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Abstract. Management of large volumes of data, collected from modern Cyber-Physical Systems, is calling
for models, tools and methods for data representation and exploration, in order to capture relevant properties
of physical objects, and manage them in the cyber-space. In this context, the impact of big data disruptive
characteristics (namely, volume, velocity and variety) on data modelling and information systems design
needs further investigation. In particular, data exploration is assuming an ever growing relevance, being a
way users/operators can learn from data by inspecting it according to different perspectives. In this paper,
we use conceptual modelling for (big) data exploration in a dynamic context of interconnected systems. We
rely on a multi-dimensional model, that is suited for properly providing data organization for exploration.
Furthermore, we propose a model-driven approach that guides the design of multiple exploration strategies
according to different objectives. The model-driven approach exploits a model of relevance, aimed at
focusing the attention of the users/operators only on relevant data that are being explored. We describe
the instantiation of the proposed concepts through some scenarios in the smart factory context, in order to
show how conceptual modelling helps abstracting from implementation details and focusing on semantics
of explored data.
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1 Introduction

A Cyber-Physical System (CPS) is characterized
by the integration of physical devices (machines
and sensors) with cyber components (computer,
data and programs) to form a context-sensitive
system apt to react to dynamic changes in real-
world (Lee and Seshia 2017). CPS are widespread
in several domains like smart grids, autonomous
automobile systems, domotics, medical monitor-
ing and, more recently, Industry 4.0 (Lee et al.
2015b). Relevant function in CPS is the collection
of raw data from dynamic physical environments,
integrated with many types of cyber-space re-
sources, and its transformation into actionable
knowledge in real-time. Data management is
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leading to new CPS capabilities and challenges:
for example, in the Industry 4.0 scenario, data
is emerging as a new industrial asset, creating
opportunities for operations improvement and in-
creased industrial value through the capitalization
of immaterial assets, and promoting advanced
functions like self-awareness, self-configuration
and self-repairing of machines (Hou and Wang
2013). To this aim, models, tools and methods
for the collection, organization and exploration
of data are required in order to capture relevant
properties of physical objects, and manage them
in the cyber space through information/data man-
agement and analysis systems (Monostori 2014).
In particular, data exploration is assuming an ever
growing relevance, being a way users/operators
can learn from data by inspecting it according to
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different perspectives. Nevertheless, the disrupt-
ive characteristics of big data, namely, volume,
velocity and variety, pose additional issues for
those who are in charge of extracting knowledge
from it.

In this context, conceptual modelling can play a
fundamental role, given its capability of abstract-
ing data representation from its implementation in
physical systems by means of concepts, their prop-
erties and mutual relationships (Chen 1976; Fliedl
et al. 2005; Karagiannis et al. 2016; Olivé 2007),
in order to build information systems (Cabot et al.
2017). Embley and Liddle (Embley and Liddle
2013) expect conceptual modelling to address big
data challenges by structuring information, mak-
ing big data volume searchable: it may help to
highlight the semantics of underlying data in a
fast and automatic way, choosing the best repres-
entation to foster data exploration. On the other
hand, velocity of data acquisition requires the in-
tegration of different models and techniques, apt
to properly summarize data that are incrementally
collected from monitored interconnected systems.

In this paper, we propose a conceptual model
apt to provide a high level representation of a
Cyber-Physical System through a set of "facets" or
"dimensions", either flat or hierarchically organ-
ized. Aggregation of data according to different
dimensions (e.g., time, monitored system), being
related to the observed physical problems, can give
proper semantics to the collected data. Moreover,
multi-dimensional model enables data exploration
by following the hierarchical structure of dimen-
sions. The proposed multi-dimensional model is
integrated with data summarisation techniques, in
order to provide a synthetic representation over
large volumes of data to be managed. Given the
conceptual model, we define a model-driven data
exploration approach, that relies on data relevance
techniques, aimed to focus the attention of the
user/operator on relevant data only and to guide
multiple exploration strategies according to dif-
ferent objectives. We envisage the application
of the proposed model-driven approach to some
paradigmatic research scenarios in the smart fact-
ory context (Lee et al. 2015a), in order to show

how conceptual modelling helps abstracting from
implementation details and focusing on semantics
of explored data. In particular, the first scenario
concerns monitoring of a Cyber-Physical System
for anomaly detection and adaptive recovery from
damage conditions. The second scenario shows
the potential utility of the approach for data-driven
performance comparison across different physical
systems. The two scenarios are conceived for
smart factory maintenance operators; in the first
scenario, operators may be interested in prevent-
ing downtimes of the monitored systems, while
in the second one operators may want to under-
stand which part of the monitored system isn’t
working properly in order to replace or repair it.
With respect to exploratory data analysis (Tukey
1977) and Data Mining (Han and Kamber 2006),
our approach aims at supporting exploration as
a multi-step process, where the users/operators
may iteratively improve focus on relevant data,
by receiving suggestions based on the model of
relevance. Compared to On Line Analytical Pro-
cessing (Golfarelli and Rizzi 2009), we manage
data that is incrementally collected, organized
and analysed on-the-fly. Finally, with respect to
traditional faceted search (Tunkelang 2009), we
deal with high data volumes and velocity, that im-
ply efficient techniques for storing and managing
them.

