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Abstract. In conceptual data modelling, one of the most important abstraction concepts is specialisation,
with generalisation being the converse. Although there are already some approaches to define generalisation
for behavioural modelling as well, there is no generally accepted notion of process generalisation. In
this paper, we introduce a general definition of process specialisation and generalisation. Instead of
concentrating on a specific process description language, we refer to labelled partial orders. For most
process description languages, behaviour (if defined at all) can be expressed by means of this formalism.
We distinguish generalisation from aggregation, and specialisation from instantiation. For Petri nets, we
provide examples and suggest associated notations. Our generalisation notion captures various previous
approaches to generalisation, for example ignoring tasks, allowing alternative tasks and deferring choices
between alternative tasks. A general guideline is that a more general process contains less features and/or
less information than a more specific one.
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1 Introduction

Specialisation, and its counterpart generalisation,
is an important concept of conceptual data mod-
elling which has been known for many years in
database research (Smith and Smith 1977). The
core idea of generalisation is to combine object
types, which share common attributes, to a more
general supertype, which only has the common at-
tributes, whereas each more specific type inherits
these attributes from the supertype and has its own,
private attributes. We can also adopt a top-down
view instead of a bottom-up one: starting with an
object type, we might identify subtypes such that
the objects in each of the subtypes share common
additional attributes, which might be meaningless
for other objects. The initial type can be special-
ised to these subtypes, and then common attributes
and additional attributes of the subtypes can be
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distinguished. Such a specialisation can cover the
supertype (every object belongs to at least one
subtype) or not, and it can divide the supertype
into disjoint subtypes (no object belongs to more
than one subtype) or not.

Instead of attributes of objects, generalisation
and specialisation also apply to classes and their
methods in object-oriented modelling, and in an
even broader scope, to arbitrary features that are in-
herited from the more general to the more specific
component. Generalisation and specialisation are
very important abstraction concepts in models that
clarify mutual dependencies. They are the pre-
requisite for reuse of system components, and they
allow to avoid redundancy. For the maintenance
of systems and of models, only these concepts
support that common features of different system
or model components can be handled at a single
place, instead of considering various copies.

Whereas generalisation and specialisation are
abstraction techniques that have their own graph-
ical representation in conceptual data modelling,
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there are only few suggestions how to apply com-
parable concepts to process models. On the other
hand, the same arguments as above would apply
to a generalisation and specialisation concept in
behavioural modelling as well. At several places,
this demand was explicitly expressed, see e.g.
(Frank and Laak 2002).

Petri nets are often proposed for conceptual
modelling of system behaviour, e.g. by (Mayr et
al. 2007). In more recent work (Mayr and Michael
2012), a Petri net-like language is presented for
conceptual models of human behaviour. Actually,
this language has primitives for operations and
their pre- and post-conditions. Therefore, a nat-
ural semantics for this language is based on causal
relations between operation occurrences, as oc-
currence nets are a well established semantics for
Petri nets. Basically, each run of a Petri net model
can thus be represented by a partially ordered set
of occurrences of operations or transitions.

There are already some papers dealing with
specialisation for particular process models, such
as Petri nets. In (Wyner and Lee 2005) a particular
extension of Petri nets is suggested, based on (Lee
and Wyner 2003). Unfortunately, it remains un-
clear how this approach can be transferred to other
modelling languages. Another relevant approach
is given in (Aalst and Basten 2002); however,
this paper also restricts to a particular language.
Moreover, it emphasises inheritance and change
instead of specialisation and generalisation. In
particular, the inheritance is based on blocking
and hiding of transitions whereas in our notion
blocking a transition will turn out to be a special-
isation and hiding a transition will turn out to be
a generalisation.

Another important difference between our ap-
proach and previous work is that we consider
partial order behaviour of process models instead
of strings and sequential automata. As mentioned
above, this choice is justified by the observation
that many process languages emphasise causal-
ity and concurrency between activities, which is
most appropriately represented by means of partial
orders.

