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Abstract. Ontological document reading is defined as automatically and appropriately populating a
conceptual model representing an ontological conceptualization of some fragment of the real world.
Appropriately populating the conceptualization involves not only extracting the information with respect to
the declared object and relationship sets of the conceptual model but also involves checking the extracted
information for real-world constraint violations, standardizing the data, and inferring the unwritten
information that a document author intended to convey. Appropriately populating an ontology may, in
addition, require adjustments to the ontology itself. This approach to document reading is presented in terms
of an effort to build a system to extract the genealogical information in family history books. The status of
the reading system is reported. Also explained is how the generated results can be imported into and thus
contribute to the construction of a large repository of world-wide family interrelationships. The reading
system’s potential use for constructing similar knowledge repositories in other domains is foreshadowed.
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1 Introduction

Ontology is the philosophical study of the nature
of being, existence, or reality. An ontology is a
shared, commonly agreed upon conceptualization
of a domain of interest (Gruber 1993). An onto-
logy can be represented as a conceptual model,
which names and defines the types, properties,
and interrelationships of the objects that exist in a
particular domain (Dillon et al. 2008; Guizzardi
and Halpin 2008).

Ontological document reading, in its simplest
form, consists of automatically populating a con-
ceptual model with object and relationship in-
stance facts extracted from a document’s text.
More completely described, ontological document
reading consists of four interrelated tasks:
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1. Populate multiple interrelated conceptual mod-
els with facts stated in a document and integrate
the extracted information into a unified whole.

2. Check the extracted facts with respect to on-
tological constraints supplied as part of the
conceptual models.

3. Infer facts called for in the conceptual models
but not explicitly stated in the document.

4. Construct and augment conceptual models to
capture document facts not conceptualized in a
given collection of conceptual models.

As an example of ontological document reading,
consider reading the document in Figure 1 with
respect to the ontological conceptualization in
Figure 2:
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Figure 1: Page 419 of The Ely Ancestry (Vanderpoel 1902)
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1. Ontology Population
Extraction results should include the follow-
ing facts: Person(Mary Eliza Warner) was
born on BirthDate(1826). Person(Mary Eliza
Warner) married Spouse(Joel M. Gloyd) on
MarriageDate(1850) at BirthPlace(unknown).
Child(Maria Jennings) is a child of Per-
son(William Gerard Lathrop). Child(Maria
Jennings) is a child of Person(Charlotte Brack-
ett Jennings).

2. Constraint Checking
Human readers should, and usually do, impli-
citly check extracted facts against ontological
reality. Automated extraction tools, with no in-
tuition of their own, often make extraction mis-
takes that are wildly unreasonable. For example,
because the OCR system makes a mistake—
interpreting “1” in Theodore Andruss’s birth
year as “i”, which actually happens in the OCR
of the document in Figure 1—an automated
extractor can extract Person(Theodore Andruss)
was born on BirthDate(860). By itself this
extracted fact is reasonable, but not in the con-
text of other extracted facts: Child(Theodore
Andruss) is a child of Person(Mary Augusta An-
druss) and Person(Mary August Andruss) was
born on BirthDate(1825). These extracted facts
along with the constraint that a child cannot be
born before its mother imply that at least one
of them is incorrect.

3. Fact Inference
Document authors typically do not explicitly
state all the facts they wish to convey. Readers
of the page in Figure 1, for example, should
infer (a) the gender of a person (e.g. Per-
son(Mary Eliza Warner) has Gender(Female));
(b) roles such as father, mother, wife, hus-
band (e.g. Mother(Abigail Huntington Lath-
rop) because she is female and has children);
(c) full married names of female spouses
based on cultural traditions (e.g. Person(Mary
Eliza Warner) has InferredMarriedName(Mary
Eliza Warner Gloyd); and (d) full birth names
(e.g. Person(Maria Jennings) has Inferred-
BirthName(Maria Jennings Lathrop)). Readers

should also be able to determine that some name
instances refer to the same person. In the last
family on the page in Figure 1, for example, Per-
son(Mrs. Lathrop) is the same as Person(Mary
Augusta Andruss).

4. Ontology Construction and Augmentation
Using a named entity recognizer, we can create
a simple ontology with two linked concepts, the
entity E and its name EName (e.g. Location has
LocationName). Note that this conceptualiza-
tion is similar to the conceptualization Person
has Name in Figure 2. Furthermore, just as the
appearance of a person’s name instantiates a Per-
son object and links it to the name, the appear-
ance of a location name instantiates a Location
object and links it to the location’s name. From
the page in Figure 1 three of the extractable
location facts are Location(West Indies), Loca-
tion(Boonton, N. J.), and Location(N. Y. City).
A reader can infer from the text that there is an
association respectively between these locations
and Person(Donald McKenzie), Person(William
Gerard Lathrop), and Person(Charles Chris-
topher Lathrop). Natural language processing
systems can too. Hence, having determined that
there is an implied association between Person
and Location, an automated ontology construc-
tion system can connect the two ontologies,
augmenting both, on its way to constructing
an ever-growing collection of ontologies that
can be populated by an ontological document
reading system.

A tremendous amount of academic research has
contributed to the grand challenge of document
understanding. Ontology, the nature of reality, and
epistemology, the theory of knowledge, have been
the subject of research since the days of Aristotle
(Aristotle about 350BC). In modern times, several
disciplines within computer science and linguist-
ics have contributed to document understanding as
indicated by the many conferences and workshops
that have sprung up surrounding the topic (e.g.
AAAI, ACL, DAS, EMNLP, ER, ICDAR, ICPR,
IJCAI, NLDB, SIGMOD, SIGIR, SIGRAPH, and
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Figure 2: A Genealogy Ontology

TREC, among others). The grand challenge of doc-
ument understanding involves much more than just
document reading. It includes image processing,
handwriting recognition, optical character recog-
nition, identification of document components
(e.g. figures, tables, text), determination of text
reading order, and much more. Document reading,
on which we focus in this experience report, is
an essential component, but only a component, of
the larger grand challenge.

The contributions of this report include:

1. a definition and description of ontological doc-
ument reading;

2. a prototype implementation of an ontological
document reading system; and

3. a real-world application of the implementa-
tion that extracts and organizes information for
and contributes to the online and ever-growing
Family Tree (FamilySearch n.d.), a public wiki-
like, shared repository of interconnected family
genealogies that contains more than 1.2 billion
person names and associated information.

We present the details of these contributions as
follows. Section 2 explains how we populate con-
ceptual models from text. Section 3 describes our

information-extraction tools and how they map
the facts they extract into ontological conceptual-
izations. Section 4 discusses the integration of the
conceptual models our extraction tools use and of
the information that populates these conceptual
models. Section 5 describes how we reason about
extracted and inferred facts with respect to given
ontological constraints. It also describes how the
system can sometimes resolve invalid extraction
results and can always at least point specifically
to what is likely wrong, so that system users can
resolve them. Section 6 explains how we infer
facts of interest implied by, but not stated, in a doc-
ument. It also discusses resolving object identity
for multiple mentions of the same person. Sec-
tion 7 explains how we can (semi)automatically
construct and evolve ontological conceptualiza-
tions so that additional information can be gleaned
from a document. Section 8 gives the status of
our implementation and the results of some field
experiments we have conducted to evaluate the
effectiveness of our document reading system. It
also reports on some initial contributions to Family
Tree, and it looks to future work and application-
enhancement opportunities. Section 9 summar-
izes the work and makes concluding remarks.
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2 Ontological Text Extraction

Research on automated text extraction began in
the information retrieval community and can be
dated back at least to Salton’s groundwork (Salton
1968). Researchers in other computer science
disciplines soon joined in the quest to extract in-
formation from text. NLP researchers have made
significant progress on named entity recognition
(NER) in free running text (Nadeau and Sekine
2007) and have more recently focused on recog-
nizing relationships among named entities (e.g.
(Schone and Gehring 2016)). Researchers within
the database, library/information science, docu-
ment analysis, and AI communities have sought
to make documents more easily searchable and to
extract specified items of information. Hundreds
of research papers in these various disciplines have
been published in many journals and conference
proceedings (Grishman 2015; Jiménez et al. 2016;
Laender et al. 2002; Sarawagi 2008; Turmo et al.
2006).

For ontological document reading, extraction
results must be mapped to an ontology. Early
extraction systems (e.g. (Lehnert et al. 1994),
(Kushmerick et al. 1997), and those surveyed in
(Eikvil 1999)) labeled extracted data with cat-
egory names, often called “slots.” But these
slot conceptualizations lacked the structure and
interconnectedness of larger ontologies and the
richness of their constraints and inference cap-
abilities. Later work on linguistically grounding
ontologies begins to open the door to ontological
document reading (Buitelaar et al. 2009).

In our extraction work, we create ontologies as
the target for information extraction and directly
populate these ontologies with information extrac-
tion engines. We specify ontologies as conceptual
models using the OSM conceptual modeling lan-
guage (Embley et al. 1992). We augment these
conceptual models with extraction rules that map
document text to object and relationship instances
in the conceptual model’s object and relationship
sets. An ontological conceptual model augmented
with extraction rules is an extraction ontology
that can read a document and populate its object

and relationship sets with information gleaned
from the document. We have developed an en-
semble of tools for creating extraction rules and
for otherwise generating mappings from text to
ontological conceptualizations. These tools rely
on techniques for developing rule-based expert
systems and for doing natural language processing
(NLP), cognitive reasoning, and machine learning.

2.1 Ontological Conceptualizations
Figure 3 shows an OSM conceptual model. Rec-
tangular boxes are object sets—dashed if lexical
and solid if non-lexical. The objects stored in
lexical object sets are strings. In Figure 3 Spouse-
Name and Year are lexical and may have strings
such as “Mary Augusta Andruss” and “1826” as
members of their respective object sets. Non-
lexical objects are represented as numbered object
identifiers—(e.g. “osmx73”, because our underly-
ing representation for OSM conceptual models is
XML).