In (Bagozi et al. 2017c) we introduced the
summarisation and relevance techniques as in-
gredients to perform exploration of real time data
in a dynamic context of interconnected systems.
In (Bagozi et al. 2017b) we proposed IDEAaS (In-
teractive Data Exploration As-a-Service), a frame-
work where innovative services are designed to en-
able data exploration. In (Bagozi et al. 2017a) we
discussed the application of the multi-dimensional
model, data summarisation and relevance evalu-
ation techniques to support anomaly detection
in collaborative systems in the context of Cyber-
Physical Systems and Industry 4.0. This paper
extends this research for what concerns the in-
troduction of a model-driven approach based on
the conceptual model. In particular, we discuss
the application of the approach for performance
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comparison across different physical systems, in-
troducing additional contributions with respect
to anomaly detection issues and thus abstracting
the characteristics of big data exploration over
multiple scenarios.

The paper is organized as follows: Section 2
introduces the conceptual model with the help
of a running example; Section 3 describes sum-
marisation and relevance evaluation techniques
engaged to support data exploration; in Section 4
we discuss the model-driven data exploration ap-
proach, taking into account different scenarios in
the Industry 4.0 context; in Section 5 we highlight
cutting-edge features of our approach compared to
state of the art; finally, Section 6 closes the paper
with some final remarks and future work.

2 Conceptual Model

2.1 Running example
To better explain concepts addressed in this pa-
per, we will use the running example introduced
in (Bagozi et al. 2017c). In the example, we
considered an Original Equipment Manufacturer
(OEM) producing multi-spindle machines for vari-
ous industrial sectors: automotive, aviation, water
industry, etc. A multi-spindle machine is a turning
machine that allows multiple tools to cut pieces of
material simultaneously and independently each
other. A picture of the multi-spindle machine is
shown in Figure 1. Each spindle is mounted on
a unit moved by an electrical engine to perform
X, Y, Z movements. The multiple spindles are
carried in a precision rotating drum where raw
material is positioned. The total number of opera-
tions needed to complete a manufacturing cycle
are divided among the number of spindles, so that
a cycle is completed with one full rotation of the
drum. Each spindle is equipped by a cross-slide
and end-slide tool. Tools are selected according to
the instructions specified within the machine Part
Program, that is, a set of instructions executed by
the numerical control of the multi-spindle machine
to manage its operations.

Spindle precision, working performances, min-
imization of tool breaks and machine downtimes

are critical factors. Real time data collected from
the multi-spindle machine concerns the spindle
rotation as impressed by an electrical engine and
its rotation speed as collected by the machine nu-
merical control. For each spindle, we measure
the velocity of the three axes (X, Y and Z) and
the electrical current absorbed by each engine, the
value of rpm (rotations per minute) for the spindle,
the percentage of power absorbed by the spindle
engine (charge coefficient). Hereafter, we will
refer to the measured aspects as features. The aim
of the OEM is to understand if it is possible to use
real time data collected directly from the machine
for monitoring the spindle rolling friction torque
increase and the tool wear. With spindle rolling
friction torque increase we refer to a specific be-
haviour of the spindle shaft that turns hard more
and more due to different possible reasons: lack
of lubrication and bearing wear that may lead to
possible bearing failures. Tool wear monitoring
is referred to possible tool usage optimizations in
order to balance the trade-off between the number
of tools used and the risk of breaking the tool dur-
ing operations, that may lead to long downtimes.
Spindle rolling friction torque increase and tool
wear can be monitored by observing the spindle
power absorption for similar rpm values. If a
greater power absorption is detected, disregarding
the tool that is being used, the spindle rolling
friction torque increase could be identified as the
possible anomaly that increases the energy request
to perform the manufacturing operations. If the
increase in absorbed power is related only to the
usage of a particular tool, this can be recognized
as a symptom of a possible exceeding tool wear.
Therefore, machine components and tools, as well
as time, represent multiple dimensions to perform
data exploration. We will address such dimensions
as first-class citizens of our conceptual model.

2.2 The model in a nutshell
The multi-dimensional model we propose for data
exploration can be represented as an hypercube,
as shown in Figure 2. In figure each node contains
records of measures collected at a given time t1.
Measures are described through a timestamp and
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Figure 1: Multi-spindle machine considered for the running example.

the measured value. These measures are collected
and organized according to several dimensions,
such features/feature spaces and domain-specific-
dimensions, representing hypercube axes.

Features and feature spaces. Measures are as-
sociated to Features, that is, the measured quant-
ities, in turn collected into Feature_Spaces. A
feature space conceptually represents a set of re-
lated features, that are jointly measured to observe
a physical phenomenon. Multiple feature spaces
might be observed, and the observation of a fea-
ture might be useful to monitor more than one
feature space. In the considered running example,
features are the speed over the three axes X, Y and
Z, the electrical current, the value of spindle rpm
and the percentage of absorbed power. The set
composed of spindle power absorption and rpm
features is an example of feature space used to
monitor spindle rolling friction torque increase
and tool wear. They can be observed by monitor-
ing the spindle power absorption.