Our approach should be applicable to as many
process modelling languages as possible. There-
fore, we do not start with any particular syntactical
description but rather concentrate on the behaviour
of models. As mentioned before, the behavioural
notion used in this paper is given by partially
ordered sets of activities representing runs, la-
belled by respective tasks that are expected to
appear in a process model. Although this form-
alism is quite easy to understand, it needs some
involved technical notations that will be carefully
introduced in Section 2. In our examples, we
use Petri nets as a modelling language, but this
does not restrict our approach to this particular
language. We use only elementary Petri nets and
expect the reader to understand them without any
formal definition.

Our core criteria for a specialisation definition
are that specialisation means to add something
(features, tasks, information) to a process model
and that everything valid for a more general pro-
cess model should also hold for its specialisation.
For example, adding a task to a process model
results in the addition of respective activities in the
runs, where the remaining structure of the runs is
not changed. If, according to a process model, two
tasks can be executed independently (in any order
or concurrently), then in a specialisation an order
between these tasks can be specified. This results
in runs that are also runs of the more general
system. If two tasks can be executed alternatively,
then a specialisation might add the information
to decide which of the tasks occurs; in this case,
some of the runs of the more general model are
ruled out in the specialisation. All these relations
can be formulated by means of the respective sets
of runs, and will be the subject of Section 3.

We also identify more subtle specialisation
relations that refer to the branching behaviour
of process models; a more special model could
have “earlier” information about the decision of
a choice than a more general model, although
their respective sets of runs are identical. For
a motivating example and our solution to this
phenomenon, see Section 4.
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Section 5 comes back to the previous work
on specialisation of Petri nets mentioned above.
We show that these concepts can be viewed as a
special case of our approach.

Finally, Section 6 provides a summary and
relates our notion of specialisation to other abstrac-
tion concepts such as refinement and instantiation.

2 Basic Setting
In this paper, no formal definition of a process
model is given, since we do not stick to any partic-
ular process modelling language. Instead, some
characteristics of a process model are expected to
be defined: its set of tasks; its runs containing task
executions; and a precedence relation between
task executions in runs. This precedence relation
is formally given as a partial order, i. e. a transitive
and irreflexive relation (in accordance with Work-
flow Management Coalition n.d., we use the term
activity for a single execution of a task in a process
run). Our definition resembles the definition of
Partial Languages as defined by (Grabowski 1981)
and Pomsets as defined by (Pratt 1986).

Given a process model P with a set of tasks T ,
its behaviour is defined by its set of possible runs.

Definition 1 (Process run) A process run (or
just run) π of a process model P with set of
tasks T is given by

• a finite set of activities Aπ ,
• partially ordered by a precedence relation ❀π ,

and
• a mapping λπ : A → T mapping each activity

to a task.

Remark 1 We have decided to consider finite
runs only because infinite runs of process models
are only of theoretical interest. However, each
infinite run can be approximated by an infinite
sequence of finite runs, where each run is a proper
prefix (defined below) of its successor.

If an activity x is mapped to a task λ(x) then
it represents an occurrence of λ(x). Activities
have to be distinguished from tasks since there

can be more than one occurrence of a task in one
run, with different precedence relations to other
activities.

Definition 2 (Immediate precedence)
Given a process run π, the immediate precedence
relation is denoted by →π :=❀π \(❀π ◦ ❀π).

Remark 2 Since the set of activities Aπ is finite,
❀π is the transitive closure of →π .

In graphical representations, we depict the relation
→π by means of directed arcs, i.e., we provide the
Hasse-diagram of partial orders. Two activities
x and y satisfy x ❀π y if and only if there is a
nonempty path leading from x to y.

Example 1
Figure 1 depicts a process run π such that :
Aπ = {1, 2, 3, 4, 5},→π= {(1, 2), (2, 3), (3, 4), (1, 5)},
and λπ(1) = a, λπ(2) = b, λπ(3) = c, λπ(4) = b,
λπ(5) = b. Thus, activities are denoted by
numbers and tasks by lowercase letters.

1
a

2
b

3
c

4
b

5
b

Figure 1: A process run π

Note that a process run can feature several
branches and that a given task can occur at dif-
ferent places in the process run. In the above
example, task b can occur after another occur-
rence of task b, and both occur concurrently to
a third one. However, they are associated with
different activities, respectively 4 and 2, which are
ordered by the precedence relation, and 5.