Person

Child

Name

BirthDate DeathDate

Surname

ChildNrYearDay Month

GivenName

MarriageDate

SpouseName

2

Figure 3: Basic Ely Ontology

Lines between object sets denote relationship
sets; a diamond may appear in the middle of a
line and usually does for three or more connect-
ing object sets—e.g. the marriage relationship
set in Figure 3. Object-set/relationship-set con-
nections each have a participation constraint, a
special kind of cardinality constraint (Liddle et al.
1993) that specifies the number of times an object
in an object set can participate in a relationship
set. The 2 in Figure 3, for example, specifies
that a Child is related to exactly two Persons—the
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child’s parents. Graphical decorations on object-
set/relationship-set connections denote common
participation constraints: a small “o” for optional
participation and the absence of an “o” for manda-
tory participation; and an arrowhead for functional
participation from tail object set to head object
set, which limits objects in the tail-side object
set to participate at most once. In Figure 3, for
example, a Person mandatorily has one BirthDate
and optionally has one DeathDate. Also, Persons
must have a Name, but they need not be married
nor have children. Relationship sets have names,
either explicit, as are the relationship-set names
in Figure 1, or implicit, as in Figure 3. Both ex-
plicit and implicit relationship-set names include
the names of the connected object sets. Explicit
relationship-set names for binary relationship sets
have a reading direction arrow that specifies which
of the object set names comes before and which
comes after the connecting verbiage in the full
relationship-set name. In Figure 1, Person was
buried at BurialPlace and Son is a son of Person
are two of the relationship-set names. Implicit
names are a space concatenation of the object-set
names in any order—e.g. Person SpouseName
MarriageDate for the marriage relationship set
in Figure 3. By default, implicit names for func-
tional binary relationship sets, may use has as the
connecting verbiage, read from tail to head—e.g.
Person has BirthDate in Figure 3.

A white-filled triangle denotes a generaliza-
tion/specialization with one or more specializa-
tions connected to the base and a generalization
connected to the apex. The objects in a specializa-
tion are a subset of the objects in a generalization,
and all the connecting relationship sets of a gen-
eralization are inherited by its specialization(s).
In Figure 3, every Child object is also a Person
object and has a Name and BirthDate and may be
married and may have died. A Child may have a
ChildNr, but a Person who is not a Child may not
have a ChildNr.

A black-filled triangle denotes an aggregation
with two or more component-part object sets con-
nected to the base and the aggregate object set

connected to the apex. Aggregate and component-
part object sets can independently either be lexical
or non-lexical. The black-filled triangle is just
a grouping of ordinary relationship sets with an
implied composition whose implicit names are
all x is part of y where x is a component-part
object-set name and y is the aggregate object-set
name. Decorations on the connections specify
participation requirements in the aggregate. In
Figure 3 BirthDate and DeathDate are each an
aggregate of a Day, Month, and Year; and Name
is an aggregate of one or more GivenNames and
an optional Surname.

2.2 Extraction Ontologies
When writing the The Ely Ancestry (Vanderpoel
1902), the author may have conceptually had in
mind the ontology in Figure 3 populated with
information. The job of a document reader is
to reverse the process—extract the information
from the book and populate the ontology. We
enable an ontology to populate itself by attaching
enriched linguistic recognizers to every object set
and relationship set and also to selected ontology
snippets—coherent subcomponent views of an
ontology. A reading-enabled ontology is an ex-
traction ontology (Embley et al. 1999a; Embley
and Zitzelberger 2010; Park 2015).

In an extraction ontology, every lexical object
set has an associated data frame (Embley 1980).
In essence, a data frame for a lexical object L de-
scribes the objects that may populate L including
how to recognize object instances in a document
and how these objects may behave and interact
with other objects. More formally, a data frame
is an abstract data type whose value set V has an
instance recognizer that identifies lexical patterns
denoting values in V and whose set of operations
O includes an input operator to convert identified
instances to the internal representation for V and
an output operator to convert instances in V to
strings, as well as applicable operations such as the
Boolean operator “between” for two successive
dates. Except for input and output, each operation
o in O has an operator recognizer that identifies
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lexical patterns as indicators that o applies, e.g.
“is between (Date) and (Date)”.

Figure 4 shows an example of a BirthDate data
frame. From the value expression and the left
and right context expressions, we form a regular-
expression extraction rule by concatenating the
given regular expressions and placing capture-
group parentheses around the value expression.
The extraction rule generated from the YearOnly
recognizer in Figure 4 – b[.,]?\s(\b\d{4}\b) –
extracts 17 of the 18 birth years in Figure 1 into
the BirthDate object set in Figure 2. (Theodore
Andruss’s birth year has an OCR error, “i860”
instead of “1860”, causing his birth year to be
missed.) The MonthDayYear expression in Fig-
ure 4 recognizes dates like “Nov. 4, 1898” in
Figure 1, in which {Month} is a macro referring
to a lexicon of month names and abbreviations.
Keyword phrases like born and birth in Figure 4
are not part of the regular-expression extraction
rule. Instead, if data-frame extraction rules of two
or more object sets recognize the same string of
characters as being possible instances of them-
selves, the keywords and keyword phrases help
disambiguate the intended target object set for the
extraction. For example, to which Date object
set in Figure 2 does the date “Nov. 4, 1898” in
Figure 1 belong? A keyword died found in the
same sentence as the date indicates that it should
be extracted into the DeathDate object set, which
has an identical MonthDayYear recognizer.

internal representation: int // Julian date: yyyyddd

external representation:
    // YearOnly
        value expression: \b\d{4}\b
        left context expression: b[.,]?\s
        right context expression:
        keyword phrases: \bborn\ | \bbirth\
    // MonthDayYear
        value expression:
        \b{Month}\s(?:1\d|2\d|30|31|\d)[.,]?\s(?:\d{4})\b
    ...
methods:
    ageAtDeath(b:BirthDate, d:DeathDate) returns int {
        return d/1000 - b/1000
    }
    ...

Figure 4: BirthDate Data Frame (partial)

In an extraction ontology, every non-lexical
object set is populated by ontological commit-
ment—a relation between a language and objects
postulated to exist by that language. Person ob-
jects in Figure 2 are instantiated by the appearance
of a person’s name in a document. In a data frame
for a non-lexical object set N we specify which
related lexical object instantiations also instantiate
an object of N . The instantiation of objects in N
also instantiates relationships between non-lexical
objects and their related lexical objects. For ex-
ample, extracting “Mary Eliza Warner” in Figure 1
into the Name object set in Figure 2 causes a new
object, say osmx103, to be placed in the Person
object set and the relationship Person(osmx103)
has Name(Mary Eliza Warner) to be placed in the
Person has Name relationship set. Because of on-
tological commitment, we can and often do write
this relationship as Person(Mary Eliza Warner).

In general, ontological commitment may be
declared directly by association with one or more
lexical object sets or indirectly through one or more
non-lexical object sets. In Figure 3, for example,
the non-lexical Name object set is instantiated
when either of the lexical object sets GivenName
or Surname is instantiated, and the instantiation
of a Person object happens when an object is
instantiated in the non-lexical Name object set.
Objects in the non-lexical object set Child in
Figure 3 are instantiated by inheritance when a
name is known to be a child name. The object
existence rule \b\d\d?[.]\s{Person} identifies
a child in Figure 1 by a person name following
the appearance of a one- or two-digit number, a
period, and a space. In this object existence rule
{Person} is a macro which devolves to the macro
{Name} which, in turn, devolves to the regular-
expression rule for either GivenName or Surname,
or both.

Extraction rules for relationship sets build
on data-frame-specified extraction rules for
object sets. As an example, the rule
{Person}[\s\S]{1,30}?b\.\s{BirthDate}
correctly extracts from Figure 1 most of the
Person was born on BirthDate relationships for
the extraction ontology in Figure 2. (It incorrectly
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assigns Emma Goble’s birth year to Theodore
Andruss because of the OCR error, “i860”, and
it assigns Mary Augusta Andruss’s birth year to
what it extracts as a person name in the address
text between Mary’s name and her birth year.) The
macro references to {Person} and {BirthDate}
illustrate how relationship-set extraction rules
build on object-set extraction rules. All combina-
tions of value-expressions in the data frames for
each referenced object set are plugged in to create
extraction rules for the relationship set.

Extending relationship-set extraction rules to
span across multiple relationship sets lets us define
extraction rules for a coherent subcomponent
of an ontology. We call these subcomponents
ontology snippets. As an example, we can write
the ontology snippet extraction rule

(\d)\.\s([A-Z]\w+)\s([A-Z]\w+),\sb[,.]
\s([\d|i]\d{3})(?:,\sd\.\s(\d{4}))?\.

which extracts all eleven numbered children along
with their birth year, and, if stated, their death
year. To complete the extraction rule we must
match capture groups with object sets. For the
ontology in Figure 3, Capture Group 1 associates
with ChildNr, 2 and 3 associate with GivenName,
4 associates with BirthDate Year, and 5 associates
with DeathDate Year. Note that we can associate
an ordered sequence of capture groups with a
single object set, as we do here for GivenName.
This feature also lets us capture lexical items that
do not appear together such as name and surname
in a phone book listing where the surname is
factored to the top of the list of all names with the
same surname.

3 Learning to Read

There are a number of ways a computer can be
taught to read: (1) It can be told what the patterns
in the text mean (Section 3.1). (2) It can be told
how ontology-equivalent forms should be filled in
(Section 3.2). (3) It can learn by example (Sec-
tions 3.3 and 3.4). (4) It can discover patterns and
how they map to conceptualizations (Section 3.5).

(5) It can learn from training data (Section 3.6).
(6) It can learn by natural language processing
(NLP) and cognitive reasoning (Section 3.7).

Before describing our extraction tools, we first
observe that for historical documents we are given
neither the words in the document nor the lines of
text. Instead the OCR provides only the characters
recognized and their bounding boxes. Reconstruct-
ing the text flow in the document can sometimes
be non-trivial. Particular problems occur when
the point size changes or when words are typeset
with comparatively large spaces between letters
to maintain right justification. The document in
Figure 1 has neither of these problems, and the
reconstructed text is relatively clean. Other than
the OCR errors of “i” for “1” and “.” for “,” and
vice versa which we have already mentioned or
alluded to, the only error is the failure of the OCR
engine to recognize “Twins” which is between
the lines and the brace which spans multiple lines.
Reconstructing tab stops is another matter. We
usually left justify each line in the OCR, but have
the option to add tab stops at the beginning of lines
at what appears to be every level of indentation—
four of them for the page in Figure 1.

3.1 FROntIER: Extraction Rule Creation
with Data Frames

Figure 5 shows our FROntIER ontology work-
bench (Park 2015) with which we can create ex-
traction rules by hand as explained in Section 2.2.
The rectangle, diamond, and triangle icons at the
top let users respectively create object sets, re-
lationship sets and generalization/specializations
of an ontology. The Tools menu lets users select
which kind of extraction rule they wish to create.
The data frame rule creation tool is currently open
showing an object existence rule that has been
created.

We note that extraction rule creation by machine
learning is more popular in academic circles than
in industry. When it comes to practical applica-
tion, however, rule creation is the clear winner,
especially for large vendors, with 67% of their
implementations being pure rule-based systems
and another 17% being a hybrid of rule-based and
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Figure 5: Ontology Workbench

machine-learned information extraction systems
(Chiticariu et al. 2013). Five of seven of our ex-
traction tools are based on rules. In three of the
five, however, the rules are system-generated.