Domain-specific dimensions. These dimen-
sions group together collected measures according
to "facets", such as the observed machine or the
tool used during manufacturing. Also domain-
specific dimensions can be organized through

hierarchies: tools can be aggregated into tool
types (Tool:Tool_type axis in Figure 2), while
monitored physical components (e.g., spindles)
can be aggregated into the machines they belong
to, in turn organized into plants and enterprises.
Other dimensions might be the part program that
is being executed by the numerical control of the
monitored system and the working mode (G0, fast
movement of the spindle, e.g., to catch the tool,
or G1, slow movement of the spindle during the
manufacturing). Among analysis dimensions, we
always consider time.

In Figure 2 a subset of all possible dimensions
is showed, achieved by slicing over the feature
space fs1 and the part program pp2. For example,
the node identified as "A" contains the records
of measures collected at time t1 for multi-spindle
machine m1 (spindle s3), that is using tool u3,
during working mode G0, considering features
in the feature space fs1, while running the part
program pp2.

Collected measures could be meaningfully com-
pared over domain-specific dimensions: for ex-
ample, it makes sense to compare measures across
different components/machines, for performance
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Figure 2: The multi-dimensional data model for big data exploration.

comparison purposes, or across different tools, in
order to detect anomalies.

Users/operators can move over hypercube nodes
for data exploration. In this work, we also intro-
duce exploration constrains to prevent meaningless
comparisons.
Exploration constraints. There are some char-
acteristics that should remain constant while per-
forming any kind of comparison between meas-
ures. For instance, comparing measures collected
during working mode G0 with those collected dur-
ing working mode G1 makes no sense. The same
considerations hold for the tool type, indeed com-
paring measures collected from a spindle while
using tools of different types doesn’t lead to any
conclusion. These considerations lead to the intro-
duction of the concept of Exploration constraints,

i.e., a set of dimensions, that may be at differ-
ent hierarchical levels, over which comparison
between measures does not make sense. An ex-
ample of exploration constraint is the dimension
Tool at the hierarchical level Tool_type or the
dimension Working_mode. In Figure 2 node "A"
represents measures that should not be compared
to measures represented by node "A*", because
the two nodes are related to measures collected in
a different working mode G0/G1.

2.3 Model definitions
Formal definitions of measures and exploration
dimensions are given in the following.

Definition 1 (Feature) A feature represents a
monitored variable that can be measured. A fea-
ture Fi is described as ⟨nFi, uFi ⟩, where nFi is the
feature name, uFi represents the unit of measure.
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Let’s denote with F = {F1, F2 . . . Fn} the overall
set of features.

Definition 2 (Measure) We define a measure for
the feature Fi as a scalar value Xi(t), expressed
in terms of the unit of measure uFi , taken at the
timestamp t.

Definition 3 (Feature space) We denote with
FS = {FS1, FS2, . . . FSm} the set of feature
spaces, where FSj⊆F. Given a feature space
FSj = {F1, . . . Fh}, we denote with the vector
®Xj(t) a record of measures ⟨X1(t), . . . Xh(t)⟩ for
the features in FSj , synchronized with respect to
the timestamp t. Feature spaces can be monitored
independently each others.

Definition 4 (Domain-specific dimensions)
We denote with D the subset of the multi-
dimensional space created by p domain-specific
dimensions D1, . . .Dp, where D = D1×. . .×Dp.
Dimensions can be organized in hierarchies, at
different levels. We denote with Di

j the i-th level
in the hierarchy of j-th dimension and with di∈Di

a single instance of the dimension Di.

Definition 5 (Exploration constraints) We
define an exploration constraint ECXi as a
tuple (Dj, i), where i is the i-th level in the hier-
archy over the j-th dimension Dj . Comparison
between different measures does not make sense
over dimension Dj at the i-th hierarchical level.
We denote with ECX the set of all possible
exploration constraints {ECXi}.

Definition 6 (Multi-dimensional model) We
describe the multi-dimensional model as a set
V of nodes and a set of exploration constraints
ECX . Each node v∈V is described as

v = ⟨ ®Xj(t), f sj, d1, d2, . . . dp⟩ (1)

where ®Xj(t) represents a record of measures taken
at time t, for the feature space f sj and the val-
ues d1, d2, . . . dp of domain-specific dimensions
D1, . . .Dp, ECX represents the set of explor-
ation constraints defined over the dimensions
D1, . . .Dp.

