
as

C
od

e

Po
ly

gl
ot

Pr
og

ra
m

m
in

g

Es
ta

bl
is

hi
ng

M
on

ito
rin

g

Building Pipelines — 0,39 0,12 -0,01 -0,29 -0,02 0,49 0,36 0,13 0,15
Resource Provisioning 0,39 — 0,08 0,01 -0,07 -0,04 0,26 0,27 0,07 0,17
Decentralized Persistence 0,12 0,08 — 0,24 -0,09 0,09 0,17 0,06 0,03 0,21
Ops Tasks by Dev Teams -0,01 0,01 0,24 — 0,32 0,00 -0,02 0,18 0,09 0,14
Change of Ops Tasks -0,29 -0,07 -0,09 0,32 — 0,08 -0,10 0,08 -0,04 0,07
Running Distributed Apps -0,02 -0,04 0,09 0,00 0,08 — 0,04 -0,07 -0,10 0,19
Test Automation 0,49 0,26 0,17 -0,02 -0,10 0,04 — 0,09 -0,01 0,22
Infrastructure as Code 0,36 0,27 0,06 0,18 0,08 -0,07 0,09 — 0,11 0,15
Polyglot Programming 0,13 0,07 0,03 0,09 -0,04 -0,10 -0,01 0,11 — 0,00
Establishing Monitoring 0,15 0,17 0,21 0,14 0,07 0,19 0,22 0,15 0,00 —

Table 12: Cross-correlation table for Question 5

http://dx.doi.org/10.18417/emisa.14.1

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 1 (2019). DOI:10.18417/emisa.14.1

35

Re
si

sta
nc

e
by

D
ev

s

In
su

ffi
ci

en
tD

ev
Sk

ill
s

Re
si

sta
nc

e
by

O
ps

In
su

ffi
ci

en
tO

ps
Sk

ill
s

Su
pp

or
tC

on
tra

ct
s/

Li
ce

ns
es

D
ep

lo
ym

en
tC

om
pl

ex
ity

C
om

pl
ia

nc
e

an
d

Re
gu

la
tio

ns

M
at

ur
ity

of
Te

ch
no

lo
gy

C
on

si
ste

nt
B

ac
ku

ps

C
om

pa
tib

ili
ty

Is
su

es

Building Pipelines -0,02 0,07 0,11 -0,16 -0,08 -0,03 -0,07 -0,08 0,02 -0,04
Resource Provisioning -0,01 0,10 -0,11 -0,14 0,13 0,07 -0,06 -0,09 0,01 0,01
Decentralized Persistence -0,18 -0,09 -0,13 -0,22 -0,09 -0,09 -0,21 0,18 0,21 0,01
Ops Tasks by Dev Teams -0,22 -0,05 0,10 0,27 0,29 0,26 0,05 0,20 0,31 0,31
Change of Ops Tasks -0,01 0,14 0,23 0,45 0,12 0,00 0,21 0,20 0,04 0,24
Running Distributed Apps -0,04 -0,06 0,29 0,17 0,02 0,12 0,18 -0,07 -0,02 -0,09
Test Automation 0,05 0,13 0,16 0,01 -0,25 0,11 0,21 0,07 -0,07 0,05
Infrastructure as Code -0,03 0,12 -0,07 -0,02 0,23 0,28 0,03 0,08 0,08 0,02
Polyglot Programming 0,12 0,02 -0,09 -0,14 0,26 -0,01 -0,02 0,02 0,49 0,14
Establishing Monitoring -0,05 0,14 -0,04 0,02 0,10 0,31 0,21 -0,05 0,19 0,05

Table 13: Cross-correlation table for Questions 4 and 5

Im
pr

ov
e

Sc
al

ab
ili

ty

Im
pr

ov
e

Ti
m

e
to

M
ar

ke
t

Im
pr

ov
e

M
ai

nt
ai

na
bi

lit
y

Im
pr

ov
e

Q
ua

lit
y

In
tro

du
ce

N
ew

Te
ch

no
lo

gy

Pr
ep

ar
e

C
D

an
d

D
ev

O
ps

Im
pr

ov
e

Te
am

M
ot

iv
at

io
n

Improve Scalability — -0,05 0,07 -0,22 -0,01 0,14 0,12
Improve Time to Market -0,05 — -0,18 -0,10 0,20 0,03 0,33
Improve Maintainability 0,07 -0,18 — 0,42 -0,02 0,28 0,03
Improve Quality -0,22 -0,10 0,42 — 0,21 0,28 0,05
Introduce New Technology -0,01 0,20 -0,02 0,21 — 0,14 0,34
Prepare CD and DevOps 0,14 0,03 0,28 0,28 0,14 — 0,16
Improve Team Motivation 0,12 0,33 0,03 0,05 0,34 0,16 —

Table 14: Cross-correlation table for Question 9

http://dx.doi.org/10.18417/emisa.14.1