In case of sequential semantics of processes,
where each run is represented by a sequence of
occurring tasks, we can easily distinguish the
first, the second, etc. occurrence of a single
task. Each sequence can be viewed as a mapping
from the set {1, 2, 3, . . . , length(run)} to the set of
tasks. For partial-order semantics, there is no such
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unique representation of a run. Hence the “same
behaviour” can be represented by runs which only
differ w.r.t. the activities. Such runs are said to be
isomorphic.

Definition 3 (Isomorphic runs) Let π and π′ be
two process runs of the same process model P
with set of tasks T . Then, π′ is isomorphic to π if
there is a bijection β : Aπ → Aπ′ such that

1. ∀x, y ∈ Aπ : x →π y ⇐⇒ β(x) →π′ β(y)

and
2. ∀x ∈ Aπ : λπ(x) = λπ′(β(x)).

Clearly, process run isomorphism is an equival-
ence relation. If isomorphic process runs are not
distinguished, any representative of the equival-
ence class can be used.

Example 2 Figure 2 schematises the isomorph-
ism between two process runs. Process run π
(Figure 2(a)) and process run π′ (Figure 2(b))
yield the same graph of tasks when abstracting
away the activities.

In general, activities are formalised differently
even though they have the same meaning in terms
of tasks. Sometimes it is still necessary to distin-
guish activities within a process run in order to
be able to refer to precise occurrences of a task.
When this distinction is irrelevant in a figure, a •
will be used instead of the actual activity (see e.g.
Figure 2(c)).

3 Linear Time Specialisation
The meaning of a ❀π b is that λ(a) is executed
before λ(b) in run π. If activities a and b are not
ordered by means of ❀π then they occur in any
order (this order is not captured by our notion of
run) or concurrently. Each linearisation of a run π,
obtained by adding elements to the order relation
❀π , yields another run, which we consider more
specific than π. In turn, each run generalises its
set of linearisations.

The following definition not only compares the
precedence relations between activities but also
the respective sets of activities of two runs. It

1a

2
b

3
a

(a) Process run π

4a

5
b

6
a

(b) Process run π′

a

b

a
(c) Task occurrences

Figure 2: A process run π′ isomorphic to a process
run π

formalises the observation that a run of a more
specific process definition might contain more de-
tails than a run of a less specific process definition.
Hence the runs in the following definition can
belong to distinct processes.

Definition 4 (Process run specialisation) Let
P and P′ be two process models with sets of
tasks T and T ′, respectively. A process run π′
of P′ specialises a process run π of P (denoted
by π′ ≥ π) if there is an injective mapping
µ : Aπ → Aπ′ such that

1. ∀x, y ∈ Aπ : x →π y ⇒ µ(x) ❀π′ µ(y) and
2. ∀x ∈ Aπ : λπ(x) = λπ′(µ(x)).

Remark 3 As a consequence of Definition 4, if
x ❀π y then µ(x) ❀π′ µ(y).

Each activity in the process run π has a corres-
ponding activity in the specialised process (by the
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mapping µ), mapped to the corresponding task (2).
Moreover, for each precedence relation in π, there
is a corresponding sequence of precedences in
π′ (1).

Example 3 Figure 3 shows a process run π′ spe-
cialising a process run π together with the mapping
µ.

π:

π′:

µ:

a b c b

b

a b c d b

e b

Figure 3: Process run π′ specialises process run π

Up to an isomorphism, a process run π′ of P′

specialises a process run π of P if and only if
Aπ ⊆ Aπ′ and ❀π⊆❀π′. This justifies the “≥”-
notion for specialisations. It is formalised by the
following lemma.

Lemma 1 Let P and P′ be two process models
with sets of tasks T and T ′, and runs π and π′,
respectively. We have π′ ≥ π if and only if there
exists a process run π such that

1. π is isomorphic to π,
2. Aπ ⊆ Aπ′,
3. →π ⊆ ❀π′, and
4. ∀x ∈ Aπ : λπ(x) = λπ′(x).