The conceptual model we defined to capture
information collected from the Cyber-Physical
System is shown in Figure 3 using ER notation. It
reflects the typical structure of multi-dimensional
models, where facts are represented by measures,
as collected from the monitored physical system.
Each feature presents physical limits (bounds), that
should not be violated in order to avoid machine
damages. We distinguish among warning and
error bounds: (b) warnings identify anomalous
conditions that may lead to breakdown or damage
of machines; (c) errors identify unacceptable
conditions in which a machine can not operate.
Besides defining features bounds, we introduced
the notion of context to specify contextual bound-
aries. A contextual bound represents the limit of a
feature within a specific context where the feature
is measured. The rationale is that, in a specific
context (e.g., the working mode, the part program),
when the Cyber-Physical System works normally,
a feature should assume values within a specific
range, that might be different from the overall
physical limits for the same feature. These bounds
are modelled through a relationship with attributes
between the feature and the context entities in the
model as shown in Figure 3.

Exploration constraints are not modelled in the
conceptual model. They are defined as further
meta-data that are used to guide/constrain the
exploration.

3 Data summarisation and relevance
evaluation

The characteristics of big data, namely, volume,
velocity and variety, pose additional issues for
data collection and organization. High volume
calls for techniques and tools to provide a compact
view over the large amount of collected data and
to focus data exploration on relevant data only.
Furthermore, when dealing with real time data,
collected in Cyber-Physical Systems, data streams
must be considered, where not all data are avail-
able since the beginning, but are collected in a fast
and incremental way. To this aim, the conceptual
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Figure 3: Conceptual model for exploration of data collected from Cyber-Physical Systems.

model proposed above is integrated with data sum-
marisation and relevance evaluation techniques.
These techniques have been detailed in (Bagozi
et al. 2017c) and are shortly summarized in the
following. The aim in this paper is to discuss the
application of the conceptual model and relevance
evaluation to different data exploration scenarios
(see Section 4).

3.1 Clustering-based data summarisation
In our approach, data summarisation is based on
clustering-based techniques. Clustering offers a
two-fold advantage: (a) it gives an overall view
over a set of measure records, using a reduced
amount of information; (b) it allows to depict the
behaviour of the system better than single records,

that might be affected by noise and false outliers,
in order to observe a given physical phenomenon.

The clustering algorithm is performed in two
steps: (i) in the first one, a variant of Clustream
algorithm (Aggarwal et al. 2003) is applied, that
incrementally processes incoming data to obtain a
set of syntheses; (ii) in the second step, X-means
algorithm is applied (Pelleg and Moore 2000) in
order to cluster syntheses obtained in the previous
step. X-means algorithm does not require any a-
priori knowledge on the number of output clusters.
Syntheses are defined as follows.

Definition 7 (Synthesis) We define a synthesis
Sj in a feature space f sj as a tuple consisting of
five elements, that is, Sj = ⟨Nj, ®LS j, SSj, ®X0

j , Rj⟩,
where: (i) Nj is the number of records included
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into the synthesis (from ®Xj(t1) to ®Xj(tN ), where
tN = t1 + ∆t); (ii) ®LS j is a vector representing the
linear sum of measures in Sj ; (iii) SSj is a scalar
representing the quadratic sum of points in Sj ;
(iv) ®X0

j is a vector representing the centroid of the
synthesis; (v) Rj is the radius of the synthesis. In
particular:

®LS j =

N j∑
k=1

®Xj(tk) SSj =

N j∑
k=1

®X2
j (tk) (2)

®X0
j =

∑N j

k=1
®Xj(tk)

Nj
(3)

Rj =

√√√∑N j

k=1(
®Xj(tk) − ®X0

j )
2

Nj
(4)

The second step aims to cluster syntheses. Clus-
tering is performed to minimize the distance
between syntheses centroids within the same
cluster and to maximize the distance between syn-
theses centroids across different clusters. Clusters
give a balanced view of the observed physical
phenomenon, grouping together syntheses corres-
ponding to the same working status.

Definition 8 (Cluster) A cluster C is defined as
follows: C = ⟨ ®C0,SC⟩, where ®C0 is the cluster
centroid, SC is the set of syntheses belonging to
the cluster. We denote with SC the set of identified
clusters.

An incremental data-stream clustering al-
gorithm has been developed, where the clustering
algorithm is computed incrementally over time.
The minimum granularity of the time dimension
corresponds to the time interval over which cluster-
ing is performed. This means that, considering ∆t
as the time interval on which records of measures
are grouped in syntheses, that in turn are clustered,
every ∆t seconds the clustering algorithm outputs
a new cluster set SC built on top of the previous
sets. ∆t is chosen at configuration time such that
1/∆t is greater than the data acquisition frequency.

Let’s denote with Σ( ®Xj(∆t), f sj, d1, d2, . . . dp) the
set of clusters obtained by applying clustering on
measures collected during time interval ∆t for
dimensions d1∈D1, d2∈D2 . . . dp∈Dp, for mon-
itoring feature space f sj ; ®Xj(∆t) denotes the set
of measures taken at a given time interval ∆t, from
®Xj(t) to ®Xj(t +∆t). We include the output of sum-
marisation procedure into the multi-dimensional
model as follows, starting from Definition 6.