3.2 OntoES: Form-based Extraction Rule
Creation

Forms can be designed so that they have a one-to-
one correspondence with an ontology. Creation of
such a form induces an ontology (Tao et al. 2009).
In Figure 6 the form being created corresponds to
the ontology in Figure 7. The form title Person
becomes a non-lexical object set, and the single-
entry form fields nested under Person become
lexical object sets functionally dependent on Per-
son. The construction menu in Figure 6 is attached
to the BirthDate field. By clicking on Single we
could nest lexical Day, Month, and Year fields
under what would then be a non-lexical BirthDate
field. We can create the ontology in Figure 8
by making the form title be Couple and nesting
under it a single-entry form field called Name and
a multiple-entry field which is extended to have
three form fields, SpouseName, MarriageDate,
and MarriagePlace. Similarly, we can create the
ontology in Figure 9 by making the form title be

Family and nesting under it two single-entry form
fields, Parent1 and Parent1, and a multiple-entry
form field Child.

Figure 6: Form Creation and Ontology Induction

We can also create ontologies that have spe-
cializations. Clicking on Specialization in the
construction menu for a field in Figure 6 nests a
specialization under it. Then with the construction
menu attached to the specialization, clicking on
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Reference To allows a user to select any of the
existing object sets to which a connecting rela-
tionship set is added. Thus, for example, we can
create Child in Figure 3 as a specialization of
Person and also create the relationship between
Child and Person. Key in the construction menu is
for specifying ontological commitment and desig-
nates the field to which the menu is attached as an
instantiator of the non-lexical field under which
it is nested. The star next to the Name field in
Figure 6 marks Name as the instantiator field for
the Person ontology in Figure 7.

Having built forms, a user U can “teach” the
reading system how to fill them in. Clicking on
the menu icon in the upper right of Figure 6,
lets U choose a form and a page in a book and
then bring up the interface in Figure 10, albeit
initially with only the page and form header. U
can then create an extraction rule by naming it
and typing in a regular expression whose capture
groups correspond to form fields. After specifying
the match between capture groups and form fields,
U can click on the Test button to test the extraction
rule. Figure 10 shows the result: the form records
are created and filled in, and the highlighting
shows the correspondence among filled in form
fields, regular-expression capture groups, and text
extracted from the page. If satisfactory, U can
save the rule along with others in an extraction
ontology for the form.

3.3 GreenFIE: Extraction Rule Learning
by Form Filling Examples

Rather than writing regular expressions to tell the
computer how to fill in form records, a user can
fill in a form manually. In the background, Green-
FIE (Kim 2017) “watches” a user fill in a form
record, generates a regular-expression extraction
rule that would also have filled in the same record,
generalizes the rule, executes it, and automatically
fills in form records with information that matches
the generalized extraction rule.

Figure 11 shows the interface of our form-filling
tool, which we call COMET—Click-Only, or at
least Mostly, Extraction Tool (Embley et al. 2017).
To fill in a field currently in focus (i.e. the one
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Figure 10: OntoES Rule Editor

Figure 11: GreenFIE User Interface
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with its border highlighted), a user need only click
on the text string or strings in the document to be
filled into the form. For historical documents, the
image of a document page is superimposed over
hidden OCR’d text, so that clicking on a word
in the image extracts the OCR’d text of the word
and enters it into the focus field. In Figure 11, for
example, the field in focus is the BirthDate field
for Theodore Andruss, and when a user clicks
on “1860” in the image, the underlying OCR’d
text “i860” is entered into the field. The user can
correct the OCR error by double-clicking on the
field and editing the text. To make it easy to see
what text in the document has been extracted into
which form record, a user can use a mouse to
hover over a record, which then highlights each
field in the record with a different color and also
highlights in the document the text filled into a
field with the same color. In Figure 11, the user
is hovering over the record of Mary Ely who was
born in 1836 and died in 1859.

The filled in form records in Figure 11 were
generated with the help of GreenFIE as follows:
Beginning with a single empty record, a user U
extracted the highlighted Mary Ely information
into the empty record. U then clicked on the
Regex button at the end of the filled-in record. (In
Figure 11, the Regex buttons are hidden behind
the document page, but are accessible with a
horizontal slider bar below the form records.) As
a result, GreenFIE added the four other children
in the page that also have both a birth and a
death date. (After adding records, GreenFIE sorts
them in page order, which is why Mary Ely’s
record eventually ends up as the fourth record in
Figure 11.)

Next, U filled in a new empty record for Mary
Ely’s brother Gerard Lathrop, who has only a
birth year, and clicked on the record’s Regex
button. For this case GreenFIE-generated the
regular expression,

\n\d{1}[.,]\s([A-Z][a-z]+\s(?:(?:Mc
[A-Z][a-z]+)|(?:[A-Z][a-z]+)))[.,]\s
b[.,]\s(\d{4})[.,]

which we use here for illustration since it is the
shortest of all the expressions. GreenFIE gener-
ates and generalizes using several heuristics: (1)
The left context for a capture group is the text back
to the first whitespace character before the word
preceding the capture group. (2) The right context
of a capture group consists of all immediate punc-
tuation characters following the capture group; or
if none, then \s is added. (3) Between capture
groups, if the right of the first overlaps or abuts
against the left of the second, the text between
is the literal context; otherwise the left and right
context is kept and a skip, [\s\S]{m,n}, is added
where m and n are set heuristically depending on
the actual number of characters being skipped. (4)
Some OCR errors are anticipated, here just “.” for
“,” and vice versa. (5) Strings of n digits become
\d{n}. (6) Person names, dates, and place names
are selected from a library of regular expressions
depending on which expressions match the per-
son names, dates, and place names in the given
example. The regular expression here matches
all the numbered children with only a birth year
except Theodore’s record which has the mentioned
OCR error. It also matches all the numbered chil-
dren with both a birth year and a death year, but
GreenFIE keeps only subsuming records and thus
does not generate new form records for them.

Continuing, user U next filled in a record for
Mary Eliza Warner and her birth date, but the gen-
erated regular expression found no other matching
text pattern. Similarly, generated records for both
Abigail Huntington Lathrop and the West Indies
Donald McKenzie yielded no other form records.
The generated expression for William Gerard Lath-
rop of Boonton, N. J., however, does match the
record for Charles Christopher Lathrop of N. Y.
City, and the expression generated for Charlotte
Brackett Jennings does match the record for Mary
Augusta Andruss. The generated record for Mary,
however, is incomplete, so U added the death date
and place and also the funeral date as the burial
date.

Extraction rules for the Couple and Family
forms are generated similarly, except that the mul-
tiple entry fields in both forms call for an additional
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type of generalization for lists. For the Abigail
and Donald family in Figure 1, for example, when
Mary Ely and Gerard Lathrop are added as chil-
dren, GreenFIE not only generalizes each entry as
explained above, it also generalizes the list itself
to possibly have up to a user-specified maximum
number of children (12 in our implementation).
GreenFIE thus generates 12 extraction rules, the
first with a capture group for the first child, the
second with a non-capture group for the first child
and a capture group for the second child, and so
forth to the 12th in which the first 11 children are
recognized in non-capture groups and the 12th is
recognized with a capture group. When executed,
GreenFIE takes the results and stitches all the
children recognized into a single record with their
parents. Lists are often numbered as they are in
Figure 1, and GreenFIE knows about numbering
schemes (e.g. Arabic Numerals, Roman Numerals,
Ordinal Numbers) and replaces the left context,
when it includes the numbering scheme as it does
in Figure 1, with the correct number for each list
item. There are no examples of persons with mul-
tiple spouses in Figure 1. On other pages in The
Ely Ancestry (Vanderpoel 1902), when there are
multiple spouses, they are numbered with ordinal
numbers starting with the “2nd” spouse.

GreenFIE extraction rules are kept in a repos-
itory and executed in advance as a user moves
from page to page. Eventually, the GreenFIE-
generated extraction rules cover all but a very few
exceptional cases. Thus, the extraction work of
a user diminishes over time. The name “Green-
FIE” stands for “Green Form-based Information
Extraction, where “Green” is a designator for tools
that improve themselves with use in real-world
tasks (Nagy 2012).

3.4 GreenQQ: Extraction Rule Learning
by Text Snippet Examples

Users interact with GreenQQ by means of sample
snippets of the OCR’d text (Embley and Nagy
2017). For each lexical object set S of a given on-
tology, users initially give GreenQQ a text-snippet
example that contains a text instance t to be extrac-
ted into S. The text snippet should also contain

some surrounding text tokens that help identify
and classify t as being a member of S. From
the text-snippet example, GreenQQ creates an ex-
traction rule by generalizing and tagging the text
tokens (e.g. identifying them as capitalized words,
allcap words, n-digit numbers, punctuation) and
designating the position within the snippet of the
textual instance to be extracted. It then sweeps
this extraction-rule template across an entire doc-
ument whose text has previously been generalized
and tagged and returns all matching instances for
the specified lexical object set. Once bootstrapped
in this way, GreenQQ is also able to discover and
propose new extraction rules for other instances
that likely should be extracted by the current set
of extraction rules but were not. Presenting these
proposed rules in terms of examples, the user can
accept, reject, or modify these candidate rules.
GreenQQ then executes the expanded rule set
and proposes yet more potential rules. This cycle
continues until the user is satisfied with the results.

As an example, consider applying GreenQQ to
populate the Person ontology in Figure 7 from The
Ely Ancestry, one of whose pages is in Figure 1.
In preparation, GreenQQ tokenizes the full 830-
page book and generalizes and tags each token
according to its token type. Also, in preparation,
a user considers the document and designates a
few keyword tokens that are likely to help classify
text instances, e.g. “b.”, “born”, “d.”, “died”, “m.”
for The Ely Ancestry. The user then gives an
example text snippet for each lexical object set in
the ontology for which information is available
and designates the text instance to be extracted,
e.g. [DeathDate “d. 1859.” “1859”], which
specifies that DeathDate is the target object set
for the extracted text, “1859”, within the text
snippet example, “d. 1859.”. From this example,
GreenQQ generates the extraction template

DeathDate d. NUM4 . [1,1]

where [1,1] designates that the offset of the
token(s) to be extracted within the template
“d. NUM4 .” is 1 (zero start count) and that the
number of tokens to extract is 1. When GreenQQ
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sweeps this template pattern across the page in Fig-
ure 1, it extracts the death dates “1839”, “1859”,
“1840”, “1843”, “1861”, and another “1861”, and
it extracts hundreds more from the full book.