Proof (⇒) Assume that π′ specialises π by
means of mapping µ. Process run π is constructed
as follows:

Aπ = {x ′ ∈ Aπ′ | ∃x ∈ Aπ : x ′ = µ(x)};
❀π= {(x ′, y′) ∈ A2

π
| ∃(x, y) ∈❀π : µ(x) =

x ′ ∧ µ(y) = y′};
∀x ∈ Aπ : λπ(x) = λπ′(x).

(⇐) Assume that µ : Aπ → Aπ′ is an isomorph-
ism. Mapping µ : Aπ → Aπ′ is constructed by:
∀x ∈ Aπ, µ(x) = µ(x).

A process run π′ specialises π if π boils down
to the same tasks graph as process π (4), π is
isomorphic to π (1), but with activities in π′ (2).
The precedence relation in π respects the order
relation in π′ (3).

Definition 5 (Linear time specialisation) A
process model P′ is a linear time specialisation of
a process model P if for each run π′ of P′, there
exists a run π of P such that π′ ≥ π.

The process model P is then said to be a a
linear time generalisation of P′.

As mentioned in the introduction, every valid
statement about the more general process should
hold for the specialised process as well. In a more
formal setting, which is beyond the scope of this
paper, any formula of an appropriate logic that
evaluates to true for the general process, should
be evaluated to true for the specialised process
as well. Since, in this section, we concentrate
on a relation based on the runs only, this logic
would be Linear Time and based on partial orders,
such as the one of (Bhat and Peled 1998). The
idea is that a less general process contains more
features/information than a more general one but
inherits all properties from the more general one.

Representative examples of
specialisation/generalisation:
Table 1 depicts some representative examples of
generalisation and specialisation. The process
models are given as Petri nets, and their runs
are pictured as well. For each example, both
a specialised and a general version are given.
The example is named after the specialisation
characteristic. Hence, the first one forces an
activity since it prevents an activity associated
with task b from occurring. The second example
adds an activity associated with task b. Finally,
the last example imposes a sequential ordering
between activities that are concurrent in the general
model, namely those associated with tasks b and
c.
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Table 1: Representative examples of specialisation/generalisation

4 Branching Time Specialisation
We begin this section with an example motivating
further enhancement of the specialisation notion.

Example 4 Consider two processes P and P′

modelled by the Petri nets in Table 2. These
nets are actually labelled Petri nets. The two
transitions of the net on the left-hand side labelled
by a represent the same task a. As shown in the
pictures, they have identical sets of runs. Both
processes start with an occurrence of a and then
either continue with an occurrence of b or with
an occurrence of c. Hence they cannot be distin-
guished by just inspecting their runs. However,
in process P, after the occurrence of a, there is

a choice between continuing with b or with c,
whereas in process P′ we have to choose immedi-
ately between the run containing occurrences of
a and b, and the one containing occurrences of
a and c. In this case we might consider process
P′ as a specialisation of P since additional (more
precisely, earlier) information about the choice
between b and c is necessary.

We cannot distinguish processes P and P′ by
means of their runs as in the previous section.
Therefore, it is necessary to carefully examine all
possible behaviours. To do so, we first define the
prefix of a run.
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P’ P

net

a

a

b

c

a

b

c

runs
a b

a c

a b

a c

Table 2: Runs do not always distinguish processes

Definition 6 (Prefix of a run) A run π is a pre-
fix of a run π′ if there is an injective mapping
µ : Aπ → Aπ′ such that

1. ∀x, y ∈ Aπ , x →π y ⇐⇒ µ(x) →π′ µ(y),
2. ∀x ∈ Aπ , λπ(x) = λπ′(µ(x)), and
3. ∀x ′, y′ ∈ Aπ′ : x ′ →π′ y′ ⇒ [(∃y ∈ Aπ, y

′ =

µ(y)) ⇒ (∃x ∈ Aπ, x ′ = µ(x))].

Explanation:
Each precedence relation in the prefix has a cor-
respondence in the complete run π′, (1) and cor-
responding activities are mapped to the same task
(2). Moreover, each precedence relation of the
complete run π′ leading to an activity that cor-
responds to one of the prefix also has its starting
point corresponding to an activity of the prefix
(3).