Definition 9 (Cluster-based multi-dim. model)
We define the cluster-based multi-dimensional
model as a set V ′ of nodes and a set of exploration
constraints ECX . Each node v′∈V ′ is described
as

v′ = ⟨Σ( ®Xj(∆t), f sj, d1, d2, . . . dp)⟩ (5)

where Σ(·) represents the application of data sum-
marisation procedure to ®Xj(∆t) for dimensions
d1∈D1, d2∈D2 . . . dp∈Dp, for monitoring fea-
ture space f sj ; ECX represents the set of ex-
ploration constraints defined over the dimensions
D1, . . .Dp.

3.2 Data relevance evaluation
Relevance-based techniques are used to detect
components status over time. In literature, data
relevance is defined as the distance from an expec-
ted status. The point is to define the expected status
and how to compute such a distance. In (Bagozi
et al. 2017c) we defined the expected status as the
set of clusters computed during normal working
conditions for the monitored system, denoted with
ˆSC, and data relevance is based on the notion of

cluster distance between the clusters set SC, that
represents the current behaviour of the monitored
system, and the set ˆSC. In the following, we
will describe how the conceptual model enables
data relevance evaluation in different considered
scenarios.

4 Model-driven data exploration
approach

Data exploration is performed on top of the multi-
dimensional model in order to pursue different

http://dx.doi.org/10.18417/emisa.si.hcm.24


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.24

324 Ada Bagozi, Devis Bianchini, Valeria De Antonellis, Alessandro Marini, Davide Ragazzi
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

goals. In particular, in this section we discuss two
possible exploration scenarios:

• exploration for anomaly detection, to promptly
identify anomalies by monitoring and observing
if collected data overtakes or gets closer to fea-
ture or contextual bounds, that represent phys-
ical limits of breakage of the monitored system;
this kind of exploration may be implemented in
a state detection service, and used by OEMs to
prevent downtimes of monitored systems and
by multi-spindle machine owner to plan supply
chain activities;

• exploration for performance comparison, to
compare performances of different monitored
systems, while fixing the other analysis dimen-
sions (e.g., using the same tools, performing the
same manufacturing steps as codified within
the part program); this kind of exploration can
be used by OEMs to monitor a machine fleet
over multiple clients and to offer remote config-
uration and optimization services.

Beyond these options, generic exploration of
collected data is enabled by the multi-dimensional
model. We assume that the user/operator formu-
lates an explicit, albeit vague exploration request,
by instantiating a subset of available dimensions
(e.g., a specific spindle, tool or part program),
and expects the system to suggest some promising
data to explore. Data summarisation techniques
contribute to reduce the complexity of the explora-
tion by providing a compact view over underlying
data. In the following, we will focus on the two
exploration scenarios mentioned above, as generic
exploration has been already described in (Bagozi
et al. 2017c), where traversals inspired by oper-
ators in OLAP systems have been proposed for
browsing data within the multi-dimensional space.
We remark that the list of scenarios we will discuss
here is not exhaustive. Our aim is to show how
the conceptual model’s features can be properly
used to support model-driven data exploration
mechanisms and can be configured for different
scenarios.

4.1 Exploration for anomaly detection

The goal of a state detection service is to detect
anomalies and send alerts concerning the system
status. We consider three different values for the
status: (a) ok, when the system works normally;
(b) warning, when the system works in anomalous
conditions that may lead to breakdown or damage;
(c) error, when the system works in unacceptable
conditions or does not operate. The warning status
is used to perform an early detection of a potential
deviation towards an error state. The migration
of the system status from one value to the others
raises an alert and occurs when one or more
measures exceed a given bound, either a feature
bound or a contextual bound, according to the
conceptual model definitions given in Section 2.
These bounds set the ranges for the three different
values of the status: ok, warning and error.
Feature bounds determine the absolute status of
a feature, while contextual bounds determine the
contextual status of a feature. The system status
(either absolute or contextual) can be propagated
to the whole feature space and along the hierarchy
of monitored physical system, according to the
following propagation rules.

a) Propagation over the feature space. Given
a feature space FSj = {F1, F2, . . . Fh}, the
value of the status associated to FSj , given
the status values for each feature F1, F2, . . . Fh,
is computed as follows:

– ok, if the status of each feature Fi(∀i =
1 . . . h) is ok;

– warning, if the status of at least one feature
Fi(∀i = 1 . . . h) is warning;

– first level error, if the status of at least
one feature Fi(∀i = 1 . . . h) is error;

– second level error, if the status of each
feature Fi(∀i = 1 . . . h) is error.

b) Propagation along the hierarchy of the mon-
itored physical system. The value of a feature
status for a spindle is propagated to the highest
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level of the hierarchy (machine, plant, enter-
prise) as follows: the status of the machine
is

– ok, if the status for all its spindles is ok;
– warning, if the status of at least one spindle

is warning;
– first level error, if the status of at least

one spindle is error;
– second level error, if the status of all

its spindles is error.

The same applies for the status of the plant
(resp., enterprise), computed starting from the
status of its machines (resp., plants).