Continuing the example, GreenQQ next gen-
erates and classifies text snippet examples that
it expects should be turned into extraction rules
and presents a few of these for consideration.
It identifies these candidate text snippets as fre-
quent tagged text sequences surrounding user-
given keywords and classified text tokens that do
not include text tokens already labeled with the
classification it is proposing. For example,

DeathDate: , b. 1812, d. 1882, son of

is one classified text snippet GreenQQ might
return for consideration. From previous rules,
GreenQQ has already associated the keyword d.
with the DeathDate class, and the user-chosen
window size of four tokens before and after the d.
does not include a token sequence already labeled
as a DeathDate. If the user now designates “1882”
to be extracted with “d.” and “,” as the left and
right context, GreenQQ generates the extraction
rule

DeathDate d. NUM4 , [1,1]

which when executed extracts “1882” and “1865”
as additional DeathDates in Figure 1, and many
more in the full book.

Figure 12 shows a set of GreenQQ-generated
extraction rule templates that would extract most
of the information of interest from Figure 1. Tem-
plates for Mrs. Lathrop’s death date and place and
her burial date (implied from the funeral date) are
not included. Rule templates for this information
can be created but are likely unique within the full
book. Because Theodore’s birth date was OCR’d
as “i860” it is also not included in the information
that would be extracted by the rule set. GreenQQ
would see this OCR error frequently enough in
the context of “b.” that it might suggest

BirthDate: Theodore Andruss, b. i860. EOL 4 .

for consideration. In this case, the user could
specify that i860 should be extract with b. and .
as its left and right context. If so GreenQQ would
generate

BirthDate b. ALPHANUM . [1,1]

as a rule template.
Following the final rule create-and-execute

cycle, GreenQQ groups the results into records
from which it populates the ontology. GreenQQ
only operates with ontologies that have a single
non-lexical object set to which all lexical object
sets are related, like the Person, Couple, and Fam-
ily ontologies in Figures 7, 8, and 9. To form
records, GreenFIE must group together all lexical
objects related to a single non-lexical object and
in the case when a connecting relationship set is
n-ary (n > 2), as is the quaternary relationship set
in Figure 8, must also properly group the connect-
ing lexical objects. Since non-lexical objects are
instantiated by ontological commitment, there are
lexical objects in the text around which records are
formed (e.g. person names for the ontologies in
Figures 7 and 8 and a parent name for the ontology
in Figure 9).

Depending on how book authors organize their
presentation of information, grouping labeled text
instances into records can be complex (Embley et
al. 1999b). Sometimes record creation is straight-
forward, as it is for the Ely book in which the
author groups all Person-ontology information
immediately after the person’s name. In this
case, GreenQQ can run through its initial output,
which is a lexical-object-set-name-labeled list of
tokens in book-text order, and form record groups
from one Name-labeled object to the next. At
other times, however, records are intertwined. In
Figure 1, for example, the couple Mary Ely and
Gerard Lathrop is inside the text snippet that tells
us that Abigail Huntington Lathrop and Donald
McKenzie constitute a couple. In these cases, and
in general, if we can process each record type in
a separate run over the GreenQQ output, we can
properly group labeled objects into records. In
Figure 12 we have separated the templates into
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Name           NUM5+ . CAP CAP CAP ,      [2,3]
Name           NUM5+ . CAP CAP CAP (      [2,3]
Name           m. NUM4 , CAP CAP ,        [3,2]
Name           NUM1or2 . CAP CAP ,        [2,2]
Name           m. NUM4 , CAP CAP CAP ,    [3,3]
BirthDate      b. NUM4                    [1,1]
DeathDate      d. NUM4                    [1,1]
GenderDes...   dau.                       [0,1]
GenderDes...   son                        [0,1]

(a)

Name           NUM5+ . CAP CAP CAP ,      [2,3]
Name           NUM5+ . CAP CAP CAP (      [2,3]
MarriageDate   m. NUM4                    [1,1]
SpouseName     m. NUM4 , CAP CAP . CAP (  [3,4]
SpouseName     m. NUM4 , CAP CAP ,        [3,2]
SpouseName     m. NUM4 , CAP CAP CAP ,    [3,3]
SpouseName     m. NUM4 , CAP CAP CAP .    [3,3]

Name           of CAP CAP CAP and         [1,3]
Name           of CAP CAP and             [1,2]
Name           of CAP CAP CAP CAP and     [1,4]
SpouseName     and CAP CAP ;              [1,2]

(b)

Parent1        NUM5+ . CAP CAP CAP ,      [2,3]
Parent1        NUM5+ . CAP CAP CAP (      [2,3]
Parent2        m. NUM4 , CAP CAP . CAP (  [3,4]
Parent2        m. NUM4 , CAP CAP ,        [3,2]
Parent2        m. NUM4 , CAP CAP CAP ,    [3,3]
Parent2        m. NUM4 , CAP CAP CAP .    [3,3]
Child          NUM1or2 . CAP CAP ,        [2,2]

Child          NUM5+ . CAP CAP CAP ,      [2,3]
Child          m. NUM4 , CAP CAP . CAP (  [3,4]
Child          m. NUM4 , CAP CAP ,        [3,2]
Child          m. NUM4 , CAP CAP CAP ,    [3,3]
Child          m. NUM4 , CAP CAP CAP .    [3,3]
Parent1        of CAP CAP CAP and         [1,3]
Parent1        of CAP CAP and             [1,2]
Parent1        of CAP CAP CAP CAP and     [1,4]
Parent2        and CAP CAP ;              [1,2]

(c)

Figure 12: GreenQQ Templates for Information of
Interest in Figure 1 for the (a) Person, (b) Couple and
(c) Family Ontologies

record groups and within each group have ordered
the fields according to the Ely author’s presenta-
tion. For the first Family record-template group
in Figure 12(c), for example, GreenQQ would
process its initial output file by finding a Parent1
followed immediately by a Parent2 and then
immediately by a Child followed zero or more
Child-labeled text instances without any inter-
vening other-than-Child-labeled text. GreenQQ
knows to look for more than one Child because of
the 1-many relationship set from Family to Child.
Grouping and ordering templates automatically is
likely to be non-trivial in general and may require
user input.

As with GreenFIE, “Green” is a designator
for tools that improve themselves with use in real-
world tasks (Nagy 2012). The “QQ” in “GreenQQ”
stands for “Quick” and “Quality.” The process of
executing a rule set on an entire book and simultan-
eously proposing new rules for user consideration
to be used in the next iteration is “Quick” enough
to allow for real-time, synergistic user interaction.
As we indicate in Section 8.1.2, if a book has
reasonably well structured patterns, GreenQQ can
“Quickly” generate “Quality” results.

3.5 ListReader: Extraction Rule
Learning by Text Pattern Discovery

Like GreenQQ, ListReader (Packer 2014) pro-
cesses a full book as a unit. It discovers record
patterns in the text and generates extraction rules
for them in a sequence of steps:

1. Abstract Text. ListReader replaces various
sequences of one or more characters by a more
abstract version of the character sequence. The
string “4. Emma Goble, b. 1862.”, for example,
becomes

[Dg].[Sp][UpLo+][Sp][UpLo+],[Sp][Lo].
[Sp][Dg][Dg][Dg][Dg].

Each digit becomes the symbol [Dg], each
word that begins with an uppercase letter be-
comes [UpLo+], punctuation characters remain
as themselves, and so forth.
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[Dg].[Sp][UpLo+][Sp][UpLo+],[Sp][Lo].[Sp][Dg][Dg][Dg][Dg].
------------------------------------------------------------
...
2. Gerard Lathrop, b. 1838.
2. William Gerard, b. 1840.
4. Anna Margaretta, b. 1843.
5. Anna Catherine, b. 1845.
4. Emma Goble, b. 1862.
...

Figure 13: ListReader Discovered Records

2. Align Text. ListReader aligns text by find-
ing identical sequences of abstract symbols.
Figure 13 shows the text strings in Figure 1
that align with the abstract symbol sequence
for Emma Goble. The ellipses at the top and
bottom of the list stand for the hundreds of
additional text strings in the book that also have
the same sequence of abstract symbols.

3. Identify Record Templates. Not all text pat-
terns ListReader discovers make good record
templates. For our application a record pat-
tern must contain either numbers or capitalized
words or both. (Numbers and proper nouns,
which in English are capitalized words, typic-
ally denote items of interest.) A record should
contain at least two of these items of interest.
(A record relates at least two items.) Record
patterns should not contain long sequences of
lower-case words. (Lower-case words in Eng-
lish list records tend to be delimiters, which
are usually limited to just a couple of words.)
Record delimiters such as newline characters,
\n, are good indicators of record beginnings
and endings. (All the text strings in Figure 13
have newline characters immediately preceding
and immediately following each string.)

4. Process Record Templates. To turn record tem-
plates into extraction rules, ListReader must
know how the patterns map to ontological con-
ceptualizations. Following the principles of
active learning (Settles 2012), ListReader se-
lects the record group, which when labeled,
will likely provide the most benefit. Typic-
ally large groups with lengthy strings that have

good record characteristics are best. Because
ListReader also does cross-record labeling for
fields with field identifiers such as b. and d.
for birth- and death-date fields in Figure 1,
it also takes into account how much cross-
record labeling can occur for a chosen record
group. Once ListReader selects a record group
it chooses a prototypical list element, finds the
page it is on, and brings up the page in COMET
on the right and the form for the ListReader
ontology on the left. When a user then fills
in the form record from the highlighted text,
ListReader has the mapping it needs to generate
a regular-expression ontology snippet extrac-
tion rule. For example, if ListReader highlights
4. Emma Goble, b. 1862 in Figure 1 and
displays its ontology (Figure 3) as a form, the
user should use COMET to extract 4 into the
ChildNr field, Emma and Goble in the multiple-
entry GivenName field, and 1862 into the Year
field nested under BirthDate. ListReader can
now label, without having to ask for the user’s
help, every b. field with just a year in every
record template group in the same way.

5. Generate Extraction Rules. Given the informa-
tion obtained by processing record templates,
ListReader can now generate the extraction rule
for the template. For the record template in
Figure 13 ListReader generates

\n(\d{1})\.\s([A-Z][a-z]+)
\s([A-Z][a-z]+),
\sb\.\s(\d{4})\.
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where the first capture group maps to ChildNr,
the second and third map to GivenName, and
the fourth maps to Year under BirthDate. Ob-
serve that [A-Z][a-z]+ exactly mirrors UpLo+,
that the digit-sequence lengths match, that the
punctuation represents itself, and that the end-
of-line record identifier, \n, has been added as
the initial character signifying that these records
always start on a new line.

As the name implies, ListReader discovers lists
of records. It works well for semi-structured text
like the text in Figure 1 and countless other family
history documents, as well as many other types
of semi-structured documents. It should not be
applied to free-running narrative text.

3.6 GreenML/GreenDDA: Machine
Learning of Extraction Rules

We are exploring the applicability of different
approaches involving machine learning (ML) in
recognizing and extracting named entities and fam-
ily relationships from various text types. While
annotators do exist for these data types, their off-
the-shelf (OTS) performance derives from models
trained on other types of annotated texts, partic-
ularly newswire articles. Performance on family
history books suffers, especially for finding rela-
tionships. We believe we can improve on OTS
performance in three ways.