Example 5 The process run of Figure 4(a) is a
prefix of the process runs of Figures 4(b) and 4(c).

Roughly speaking, a prefix of a run is con-
stituted by a set of activities together with all
their predecessors, up to an isomophism. This
observation is formalised in the following lemma:

Lemma 2 A run π is a prefix of a run π′ if and
only if there exists a process run π such that

1. π is isomorphic to π,

a b

(a) Process run π

a b c

(b) Continuation π′

a

b

c

d e

(c) Continuation π′′

Figure 4: A process run π with different extended runs
π′ and π′′

2. Aπ ⊆ Aπ′,
3. →π =→π′ ∩ Aπ × Aπ ,
4. ∀x ∈ Aπ , λπ(x) = λπ′(x),
5. ∀y ∈ Aπ , x →π′ y ⇒ x ∈ Aπ .

Proof (⇒) Let µ be the mapping mentioned
in the definition of a prefix. Set Aπ = {x ′ ∈

Aπ′ | ∃x ∈ Aπ : x ′ = µ(x)}. The other defining
components of π are items 3 and 4 of the lemma.
(⇐) Choose µ(x) = µi(x) for every x ∈ Aµ where
µi is the isomorphism from π to π.
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Explanation:
This lemma is very similar to Lemma 1. Run π is
exactly the restriction of run π′ to the activities in
π.

Now, for a run that is a prefix of another run,
we define the set of its continuations.

Definition 7 (Extended run, continuations)
An extended run is a run π together with a set of
runs C(P), called its continuations, such that π is
a prefix of each run in C(P).

Note that in general C(P) does not contain all
runs with prefix π. Two extended runs are different
if their continuations are different, even if their
respective runs are isomorphic.

Example 6 Figure 4 pictures a process run π
(Figure 4(a)), and two different continuations:
π′ in Figure 4(b) and π′′ in Figure 4(c). Then
(π, {π′}) and (π, {π′′}) are two different extended
runs of π.

Isomorphic runs can lead to different states.
Definition 7 avoids considering states of pro-
cesses. For applying our concept to concrete
process definition languages, we might consider
the states reached by runs instead, determining the
possible continuations.

Remark 4 For unlabelled Petri nets the distinc-
tion does not occur because isomorphic runs lead
to identical markings. For labelled Petri nets the
problem can occur.

Definition 8 (Branching Time Specialisation)
A process model P′ is a branching time special-
isation of a process model P if, for each extended
run π′ of P′ with continuation C(P′), there exists
an extended run π of P with continuation C(P)
such that

• π′ ≥ π, and
• for each run π̃′ ∈ C(P′) there exists a run
π̃ ∈ C(P) such that π̃′ ≥ π̃.

Example 7 The nets in Table 2 can be distin-
guished using the specialisation of Definition 8,
while they could not be with the linear time spe-
cialisation of Definition 5.

In Table 3, the activities are numbered after
transitions names. The process model P′ has a
run π′, consisting only of activity 1 labelled by
a. Its set of continuations C(P′) contains this
run itself and also the run 1 → 2, as given in the
figure. For P, we also have the run π = 1, labelled
by a. Its set of continuations C(P) contains also
the run 1 → 4, as given in the figure. So, in this
example, for every continuation in C(P′) we find
an isomorphic continuation in C(P). Conversely,
consider the extended run π consisting only of
activity 1 labelled by a in process model P, which
is a prefix of both depicted runs. Its continuation
is the set of both runs depicted in the table. So
it is possible to continue with a b-activity and
it is also possible to continue with a c-activity.
Now activity 1 (i.e., the run consisting only of
this activity) can not be an associated run of P′

because it misses a continuation with an activity
labelled with c. Similarly, activity 3 can not be
an associated run of P′ because this one misses
a continuation with an activity labelled with b.
Arguing about all possible runs and continuations
of P′ as above shows that P′ is a specialisation of
P.

We call this concept of specialisation Branching
Time Specialisation because, again, we have that
the valid statements (now expressable in Branch-
ing Time Temporal Logic) of the more general
process should also hold for the specialised one.