Relevance-based anomaly detection. For an-
omaly detection, the expected status is identi-
fied through the set ˆSC = {Ĉ1, Ĉ2, . . . Ĉn} of
clusters computed during normal working con-
ditions. Relevant data are recognized when their
clusters set differs from ˆSC. Let’s denote with
SC = {C1,C2, . . . ,Cm} the current clusters set,
where n and m do not necessarily coincide. We
evaluate the distance between SC and ˆSC by ag-
gregating distances between each cluster belong-
ing to SC and the closest cluster belonging to ˆSC
and vice-versa, for symmetry purposes. Formally,
the distance is computed as:

∆(SC, ˆSC) =

∑m
i=1 d(Ci, ˆSC) +

∑n
j=1 d(SC, Ĉj)

m + n
(6)

where d(Ci, ˆSC) = minj=1,...ndc(Ci, Ĉj) and
d(SC, Ĉj) = mini=1,...mdc(Ci, Ĉj) is the distance
between clusters. To compute the distance
between two clusters dc(Ci, Ĉj), we combined
different factors: (i) the distance between clusters
centroids d ®C0

(Ci, Ĉj), to verify if Ci translates
with respect to Ĉj ; (ii) the intra-cluster distance
dintra
c (Ci, Ĉj), to verify if there has been an ex-

pansion or a contraction of cluster Ci with respect
to Ĉj ; (iii) the difference in number of syntheses
contained in Ci and Ĉj , denoted with dN (Ci, Ĉj).
The overall value of dc(Ci, Ĉj) is given by:

dc(Ci, Ĉj) = α·d ®C0
(Ci, Ĉj) (7)

+β·dintra
c (Ci, Ĉj)

+γ·dN (Ci, Ĉj)

where α, β and γ∈[0, 1] are weights such that
α+ β+γ = 1, used to balance the impact of terms
in Equation (7). To set the optimal weights, a
grid procedure can be performed over α and β
(γ is set with 1 − α − β), with the value of each
weight varying from 0 to 1. In our preliminary
experiments, presented in (Bagozi et al. 2017c),
we put α = β = γ = 1

3 .
In particular, d ®C0

(Ci, Ĉj) is computed by apply-
ing the Euclidean distance (D0) between clusters
centroids, according to the following formula:

D0 =
√
( ®Ci

0 −
®̂C j
0)

2 (8)

where ®Ci
0 and ®̂C j

0 are centroids of Ci and Ĉj , re-
spectively. The computation of intra-cluster dis-
tance dintra

c (Ci, Ĉj), performed on the sets of syn-
theses of Ci and Ĉj , is similar to the computation
of ∆(SC, ˆSC) in Equation (6), that is:

dintra
c (Ci, Ĉj) =

∑n1
k=1 ds(Sk, Ĉj) +

∑n2
h=1 ds(Ci, Sh)

n1 + n2
(9)

where Sk∈SCi , Sh∈SĈ j
, |SCi | = n1, |SĈ j

| =

n2, ds(Sk, Ĉj) = minh=1,...n2 ds(Sk, Sh) and
ds(Ci, Sh) = mink=1,...n1 ds(Sk, Sh). Term
ds(Sk, Sh) represents the average inter-syntheses
distance (D1):

D1 =

√∑N1
i=1

∑N1+N2
j=N1+1(

®X(ti) − ®X(tj))2

N1N2
(10)

where N1 and N2 are the number of records in Sk
and Sh, respectively.
The proposed relevance techniques enable to de-
tect over time clusters movements, clusters con-
traction/expansion, changes in the number of
clusters. Figures 4(a) and (b) show examples
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Ĉi cluster at time tn 

(tn: time at normal 
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Cluster Expansionsynthesis
cluster centroid

C’’’2

(b)

Figure 4: Illustration of clusters sets changing over time for anomaly detection: (a) clusters movements; (b) clusters
expansion. Clusters set ˆSC is generated at time tn at normal working conditions and consists of clusters Ĉ1 and Ĉ2.

of clusters changes for the anomaly detection pur-
pose: changes in clusters set over time is detected
due to spindle rolling friction torque increase,
causing a decrease of rpm and an increase of the
percentage of absorbed power. This exploration
scenario is applied by fixing all the dimensions
and observing evolution over time of measures
within the feature space. In particular, the rel-
evance techniques allow to identify what are the

clusters that changed over time. Let’s denote
with {Ci} the set of such clusters. Data that is
summarized in the clusters {Ci} is considered as
relevant and, for each cluster in {Ci}, the distance
of cluster centroid from the warning and error
bounds is computed. If this distance is equal or
lower than the cluster radius, this means that a
warning or error status has to be detected. Note
that distance also helps to detect potential state
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changes. Consider for example Figure 4(a), that
shows an example of clusters evolution over time
for the smart factory case study. The figure shows
how the cluster C1 doesn’t changed its position, as
well as its size, from time tn to tn+3. On the other
hand, cluster C2 evolves from the wealth zone to
the warning and error zones. At time tn+2 cluster
C ′′

2 crosses the warning bound of rpm feature
causing a warning alert, at time tn+3 cluster C ′′′

2
moves into the error zone, crossing error bounds
of both the considered features. At time tn+1
cluster C ′

2 still remains inside the wealth zone,
however relevance techniques detected its change.
Therefore cluster C ′

2 is recognised as relevant and
monitored to detect warning or error state changes.
This allows for better performance of the anomaly
detection algorithm, that focuses only on potential
state changes.