First, GreenML is an ML approach that builds
minimal models during training, based on high-
quality annotations collected for a specific book
via user interaction. The user annotates a page of
a document using COMET as described earlier.
Next, GreenML trains a model based on the results,
which it then uses to annotate the next page. The
user, through inspection and correction (where
necessary) creates clean output, which is then
added to the training set, triggering the creation
of a new model for subsequent annotation. The
cycle continues until the end of the book or until
the user is satisfied that GreenML’s accuracy is
sufficient. The system is “Green” in the sense that
it continuously improves its model as it receives
user-checked and -corrected filled-in record forms
page after page.

A second and related “Green” approach is called
GreenDDA, for “Decision Directed Adaptation”
(Nagy 2017). As with GreenML, a human su-
pervises incremental, page-by-page training of
models until some threshold point. In GreenDDA,
though, the system proceeds from that point to
annotate subsequent pages on its own, taking the
results of each page and adding them (without hu-
man vetting) to the training set for model retraining.
It then repeats this process on the remaining pages,
extracting data from a full book.

Finally, instead of using an OTS ML model we
could train our own model based on the totality
of all COMET-user-verified data. This could
be run without human intervention, or else with
retraining via GreenML or GreenDDA as more
data is collected.

Since most machine learning systems perform
best with clean training data, we deem it advant-
ageous to involve a human somewhere in the
loop to check and correct generated data and to
add missing data. Ideally, we could use active
learning (Settles 2010) to target the most useful,
informative interactions to present to the user for
optimal annotation contribution, retraining mod-
els as needed to take advantage of this type of
prioritization. If COMET is to be used to ensure
that the data extracted from a book is complete and
correct, some combination of green methods and
active learning would behave like GreenFIE—one
that would learn from a user’s work and prepopu-
late subsequent pages with data in an attempt to
reduce the user’s workload.

3.7 OntoSoar: Extraction Rule Creation
by Natural Language Processing and
Cognitive Reasoning

OntoSoar (Lindes 2014; Lindes et al. 2015) ex-
tracts data using NLP techniques to discover and
map extraction results from running text narrat-
ive. Its segmenter divides text into sentences or
subsentential fragments that are then pipelined to
the Link Grammar parser (Sleator and Temperley
1995). Figure 14 shows the parse of the fragment,
“Mary Eliza Warner, b. 1826, dau. of Samuel
Selden Warner and Azubah Tully;” from Figure 1.
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                                                  +---------------------------Xc--------------------------+
                         +-----------MX-----------+      +-----------------Js----------------+            |
     +---------Wf--------+--MX*p--+---Xca--+      |      +--------Js--------+                |            |
     |       +--G-+---G--+   +-Xd-+--IN-+  +--Xd--+--Mp--+    +---G--+---G--+          +--G--+            |
     |       |    |      |   |    |     |  |      |      |    |      |      |          |     |            |
 LEFT-WALL Mary Eliza Warner , born.v 1826 , daughter.n of Samuel Selden Warner and Azubah Tully [;] RIGHT-WALL 
 
 Facts extracted:
   Reporting 7 objects:
     X2: Name(osmx85, "Mary Eliza Warner")
     X1: Daughter(osmx108)
     X1: Person(osmx108)
     X4: Name(osmx130, "Samuel Selden Warner")
     X3: Person(osmx137)
     X6: Name(osmx140, "Azubah Tully")
     X5: Person(osmx143)
     X7: BirthDate(osmx147, "1826")
   Reporting 6 relations:
     Y1(osmx150): Person(osmx108) has Name(osmx85)
     Y2(osmx153): Person(osmx137) has Name(osmx130)
     Y3(osmx156): Person(osmx143) has Name(osmx140)
     Y4(osmx159): Person(osmx108) was born on BirthDate(osmx147)
     Y7(osmx162): Daughter(osmx108) is a daughter of Person(osmx143)
     Y6(osmx165): Daughter(osmx108) is a daughter of Person(osmx137)

Figure 14: OntoSoar Syntax Analysis (top) and Semantic Analysis (bottom)

The Soar cognitive architecture (Laird 2012)
analyzes the parse, extracting salient semantic
objects and relations from the relationships repres-
ented by the parse links. The Soar engine in our
implementation has 240 production rules. These
rules build meaning using ideas inspired by con-
struction grammars, which (1) pair textual forms
with meaning; (2) construct knowledge structures
with inference rules; and (3) map knowledge struc-
tures to ontologies by comparing their common
entities and relationships. The mapping provides
a conduit for populating the ontological conceptu-
alization in Figure 2 with data. Figure 14 shows
the results of semantically analyzing the Mary
Eliza Warner text chunk.

4 Ontology Integration
Given the results of applying our ensemble of
extraction tools (Section 3), our next task is to
integrate the results into a single populated onto-
logy. This requires both schema integration and
data integration. For our genealogy application,
the ontology in Figure 15 is our target for schema
integration. The data that populates the target
ontology should be integrated so that the same
objects and relationships extracted into the source
ontologies are represented only once the target
ontology.

4.1 Schema Integration
General schema integration is known to be a
hard problem—denoted by some as “AI-complete”
or essentially unsolvable (Marie and Gal 2007).
The major bottleneck is automatically discovering
matching schema components (Noy 2004; Rahm
and Bernstein 2001). Schema matching usually re-
quires algorithms to be multifaceted, meaning that
several schema integration techniques are used
together, and machine-learned, because of the
complexity of successfully weighing the evidence
gathered from the multiple facets (Embley et al.
2001; Xu 2003).

Despite these general difficulties, the typical
schema matching needed for an ensemble of ex-
traction engines, each with their own ontologies,
can be much simpler. Matching algorithms for
ontology-based reading systems have the advant-
age of being able to observe the extraction of
the same objects and the same relationships into
the various object and relationship sets in the en-
semble’s collection of ontologies. “Same” here
means that the text being extracted comes from
the same location in the document, and thus with
the assurance that it actually denotes the same
object.

As an example, consider integrating the Family
ontology in Figure 9 into the integrated target

http://dx.doi.org/10.18417/emisa.si.hcm.12


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.12
Document Reading 151
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Person

Child

BirthDateName BirthPlace

DeathDate

DeathPlace

BurialDate

BurialPlace

ChristeningDate

Spouse

MarriageDate

MarriagePlace

ChristeningPlace

GenderDesignator

was
christened at

Person married Spouse
on MarriageDate
at MarriagePlace

was
christened

on
was

born at

2

was
born on

has

has

is a
child

of

died on

died at

was
buried

on

was
buried

at

Person

Family

Couple

Figure 15: Integrated Target Extraction Ontology

extraction ontology in Figure 15. Note that except
for Child none of the object set names match in
the two ontologies. However, many of the same
instances (e.g. “Charles Christopher Lathrop” and
“Mary Augusta Andruss” in Figure 1) would be
extracted into Parent1 or Parent2 in Figure 9 and
into Name in Figure 2. Hence, Parent1, Parent2,
and Name should all map to the same lexical
object set in Figure 15, namely the Name object
set. Similarly, Child should also map to the Name
object set. Since Name is ontologically committed
to Person, these mappings also indirectly create
mappings to Person (and in the case of Child in
Figure 9 also to Child).

Schema integration need not be fully automatic,
but we must know how to map the tool extraction
ontologies to the common integrated target extrac-
tion ontology. Schema mappings for the Family
ontology are outlined above. For the Couple onto-
logy SpouseName maps to Name, and indirectly
to Person and Spouse. All other lexical object
sets for our form ontologies (Figures 7, 8, and 9)
map to lexical object sets with the same name.

As the views superimposed on Figure 15 indicate,
these three forms were designed to be complement-
ary and to cover the integrated target extraction
ontology. Except for the Son and Daughter com-
ponents, the ontologies in Figures 2 and 5 map
directly to the integrated extraction ontology in
Figure 15. Sons and daughters are children, and
in mapping them to Child, we also instantiate
GenderDesignators, “Son” and “Daughter” for
them. For the ontology in Figure 3, we note that the
integrated extraction ontology in Figure 15 does
not have a breakdown of names and dates. There-
fore, for each BirthDate and DeathDate object, we
space-concatenate the strings in Day, Month, and
Year as lexical BirthDate and DeathDate objects
in Figure 15. Similarly, we space-concatenate
GivenNames and the Surname. ChildNr is not in
the integrated target extraction ontology, so we
simply ignore it.

4.2 Data Integration
Lexical objects are the same if their text string
is identical and is extracted from the same loca-
tion in the document as determined by page and
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page-offset index values. Non-lexical objects are
instantiated by ontological commitment with lex-
ical objects. Thus, non-lexical objects are the
same when their declared lexical instantiators are
the same. Since the integrated target extraction on-
tology in Figure 15 has Person and specializations
of Person as its only non-lexical object sets, and
since we instantiate Person objects by an ontolo-
gical commitment with Name, we discover duplic-
ate non-lexical objects by determining whether
they have the same name. Thus, the fundamental
data-integration problem we must resolve is to
determine whether two Person names denote the
same object.

We declare names to be the same if and only
if their text strings are substantially the same and
are located at the substantially the same place
in the document. Names that refer to the same
object but are not located at the same place in the
document are resolved later. These resolutions
either require coreference reasoning to determine,
for example, that “Mrs. Lathrop” refers to Mary
Augusta Andruss in Figure 1, or they require object
identity resolution to determine, for example, that
three of the four mentions of the name “Mary Ely”
in Figure 1 refer to Gerard Lathrop’s wife while the
fourth refers to Gerard Lathrop’s granddaughter.

Although seemingly straightforward, determ-
ining “substantially the same” is often nontrivial.
The extraction tools independently extract names;
moreover, extraction rules within a single tool in-
dependently extract names. Often extracted names
are identical, both offset and content, but there is
no guarantee that a name in a document will be
extracted in exactly the same way by all extraction
rules within and across all tools.

Names can be extracted either as simple name
strings or as complex name strings.

• Simple name strings comprise a single sequence
of characters. Discrepancies can arise for sev-
eral reasons: (a) One tool may extract name
titles while another tool does not. In Figure 1,
for example, one tool might extract “Judge
Caleb Halstead Andruss” while another tool
extracts “Caleb Halstead Andruss”. (b) The

tools are not consistent in the way they treat
end-of-line hyphens. Some tools ignore them
and thus would extract “Donald McKen” in Fig-
ure 1; some other tool may take the full name
as given in the OCR text and extract “Donald
McKen-\nzie”; and still some other tool may re-
solve the end-of-line hyphen and give the name
as “Donald McKenzie”. (c) Tools make mis-
takes and may extract “William Gerard Lathrop”
in Figure 1, for example, as “William Gerard
Lathrop, Boonton”.