5 Related Works
Abstraction and refinement have been the sub-
ject of numerous researches, and we just mention
some of them here. The goals include to keep the
modelling and reasoning as close as possible to
the essence of the system to be developed, while
still taking into account that a concrete representa-
tion (also called concrete implementation) of data
should be provided at some later point together
with the way it is related with the abstract data.
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P’ P

net

t1
a

t3
a

t2
b

t4
c

t1
a

t2
b

t4
c

runs
1
a

2
b

3
a

4
c

1
a

2
b

1
a

4
c

Table 3: Runs display different activities

(Hoare 1972) proposed a method to prove pro-
gram correctness in the context of stepwise refine-
ment where a representation of abstract data is
chosen. Later, (Guttag et al. 1978) showed how
the use of algebraic axiomatizations can simplify
the process of proving the correctness of an imple-
mentation of an abstract data type. A number of
works followed in the algebraic specification field.
Now, an explicit data type refinement construct is
introduced in programming languages like Scala
(The Scala Programming Language n.d.). Refine-
ment can also be used for program derivation as
in (Diallo et al. 2015), who define a correctness
based concept of refinement.

As mentioned in the introduction, abstraction
was studied for database modelling in (Smith and
Smith 1977), with the concepts of generalisation
and aggregation. These concepts are also part of
the object-oriented approaches (e.g. UML based
approaches), or languages.

The same concepts should also be adapted to the
modelling of the behaviour of a system, described
by a process, a state-based diagram, etc.

(Lee and Wyner 2003) define a specialisation
concept for dataflow diagrams. They distinguish
minimal execution set semantics, in which adding
an activity is a specialisation (as in Table 1), and
the maximal execution set semantics, which is the

option they choose. So obviously, their definition
of specialisation differs from ours.

In (Wyner and Lee 2005), they work on a
specialisation for a variant of Petri net (Workflow
Process Definition). They analyse the approach
of (Aalst and Basten 2002) who identify four
types of inheritance of workflows, and propose an
extension.

Several Petri nets refinements (node, type, sub-
net) were defined by (Lakos 2000), and later ex-
tended in (Choppy et al. 2013) to propose type
refinement that complies with the subtype rela-
tion defined by (Liskov and Wing 1994). These
refinements are useful both, for an incremental de-
velopment of the specification, and for substantial
gain in model checking properties.

(Wang et al. 2010) stress that design issues are
important, and, in the context of component-based
model-driven development, they present two re-
finement relations, a trace-based refinement and a
state-based (data) refinement, that provide differ-
ent granularity of abstractions. So they combine
the data refinement and the behaviour refinement.

Along similar lines (Fayolle et al. 2015) pro-
pose to couple a dynamic behaviour specification
expressed with ASTD (Algebraic State Transition
Diagrams) with a data model described by means
of an Event-B specification. The complementar-
ity and consistency of refinements for both parts
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are explored, and the approach is illustrated on a
CBTC-like train controller.

6 Conclusions

Summary
We have presented a very general notion of special-
isation and generalisation of processes which does
not stick to a specific process modelling language
but can be applied to all process languages where
behaviour can be expressed in terms of partially
ordered activities. Processes with sequential runs
are a special case where all activities in runs are
mutually ordered. Specialisation is interpreted
as addition of features, where features can be
additional tasks, additional ordering information,
additional information on choices and earlier in-
formation on choices. All these features except
the last one can be expressed by a specialisation
relation on runs whereas the last one concerns
branching points of process models that do not
appear in runs and hence require a more involved
definition based on runs and their possible con-
tinuations.

Specialisation versus
Refinement/Generalisation versus
Aggregation
One could argue that refinement of a process
element is a form of specialisation because the
more detailed view adds information. Conversely,
what distinguishes generalisation and aggregation?
According to our definition, specialisation adds
something to a process, whereas refinement re-
places something by something else, which should
be more detailed. For example, if a task is added
to the process, then the process is more special
and associated activities show up in its runs. If
a task is refined to two subsequent tasks, then
the process is more detailed and the respective
activities are refined accordingly in its runs.