4.2 Exploration for performance
comparison

The goal of this kind of exploration is to compare
different machines in order to identify changes in
working conditions. Therefore, this exploration
scenario is applied by comparing clusters sets
over the monitored system dimension and fixing
all the other domain-specific dimensions. Let’s
consider the situation depicted in Figure 5. In the
figure, two machines are compared considering
how the clusters sets distance between two spindles
evolves over time. At time t1 the two spindles
present a clusters sets distance equal to d1. This
distance is usually different from 0 since the two
spindles work in different environments and the
likelihood of having exactly the same measures for
considered features over the compared physical
systems is very low. We refer to distance d1 as
baseline distance, occurring when all the spindles
are working in normal conditions. The baseline
distance can be computed as follows:

∆baseline(M1,M2) = ∆( ˆSC1, ˆSC2) (11)

whereM1 andM2 are the two considered spindles,
ˆSC1 (resp., ˆSC2) is the clusters set obtained for

spindle M1 (resp., M2) during normal working
conditions.

At time tn+1 the two spindles present a distance
d2 = d1. This means that the relative distance in
terms of clusters sets between the two spindles
is not changed. We remark here that, as shown
in Figure 5, the condition d2 = d1 holds also if
the two spindles changed their behaviours, and
their respective clusters sets evolved accordingly.
On the other hand, at time tn+2 the distance d3
is changed compared to d1 and d2, meaning that
the two spindles started behaving differently each
other. The metric of relevance, in this case, aims
at highlighting the difference between di and the
baseline distance, denoted as ∆tn+2(M1,M2) and
computed as follows:

∆(SC1, SC2) − ∆baseline(M1,M2) (12)

where SC1 (resp., SC2) is the clusters set obtained
at time tn+2 for spindle M1 (resp., M2). These
considerations raise some additional questions,
namely: (a) what about if we consider more than
two spindles? (b) what about if we are observing
two spindles whose behaviour evolves accord-
ingly (case d2) towards anomalous conditions? (c)
what are the conditions under which we can also
identify what are the spindles whose performances
decreased compared to the other one? For what
concerns the latter question, consider the case d3:
what is the spindle with decreased performances
among the two observed ones?

To solve the first question, we provide
an extension of Equations (11) and (12):
∆baseline(Mi,M j) and ∆tk (Mi,M j) are com-
puted for each pair Mi and M j of compared
spindles and the average values are considered.

The second question can be answered by com-
bining together different exploration scenarios: in
case of distance d2 = d1, exploration for anom-
aly detection applied on one of the considered
spindles might help to identify the case in which
all spindles changed their behaviour accordingly.
Finally, for what concerns the third question, the
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Figure 5: Illustration of clusters sets changing over time for performance comparison. Ĉi_M j represents a cluster for
spindle M j while working in normal conditions ( j = 1, 2).

identification of the spindle with decreased per-
formances with respect to the other ones can be
detected by applying anomaly detection on each
spindle or, if we are considering more than two
spindles, according to the "two out of the three"
logics: the target spindle will present a distance
from the other ones that is greater than the same
computation made for all the spindles. In case of
two spindles, the third question can be answered
only by applying exploration for anomaly detec-
tion for all the considered spindles.

4.3 Discussion
Our work proposes a conceptual modelling ap-
proach to allow flexible big data exploration in
Cyber-Physical Systems, specifically to enable de-
tection of unexpected situations. We investigated
the potential benefits of conceptual modelling to
foster exploration scenarios that pursue different
goals. In particular, we considered two scenarios

in the Industry 4.0 context: exploration for an-
omaly detection, to promptly identify anomalies
on the monitored Cyber-Physical System, and
exploration for performance comparison across
different Cyber-Physical Systems. Our examples
show how conceptual modelling reveals to be use-
ful in abstracting from specific characteristics of
each scenario:

• it enables to specify the desired exploration
dimensions (e.g., features/feature space, or
domain-specific dimensions as spindles, tools,
etc.) thanks to the multi-dimensional paradigm;
for example, exploration for anomaly detection
is applied by observing over time the evolution
of measures collected on monitored features and
fixing all the other dimensions; while explora-
tion for performance comparison is applied by
comparing clusters sets across different mon-
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itored systems and fixing all the other domain-
specific dimensions;

• it is used to adapt the relevance techniques to the
different cases, starting from an expected status
and using the clusters sets distance analysis
to identify changes: for example, in the case
of exploration for anomaly detection, clusters
sets distance analysis is based on the distance
with respect to the clusters set ˆSC, generated
at normal working conditions of the monitored
system; in the exploration for performance com-
parison, clusters sets distance analysis is based
on a baseline distance, obtained by considering
normal working conditions of all the compared
physical systems.