• Complex name strings comprise two or more
name components that are not necessarily con-
tiguous. Figure 16 shows some examples
of names that do not consist of a single se-
quence of characters in the document: (a)
“Freedom” “Peek” in the combined name “Free-
dom & Julia Peek”; (b) factored names such
as “Ralph E.” “GREENFIELD” and “John
T.” “GREENFIELD”; and (c) names such as
“Benj” “GREENWOOD” and “Mary” “GREEN-
WOOD”, which are both factored and combined.
Besides names, such as these, that are neces-
sarily complex, tools may extract name strings
that could be simple as complex name strings.
Thus, for example, one tool may correctly ex-
tract the name that appears first in Figure 16
either as “GRAHAM, Olive B.” or as “Olive”
“B.” “GRAHAM” or “Olive B.” “GRAHAM”.
A tool may also incorrectly extract the name
in several different ways, including as a par-
tial name, “Olive” “GRAHAM”, or an inferred
name such as “Olive B.” “Peek”.

Determining whether two tool-extracted names
are “substantially the same” is straightforward in
the common case in which both the content and
offset of all ordered name components match—
and is otherwise anything but straightforward.

Heuristically, we determine whether two
location-overlapping names match by first forming
single-string interpretations of the names. These
single-string interpretations include a resolution
of end-of-line hyphens, both those included in the
extracted text and those not included, but only if
they immediately follow any one of the extracted
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Figure 16: Part of a Page from Butler, County, Ohio,
Cemetery Records (Stroup n.d.)

name components in the original document’s text.
Then, by checking both content and offset of each
token of this single-string interpretation of the
name, if one of these interpreted names subsumes
the other, we declare a match. If the subsum-
ing name has a recognized name form (currently,
either a last-name-first form or a standard form
with a sequence of names preceded optionally
with titles and followed optionally with suffixes
such as “Sr.” and “Jr.”), it becomes the interpreted
name for the merged Person object. Otherwise,
the subsumed name becomes the interpreted name,
unless it also fails to have a standard name form,
in which case we take the nonstandard subsuming
name as the interpreted name.

This process iterates over all location-
overlapping names by comparing each name
with the current best name, and eventually forms
an equivalence class of Person objects to be
merged as a single object with a single best inter-
preted name. Examples: (a) The interpreted name
for all extractions of “Donald McKen-\nzie”,
whether they include the hyphen or not, become
“Donald McKenzie”. (b) “Judge Caleb Halstead
Andruss” is chosen to be the interpreted name
over the subsumed “Caleb Halstead Andruss”.
Similarly, “Olive B. GRAHAM” is chosen over
the subsumed “Olive GRAHAM”. (c) The names
“Olive B. GRAHAM” and “Olive B. Peek” do not
match even though they presumably refer to the
same person, and their respective person objects

are not merged. (d) “William Gerard Lathrop,
Boonton” subsumes “William Gerard Lathrop”
but is not a proper name form and is therefore
rejected in favor of the subsumed name “William
Gerard Lathrop”.

Once an equivalence class of Person objects
has been formed, we next look for duplicate re-
lationships connected to this equivalence class.
Checking for duplicate relationships involves de-
termining whether the text objects in correspond-
ing lexical object sets are substantially the same.
We determine “substantially the same” for these
text objects in the same way we determine whether
two names are “substantially the same” except that
instead of checking for acceptable name forms,
we check for acceptable textual forms for dates
and place names. Duplicate relationships are then
discarded and replaced with a single relationship
whose lexical objects are the best among the pos-
sibilities.

5 Ontological Constraints

The OSM conceptual modeling language is groun-
ded in a decidable restriction of first-order logic
(Embley and Zitzelberger 2010). This formal
grounding enables us to specify and check con-
straints.

5.1 Ontology Language Formalization

We formally define OSM-OL (OSM Ontology
Language) as a triple (O, R, C) where O is a
set of object sets, R is a set of relationship sets,
and C is a set of constraints. Each object set in
O is a one-place predicate, and each object-set
predicate has either a lexical or a non-lexical desig-
nation. Instances of lexical object sets are strings
(e.g. DeathDate(Nov. 4, 1898)), and instances of
non-lexical object sets are object identifiers (e.g.
Person(osmx17) and Spouse(osmx17)). Each rela-
tionship set in R is an n-place predicate (n ≥ 2).
We use a form of infix notation to specify instance
relationships (e.g. Person(osmx17) died on Death-
Date(Nov. 4, 1898)). C is a set of constraints:
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• Referential: object instances referenced in re-
lationship instances must exist in referenced
object sets, e.g.

Person(osmx17) died on
DeathDate(Nov. 4, 1898) ⇒

Person(osmx17)
∧ DeathDate(Nov. 4, 1898)

• Participation: instances in an object set S must
participate in relationships in a relationship
set R connected to S according to declared
participation constraints, e.g.

∀x(Child(x) ⇒

∃2y(Child(x) is a child of Person(y)))

specifies that every child has exactly two parents
(hence the superscript 2).

• Generalization/specialization: instances in a
specialization S of a generalization G must exist
in G, e.g. ∀x(Spouse(x) ⇒ Person(x)).

• General: any predicate-calculus-specified con-
straint, e.g.

∀x∀y∀z(

Person(x) was born on BirthDate(y)
∧ Person(x) died on DeathDate(z)

) ⇒ y ≤ z

specifies that a person’s death date must not
precede the person’s birth date.

Note that all but general constraints can be spe-
cified in OSM’s graphical notation. Nevertheless,
all constraints are just predicate calculus state-
ments. Note also that the graphical black-triangle
aggregation symbol has no associated constraint
because aggregation is merely a visual grouping of
relationship sets devoid of other formal meaning.

The constraints mentioned so far are all crisp,
yielding only a strict “yes” or “no” to determine
violations. We call these constraints hard. Onto-
logies that seek to model reality, however, should
also provide for soft constraints. By introducing

probability distributions, we can allow constraints
to return the probability that an assertion holds,
and thus have soft as well as hard constraints.
For participation constraints, instead of a crisp
min:max designation, we can return the probabil-
ity of the actual cardinality as asserted. Thus, for
example, based on the probability distribution, we
can determine how reasonable it is that a mother
has 2 children (or 17 or 209). With extended
general constraints, we can check the sensibility
of many assertions such as whether the age of a
mother is reasonable for having a child or whether
the age difference between spouses is common for
the time and place of their marriage.

Referential-integrity constraints and is-a con-
straints in generalization/specialization hierarch-
ies should not be extended to allow for uncertainty.
The model itself would not make sense if objects
referenced in relationships do not exist or if objects
in specializations are not also in their generaliza-
tions (e.g. if an individual is a Child or a Spouse
but not also a Person).

5.2 Constraint Checking
Given an ontological model of our world of in-
terest, we can check extracted assertions against
this model to see if they make sense. Unlike stand-
ard databases, which only allow updates if no con-
straints are violated, we allow our extraction tools
to populate an ontology independent of whether
they violate hard constraints or whether they are
unreasonable with respect to soft constraints. We
then determine whether the extracted assertions
make sense with respect to the constraints of the
ontological world of interest (Woodfield et al.
2016).

Figure 17 shows a soft constraint written in
the OSM-OL ontology language of the integrated
target extraction ontology in Figure 15. It re-
turns the probability of a child having been born
to a mother at a particular age. The first three
antecedent statements are predicates that come
directly from the ontology in Figure 15. The
fourth implicitly adds an object set Gender and a
relationship set Person has Gender to the ontology.
We populate the implicit object and relationship
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set with instances determined from information at
hand: (1) If Person(x) has a GenderDesignator,
we immediately know the Gender. (2) If not, but
the Person is married and the spouse’s gender
is known, the person’s Gender is known. (3) If
still unknown, the first given name maps to the
probability of the person being male or female in
a large frequency table created by running over
the billion or so name/gender pairs in Family Tree
(FamilySearch n.d.). If the probability is above
a specified threshold (currently set at 0.95), we
can confidently set the gender. (4) Finally, if still
unknown, we leave the gender unknown. The fifth
antecedent statement makes use of the data-frame
declared internal representation and operators for
dates. The final antecedent statement references
a probability distribution, which we are able to
compute over the many millions of mother-child
relationships in Family Tree. The consequent
statement yields a relationship for an implicit qua-
ternary relationship set that connects the object
sets Person and Child, which are already in the on-
tology, and Age and Probability, which implicitly
belong to the ontology.

Child(c) is a child of Person(m)
∧ Person(c) was born on BirthDate(d1)
∧ Person(m) was born on BirthDate(d2)
∧ Person(m) has Gender(Female)
∧ Age(a) = Age(YearOf (d2) − YearOf (d1))
∧ mother’s Age(a) at child’s birth has Probability(p)
⇒

Person(m)’s Age(a)
at Child(c)’s birth has Probability(p)

Figure 17: Probability of a Mother’s Age at Her Child’s
Birth being Reasonable

5.3 Constraint Violation Resolution
The process of detecting and correcting or remov-
ing inaccurate information in a data repository is
known as data cleaning (Müller and Freytag 2003;
Rahm and Do 2000). For our reading system,
data cleaning consists of observing constraint vi-
olations and resolving them. Given the results
of constraint checking, the reading system can

sometimes correct itself. Most often, however,
constraint violation resolution requires human
intervention.

Figure 18 shows the interface a human uses
to resolve constraint violations. Hovering over a
record highlights its fields and the information in
the text document filled into the various record
fields. It also marks fields identified as possibly
being in error with a red, yellow, or green warning
icon, depending on the severity of the constraint
violation—red when something is definitely wrong
such as a death date preceding a birth date, yellow
when something is likely wrong, and green when
something is likely right but should be double-
checked, such as when an OCR error (e.g. “i860”)
has been automatically corrected. Often, the
highlighting is sufficient to indicate the error. In
Figure 18 a user can easily see that Mary and
Gerard are not children of Joel and Mary Gloyd
and should click on the corresponding red-x button
to remove the highlighted record.

If a user clicks on a warning icon, an explanation
box pops up. In Figure 18, the user has clicked on
the warning icon in the field filled in with “Mary
Ely”. Three messages apply: (1) Mary Ely has
too many parents, (2) Mary was born 14 years
before her presumed parents Mary Eliza Warner
and Joel M. Gloyd were married, and (3) Mary
Ely’s presumed mother Mary Eliza Warner would
have been only 10 years old when Mary Ely was
born.