Specialisation versus Instantiation
In one of our previous examples we have shown
that information about the decision of choices
can be viewed as a particular specialisation. The

specialised process contains less alternatives. If
all choices are decided, then the process is determ-
inistic and contains no alternative at all. In other
words, it only has a single run (remember that
our notion of a run captures possible concurrency
so that no additional runs caused by interleaving
appear). Depending of the representation of the
process and of its single run, both might look very
similar. However, the run represents an instance
of the process (and was an instance of the original
process, too) whereas the process is on a lower
meta-level. Whereas repeated specialisation of
processes is possible and always yields new pro-
cesses, instantiation of processes decreases the
meta-level by one and can only occur once.

Extensions
It is obvious that there are features, that can be
added, which cannot be handled by our concept
so far. One example concerns concurrency. Our
notion of partially ordered runs is interpreted in
such a way, that activities that are not ordered can
occur concurrently or in any order. However, it
could be possible to specialise such a specifica-
tion by demanding that activities have to occur
concurrently whereas any order would be illegal.
This cannot be expressed by our notion unless we
add an additional “concurrent” relation. Other,
similar relations are “not later than” or “at most
two of three activities occur concurrently”.

Another extension refers to data. Usually tasks
are performed for some or several data objects.
This data does not appear in runs of our processes.
For a combined view of processes and data, and for
a combined notion of specialisation, the process
view and the data view have to be integrated.
There is an obvious way to do this integration
by carrying over the data attributes from tasks to
activities. Then the mapping between activities
constituting our specialisation relation has to be
extended to these data objects; the more general
process handles the more general data.

Representation
In data modelling, generalisation and other ab-
straction techniques such as aggregation are rep-
resented graphically in the model. While this is
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nicely possible for aggregation in process models
(see, for example, Desel and Merceron 2010), we
do not see an elegant solution for generalisation
in process models. One obvious approach is to
depict additional tasks and additional relations
between tasks by means of different symbols (col-
ours or lines, respectively). However, if a single
specialisation considers changes in different parts
of a process then it is not obvious to express that
these changes can only occur together.

The Partial Order of Specialisation
Our notion of generalisation and specialisation is
not primarily given as a problem (is x a specialisa-
tion of y ?) but as a specification means. However,
it is an interesting question whether the above
question is decidable and, in the positive case,
what is the complexity of a decision algorithm or
of the problem in general (i. e., the complexity of
the most efficient algorithm).

It is not difficult to see that the specialisation
relation between single process runs is decidable,
although any algorithm heavily depends on the
data structure used to represent the respective pro-
cess runs. Notice that by definition process runs
are finite, i. e., have a finite set of activities. We
cannot deal with isomorphism classes of process
runs in algorithms but instead consider arbitrary
representative process runs.

Proposition 1 Given two process runs π and π′
of two process models P and P′, it is decidable
whether π′ specialises π.

Proof π′ can only be a specialisation of π if,
for each task t, π′ has at least as many activities
labelled by t as π has. This condition is easy to
check. Assume that it holds true.

There are finitely many injective label-
preserving mappings from the activities of
π to the activities of π′, and it is not difficult to
construct them in a systematic way. For each pair
of activities of π, which are in the immediate pre-
cedence relation, we check whether the respective
target activities are ordered in π′ (they do not
necessarily have to be immediate successors!). If

this is true for at least one mapping, then π′ is a
specialisation of π.

Things become more difficult when process
models are compared because each process model
can have infinitely many runs. Since we do not
consider any particular process model, nothing can
be said about decidability in general. Clearly, there
is only a chance for decidability of specialisation
if a process model cannot generate infinitely many
arbitrary runs.

It is not difficult to prove that “being a spe-
cialisation” is a partial order on process models.
Its minimal element is the empty process model
which is a (useless, though) generalisation of all
process models. Using this order one might ask,
for a given set of process models, whether there is
a “largest” generalisation, whether this is unique,
and whether it can be constructed algorithmic-
ally. Similarly, it would be interesting to find
the “smallest” specialisation of a set of process
models. There are no obvious answers to these
questions, and hence the study of the partial order
of specialisation is subject to future work.
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