The abstraction enabled by conceptual model-
ling suggests the feasibility to provide a model-
driven framework, where models and techniques
can be adapted to different domains, beyond the
Industry 4.0 one considered here.

5 Related Work

In this section we analyse some approaches that
have been focused on data exploration and ex-
ploratory computing research fields, investigating
the potential use of conceptual modelling to meet
their goals. This comparison is summarized in
Table 1.

The approach presented in (Kamat et al. 2014)
deals with structured, multi-dimensional OLAP
data, incrementally collected and organized in a
cube structure, where axes correspond to facets to
guide the exploration. The faceted cube explora-
tion model is used to bound the space of possible
queries. Data sampling techniques are applied
to guess the next choices the user will likely to
perform, thus reducing response times.

The approach presented in (Kalinin et al. 2014)
treats multi-dimensional data, but it does not
provide a conceptual modelling approach for ex-
ploration. The approach enables range queries
(explicitly formulated by the user) on features, that
must have a sortable numeric data type. Queries
identify partially overlapping windows, shown to

the user according to a cost-benefit criterion, that
depends on the efforts required to collect data
shown in the windows.

Also the approach in (Dimitriadou et al. 2016)
handles multi-dimensional data already available
for data exploration, but it does not provide a
reference conceptual framework apt to be applied
to different scenarios. The data shown to the
user is fetched from the DBMS using sampling
techniques. This approach builds clusters of ob-
jects using data mining techniques (k-means) and
applies a classifier to infer data relevance.

The approach presented in (Costa et al. 2017)
relies on multi-dimensional data incrementally
collected. Moreover, a loss-less compression
algorithm is used in order to minimise space con-
sumption. In order to retrieve interesting events,
authors exploit an occurrence frequency threshold:
values whose frequency is below such threshold
are properly highlighted.

Other approaches use multi-dimensional model
to organize data, thus demonstrating the effective-
ness of this kind of model to enable data explor-
ation. Some of them also use summarisation/ap-
proximation techniques, to provide compact views
over data and relevance evaluation techniques in
order to guide exploration. The main contribution
of our work compared to them mainly resides on
the abstraction we performed in order to adapt
the model and techniques to different scenarios.
Existing approaches either do not mention any
specific application scenario (making the proposal
difficult to apply in a specific context such as the
one of Cyber-Physical Systems) or are focused
on very specific problems such as anomaly de-
tection (Huber et al. 2016; Moghaddass and Zuo
2014; Stojanovic et al. 2016; Wang and Agrawal
2011). For what concerns anomaly detection ap-
proaches, the investigation of multi-dimensional
modelling with summarisation and relevance eval-
uation techniques is limited. We refer to (Bagozi et
al. 2017a) for a survey on this kind of approaches.

6 Concluding remarks
In this paper we discussed the application of con-
ceptual modelling to provide a high level big data
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IDEAaS [Kamat et al. 2014] [Kalinin et al. 2014] [Dimitriadou et al. 2016]

Multi-dimensional model X X X X

Multi-dimensional

model construction
X X

Summarisation techniques X X

Approximation techniques X X X

Relevance techniques X X

IDEAaS [Costa et al. 2017] [Stojanovic et al. 2016] [Wang and Agrawal 2011]

Multi-dimensional model X X X

Multi-dimensional

model construction
X (X)

Summarisation techniques X X X

Approximation techniques X

Relevance techniques X X

IDEAaS [Huber et al. 2016] [Moghaddass and Zuo 2014]

Multi-dimensional model X X

Multi-dimensional

model construction
X

Summarisation techniques X X

Approximation techniques

Relevance techniques X

Table 1: Overview of approaches on (big) data exploration.

representation and enabling model-driven data
exploration. In particular, we exploited the ability
of conceptual modelling to abstract data represent-
ation from implementation details and to focus on
data semantics, by considering multiple explora-
tion scenarios for monitoring Cyber-Physical Sys-
tems. We proposed a data representation model
structured over a set of dimensions, hierarchically
modelled. The resulting multi-dimensional model
has been further enriched with data summarisa-
tion techniques, to provide a compact view over
large amount of data and therefore managing data
complexity in terms of volume and acquisition

speed (velocity). Given the conceptual model, we
defined a model-driven data exploration approach,
that relies on data relevance techniques, aimed
to focus the attention of the operators on relev-
ant data only and to guide multiple exploration
strategies according to different objectives. We
also introduced exploration constraints to prevent
useless comparison between collected data.

Further research will be performed in order to
expand the set of analysis dimensions, in order to
properly correlate data collected from CPS with
high level aspects, concerning product and process
quality, energy consumption and manufacturing
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sustainability. The research can fruitfully exploit
the flexibility of the proposed conceptual model.
Additional scenarios will be also considered, and a
model-driven tool to support configuration and set
up of new scenarios will be investigated. Finally,
future work will also be focused on analysing
data visualization techniques, already addressed in
approaches like (Kruiger et al. 2017) and (Saket et
al. 2017), and developing a proper GUI specifically
meant for big data exploration.
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