All our soft general constraints are implication
statements. When implication statements are vi-
olated, one or more of the antecedent statements
must be incorrect. The suspect antecedent state-
ments are those corresponding to assertions stored
in the ontology. Explanations, such as those in
Figure 18, list these statements as possibly being
the cause of a constraint violation. Note that we
can generate these human-readable explanation
statements from the rule itself by replacing refer-
ences to non-lexical objects by their ontologically
committed lexical counterparts (person names in
our application) and by replacing references to
lexical objects by placing the lexical values in
parentheses following the object set name. In
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Figure 18: Error Warning Indicators and Explanations

Figure 18, the asserted antecedent statement de-
claring that Mary Ely is a child of Mary Eliza
Warner is wrong.

Automatic retraction of assertions is sometimes
possible. When an implication rule has only
one antecedent statement corresponding to an as-
sertion stored in the ontology, the assertion can
safely be retracted. Although not quite as safe,
a single antecedent assertion in the intersection
of multiple rule violations is almost certain to be
wrong and can be retracted. In Figure 18, for
example, the antecedent assertion Person(Mary
Ely) is a child of Person(Mary Eliza Warner) is
in both the born-much-earlier-than-marriage vi-
olation and the mother-too-young-to-give-birth
violation and should be retracted. Sometimes,
we can heuristically determine which assertion(s)
should be retracted. We have observed, for ex-
ample, that when a child has too many parents and
all the parents precede the child in the document
flow, the closest couple or single parent is correct,
and parent-child assertions for all other parents
can be retracted. In the document in Figure 18 the
four mentioned parents all precede Mary Ely, and
her correct parents, Donald and Abigail McKen-
zie, are closer to Mary than her incorrect parents,
Joel and Mary Gloyd.

When a human is in the loop to check and cor-
rect extracted assertions, the system automatically
retracts identifiably incorrect assertions before
presenting results for an initial check-and-correct

session. Warning icons are also initially omitted,
which lets users do unbiased checking and correct-
ing and avoids overwhelming them with largely
obvious and often extraneous statements about
what might be wrong. However, if constraint viol-
ations remain after the initial human check-and-
correct session, no retraction takes place, icons
are added as a warning that something has likely
been overlooked, and the document is returned to
the user for further checking.

6 Ontological Inference

Authors of factual documents often convey inform-
ation by implication and expect readers to infer
these facts by what is explicitly stated. In Fig-
ure 1, for example, there are several implications
of interest about person names. Maria Jennings’
maiden name is Maria Jennings Lathrop, the sur-
name being added by implication based on cultural
norms. Abigail Huntington Lathrop would have
been known in her married life as Abigail McKen-
zie since she is female (not stated, but determined
by implication) and was married to Donald McK-
enzie. The author does not explicitly sort out
the identity of the persons named “Mary Ely” in
Figure 1, but leaves it to the reader to determine
that there is one person named Mary Ely who is
married to Donald Lathrop and another who is her
granddaughter.

Reading systems, like human readers, need
to be able to “read between the lines” and infer
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implied information (Embley et al. 2016). Reading
systems should be able to infer new objects and
relationships, placing them in potentially new
ontological object and relationship sets. They
should also be able to resolve object identity and
determine which non-lexical object identifiers
denote the same object.

6.1 Infer New Objects and Relationships
Because OSM extraction ontologies are formally
grounded in first-order logic, it is natural to in-
fer new objects and relationships as Datalog-like
queries (Datalog User Manual 2004; Gallaire and
Minker 1978). Although we have used Datalog
directly to derive information (Embley et al. 2016;
Park 2015), we currently program the equivalent
of Datalog queries to infer the specific implied
information we seek.

Figure 19 shows our target extraction onto-
logy extended with four new object sets: In-
ferredGender, InferredBirthName, InferredMar-
riedName, and InferredFormalName, which is an
aggregate of one or more GivenNames and Sur-
names, and zero or more Titles and Suffixes. The
reading system populates these new object sets
and their connected relationship sets by inference.

In our application we first infer inverses of
persons and their spouses. If Person(x) mar-
ried Spouse(y) on MarriageDate(z) at Marriage-
Place(w), then Person(y) married Spouse(x) on
MarriageDate(z) at MarriagePlace(w). No new
object or relationship sets are created but new
facts not directly stated are added. From Figure 1
the extraction engines would have read that Mary
Eliza Warner married Joel M. Gloyd, which im-
plies also that Joel M. Gloyd married Mary Eliza
Warner.

Next we obtain InferredGender as explained
earlier. Extracted GenderDesignators are con-
verted into their appropriate gender values. For
persons without GenderDesignators, the system
infers gender by first given names when the cer-
tainty is sufficiently high, relying also on spouse
gender for married persons. Knowing the gender
is particularly important for inferring names.

Before populating inferred name object sets,
we first standardize all names. At this point in
our processing pipeline, we have both the ori-
ginal text (as extracted) and the interpreted text
(a single string of space-separated components
in which components with end-of-line hyphens
have been closed up). Standardized text is a third
representation of all lexical objects. For names,
we standardize each name component with upper-
and lower-case letters and order the components
respectively by titles (if any), given names, sur-
name, and suffixes (if any). Thus, for example, the
name “ALBRIGHT, ESTHER R.” in Figure 20
becomes “Esther R. Albright” in its standardized
form.

With names in standard form, we can determine
the surname of fathers and husbands and, using
familial relationships, reason about birth names
and married names. From the information in
Figure 20, for example, we can determine that
“Esther R. Albright” is a married name since she
is female and married to Winfield S. Albright.
We can also determine that Esther’s maiden name
is Esther R. Morris since her father is Thomas
Benton Morris. An InferredFormalName is a
person’s birth name with titles and suffixes (if
any) attached and with the surname extended
with additional married surnames (if any). Thus,
Esther’s InferredFormalName is “Esther R. Morris
Albright” where both “Morris” and “Albright” are
surnames.

6.2 Infer Object Identity
One way to infer object identity is by coreference
resolution. Often several linguistic expressions
(e.g. noun phrases, proper nouns and pronouns)
in a text may refer to the same entity under discus-
sion. In Figure 1, the expression “Mrs. Lathrop”
corefers to the person previously mentioned as
“Mary Augusta Andruss.” Finding and resolving
instances of coreference is a difficult NLP problem.
A wide range of knowledge sources, usually in
combination, serve in systems that process text and
posit coreference: morpholexical features such as
person and number agreement; syntactic configur-
ational relationships like apposition and pronoun
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Figure 19: Ontology with Inferred Object and Relationship Sets

Figure 20: Esther Albright Funeral Home Record (Miller Funeral Home Records, 1917 – 1950, Greenville, Ohio
1990)
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binding; semantic properties like scope, modals
and negation; pragmatic properties like animacy
and gender; text-related properties like register
and stylistics; and memory-related functions like
recency, distance, and repetition. Rule-based im-
plementations have existed for some time now
(e.g. (Grosz et al. 1995)), but more current work
also focuses on statistical, machine learning (Reca-
sens and Hovy 2009), and deep learning solutions
(Clark and Manning 2016).

Another way to infer object identity is by match-
ing object properties and relationships with other
objects (Benjelloun et al. 2009; Bhattacharya and
Getoor 2007; Elmagarmid et al. 2007). In Fig-
ure 1, for example, our reading system will have
extracted four different persons with the name
“Mary Ely” and will have also extracted several re-
lated items of information for each of them. Three
of the Mary Ely’s have a spouse named Gerard
Lathrop, albeit each with a different child: Abigail
Huntington Lathrop, William Gerard Lathrop, and
Charles Christopher Lathrop. The fourth Mary
Ely has a birth year, 1836, a death year, 1859, a
father, Donald McKenzie, and a mother, Abigail
Huntington Lathrop (who by earlier data integra-
tion is known to be the same person as the first
Mary Ely’s daughter). This information is suffi-
cient for Duke (Duke: Fast Deduplication Engine
n.d.), an off-the-shelf entity-resolution engine, to
conclude that the three Mary Ely’s married to a
Gerard Lathrop are all the same person and are
not the same person as the Mary Ely who is the
daughter of Abigail Huntington Lathrop.

In our application, we have yet one more way we
can resolve object identity. Sometimes the persons
for whom we are extracting information are already
in Family Tree. In this case we can find potential
matches in the tree, gather related information
from both Family Tree and the document being
read, and present it for consideration for resolving
object identity. Figure 21 shows an example in
a D-Dupe-like view (Kang et al. 2008) of the
information regarding Mary Ely. In the Person
object set on the left are the four Mary Ely’s
under consideration for merging along with their
attribute values (if any). In the Person object set on

the right are two possible matches in Family Tree.
One-hop relationships for all these persons are are
also found and displayed. When related persons
are also found to be possible duplicates, they
are grouped together. Those that have matches
between the document being read and Family Tree
appear in the middle. The evidence in Figure 21
is even more persuasive for the merge of the
first three Mary Ely’s than the evidence in the
document alone. Moreover, the evidence also
argues for a merge within Family Tree of Mary
Ely (KFRL-WXZ) and Mary Eli (MGV1-9BJ).

7 Ontology Construction

Reading to construct ontologies is perhaps the
most complex aspect of automated reading systems
(Cimiano 2006; Cimiano et al. 2006; Wong et
al. 2012). Nevertheless, for some special cases,
we can augment or integrate ontologies in our
collection, and with some restrictive types of
input documents, we can sometimes construct
ontologies from the text itself.

7.1 Connect and Augment Existing
Conceptualizations

Named entity recognition (NER) systems, for ex-
ample the Stanford CoreNLP machine learning
annotator (Finkel et al. 2005), identify references
to entities in text. They flag and categorize proper
noun expressions as referring to such objects as
persons, locations, organizations, and time expres-
sions (Nadeau and Sekine 2007). Using the prin-
ciple of ontological commitment, tagged entities
from NER output can populate an ontology snip-
pet consisting of a non-lexical object set named
by the entity type connected to a lexical object set
giving the entity’s designating name. Figure 22(a)
shows an example for Location.

Running over the text in Figure 1, a Location
entity recognizer would populate the ontology
in Figure 22(a) with entities for “West Indies”,
“Boonton N. J.”, “N. Y. City”, “Newark, N. J.”,
“New Jersey”, and “Elizabethtown”. Now, notice
that an NLP system would be able to discover
that the first three of these locations are related
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Mother

Abigail Huntington Lathrop (osmx463)

Person

Mary Ely (osmx161)

Mary Ely (osmx456)

Mary Ely (osmx147)

Mary Ely (osmx275)
    BirthDate: 1836
    DeathDate: 1859

Person

Mary Ely (KFRL-WXZ)
    Birth: 30 Aug 1748
    Death: 1879

Mary Eli (MGV1-9BJ)

Spouse

Gerard Lathrop (osmx154)
Gerard Lathrop (osmx205)
Gerard Lathrop (osmx147)
Gerard Lathrop (2483-R32)

Child

Abigail Huntington Lathrop (osmx463)
Abigail Lathrop (LZYM-C3F)

William Gerard Lathrop (osmx353)
William Gerard Lathrop (K425-D36)

Charles Christopher Lathrop (osmx334)
Charles Christopher Lathrop (KH3W-PDP)

Father

Rev. Zebulon Ely (LWLS-LGD)

Mother

Sarah Apame Mills (KVGQ-391)

Child

Miles Ely Lathrop (K4T1-JWL)

Ezra Styles Ely Lathrop (MPV2-1TB)

Mary Cornelia Lathrop (K8N2-P35)

Charlotte Eliza Lathrop (KHX-T1D)

Ezra Styles Ely Lathrop (MJZC-6PR)

Father

Donald McKenzie (osmx179)

Figure 21: Duplicate Detection and Resolution

Location LocationName

Location LocationName

Person PersonName

(a)

(b)

Figure 22: Location Ontology

respectively to Donald McKenzie, William Gerard
Lathrop, and Charles Christopher Lathrop. Hence,
we can create and populate a relationship set con-
necting Location in Figure 22(a) and Person, the
primary object set in the ontologies we have been
discussing. Not knowing what the relationship is,
we set the constraints to be as loose as possible:
many-many and optional on both connections.
Figure 22(b) shows the result.

Similarly, we can connect the Organization on-
tology snippet in Figure 23(a) with the Person
object set based on the sentences linking Emma
Goble to organizations in the paragraph about
her in Figure 1. We may even be able to do bet-
ter: (1) we may already have a more extensive
Organization ontology with object sets Member,
MemberName, and Officer as a specialization of
Member and instantiated by identifying the Mem-
ber and Office in the Organization; or (2) perhaps
by a more complex NLP analysis of the sentences
in the paragraph about Emma Goble, we could
construct such an ontology. Then, after populating
both our Person ontology and the Organization on-

tology and by coreference resolution discovering
that all the references to Emma Goble refer to the
same person, we can integrate the two ontologies
as Figure 23(b) shows.

Organization OrganizationName

Organization OrganizationName

Person

Member

Officer

PersonName

Office

(a)

(b)

Figure 23: Organization Ontology

7.2 Read Semi-structured Text to Create
Conceptualizations

TANGO (Table ANalysis for Generating Onto-
logies) is a methodology we have proposed as
a means of automatically deriving an ontology
from a correlated collection of standard tables
(Tijerino et al. 2005). In essence, the idea is
to find a correlated collection of ordinary tables,
reverse-engineer them into conceptual models, and
integrate them into a single conceptual model—an
ontology that represents their union. The tables
in a relational database, which are by definition
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correlated and furthermore have often been cre-
ated from a conceptual model, are particularly
amenable to TANGO processing.

As an example, we illustrate how we can use
the TANGO methodology to derive an ontology
starting from a document, which we assume is
semi-structured like the document in Figure 1. As
Figure 13 shows, ListReader (Packer 2014) can
find text patterns in semi-structured text that have
record-like structure. When using ListReader for
information extraction, a user maps a selected text
record to a given form to establish the connection
between the components of the text record and the
fields of a form, which thus also establishes the
mapping of a text record to an ontology. When
reading to create an ontology, however, there is no
form and no ontology. In this case, a user can turn
a ListReader-discovered list of text records into a
relational table by associating user-chosen attrib-
ute names with ListReader-generated abstract text
components. In Figure 13, for example, a user can
associate Name with [UpLo+][Sp][UpLo+] and
BirthDate with [Dg][Dg][Dg][Dg]. Stripping
away the text in the records that does not associ-
ate with any of the attributes yields a relational
database table. To name the objects the table
represents, the user provides a name for the table—
Person for our example. Figure 24(a) shows the
result for Figure 13.

Reverse engineering the relational table in Fig-
ure 24(a) yields the snippet of the ontology in
Figure 7 consisting of just the object sets Per-
son, Name, and BirthDate. Other ListReader-
discovered text record patterns in Figure 1 and
elsewhere in The Ely Ancestry would lead to the re-
lational tables Person(Name, GenderDesignator)
and Person(Name, DeathDate). These relational
tables along with other Person-property tables that
include christenings, burials, and place informa-
tion for births and deaths integrate trivially and
can be reverse-engineered into the ontology in
Figure 7. Obtaining the finer properties of the on-
tologies such as participation constraints can only
be done heuristically. In practice, a knowledge-
able user should check and, as necessary, adjust
these finer properties of generated ontologies.

Although beyond the capabilities of List-
Reader’s current implementation, an extension of
ListReader’s pattern discovery mechanism could
potentially generate nested database relations like
those in Figures 24(b) and 24(c). (Currently hand-
written or GreenFIE-generated regular-expression
rules can extract relations with these nested pat-
terns.) Reverse engineering the nested relations
in Figures 24(b) and 24(c) respectively yields the
ontologies in Figure 8 and Figure 9. Integrat-
ing these ontologies and the ontology in Figure 7
yields the ontology in Figure 15.

7.3 Construct Conceptualizations from
Text Specifications

Generating a natural language description of an
OSM ontology is straightforward. We simply
write down each relationship-set name and each
generalization/specialization is-a connection in
some arbitrary order. Figure 25(a) shows a
sampling of sentences describing the ontology
in Figure 2. Other researchers have also studied
verbalization techniques for conceptual models
with the goal of making it easier, for example,
to validate models with domain experts. There
are interesting challenges in creating high-quality
verbalizations, but the approaches are generally
relatively straightforward (Curland and Halpin
2012; Halpin 2004; Halpin and Curland 2006).
Reversing the process, however, to generate an
ontology from ordinary prose is non-trivial.

Although not quite ordinary natural language
prose, we have developed a model-equivalent
specification language for OSM conceptual mod-
els (Embley 1998; Liddle et al. 1995). Model-
equivalent languages provide a way to specify
ontologies using natural-language-like statements,
but are written according to a restricted context-
sensitive grammar. Figure 25(b) gives an example.
Object set names are nouns and are capitalized.
Verb phrases, which are written in lower-case
words, connect nouns to form sentences. Sen-
tences define relationship sets. Constraints appear
in square brackets. Participation constraints for
object-set/relationship-set connections appear in
sentences in square brackets as Figure 25 shows.
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Person(Name,           BirthDate)
       -------------------------
       ...
       Gerard Lathrop  1838
       William Gerard  1840
       Anna Margaretta 1843
       Anna Catherine  1845
       Emma Goble      1862
       ...

(a) Relational Table Obtained from the ListReader-Captured Data in Figure 13

Couple(Person,               (SpouseName,                 MarriageDate,  MarriagePlace))
       -------------------------------------------------------------------------------
       Thomas Patterson       Jane Clark
       Ben Ezra Stiles Ely    Elizabeth Eudora McElroy    1848
                              Abbie Amelia Moore          1873
       Harriet Clarissima Ely Beale Steenberger Blackford
       Zebulon DeForest Ely   Clara Vanola Major          1874
                              Mamie Anna Souder           1878

(b) Nested Relational Table of Couple Information from Page 421 of The Ely Ancestry

Family(Parent1,                   Parent2,                   (Child                     ))
       ---------------------------------------------------------------------------------
       Samuel Selden Warner       Azubah Tully                Mary Eliza Warner
       Mary Ely                   Gerard Lathrop              Abigail Huntington Lathrop
       Abigail Huntington Lathrop Donald McKenzie             Mary Ely
                                                              GerardLathrop
       Mary Ely                   Gerard Lathrop              William Gerard Lathrop
       William Gerard Lathrop     Charlotte Brackett Jennings Maria Jennings
                                                              William Gerard
                                                              Donald McKenzie
                                                              Anna Margaretta
                                                              Anna Catherine
        Nathan Tilestone Jennings Maria Miller                Charlotte Bracket Jennings
        ...

(c) Nested Relational Table of Family Information from Figure 1

Figure 24: Relational Database Tables Created from Text Patterns Found on Page 419 and 421 of The Ely Ancestry
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Person has Name.
Person was born on BirthDate.
Person was born at BirthPlace.
Child is-a Person.
Child is a child of Person.
Spouse is-a Person.
Person married Spouse on MarriageDate at MarriagePlace.
...

(a) Natural Language Rendition of the Ontology in Figure 2 (partial).

Person[1] has Name[1:*].
Person[1] was born on BirthDate[1:*].
Person[1] was born at BirthPlace[1:*].
Child is-a Person.
Child[2] is a child of Person[0:*].
Spouse is-a Person.
Person[0:*] married Spouse[1:*] on MarriageDate[1:*] at MarriagePlace[1:*].
...

(b) Textual Specification of the Ontology in Figure 2 (partial).

Figure 25: Ontologies Rendered and Specified in Natural Language

Generalization/specialization hierarchies are writ-
ten as “is-a” sentences with the specialization as
the subject and the generalization as the object in
the sentence.

Many researchers have studied the challenge of
moving from textual descriptions to corresponding
conceptual models or ontologies. For example,
Chen studied a number of the foundational is-
sues associated with moving from English natural
language specifications to ER diagrams (Chen
1983). Cimiano et al. have proposed numerous
techniques for constructing ontologies from text
(Buitelaar et al. 2008; Cimiano 2006; Cimiano
and Völker 2005; Cimiano et al. 2006). Notably,
Heinrich Mayr and his colleagues have pursued a
long line of research into how to better correlate
natural language statements of requirements spe-
cifications to conceptual models that can support
information systems development (Fliedl et al.
2003, 2005, 2007, 2004; Kop et al. 2004; Mayr
and Kop 1998). KCPM, the Klagenfurt Concep-
tual Pre-design Model, supports a “conceptual
pre-design” step in the software development life-
cycle in order to bridge the historical “impedance

mismatch” between requirements analysis and
conceptual design. Mayr and colleagues provide
semi-automatic techniques for mapping from nat-
ural language requirements specifications to pre-
design schemas, and from pre-design schemas to
conceptual schemas and domain ontologies.

We anticipate that researchers will continue to
work on this interesting and complex challenge
for decades to come.

8 Project Status

In the domain of family history and in cooperation
with FamilySearch International (FamilySearch
n.d.), we have implemented a genealogical doc-
ument reading system. We give here the im-
plementation status of this system including the
status of the extraction tools and of the pipeline
that integrates the information received from the
extraction engines, checks it with respect to on-
tological constraints, standardizes it, infers new
additional information not directly extractable
from the document, and generates artifacts ready
for import into Family Tree. We also discuss our
initial experience with importing the information
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obtained by the reading system into Family Tree.
Figure 26 shows the management interface to our
project, from which an administrator can control
the reading system. The menu on the left allows
the administrator to import a new book to be read,
configure and test extraction tools, and manage
the process of reading the book and generating
GedcomX files (Gedcom X n.d.) for import into
Family Tree.

Besides our near-term objectives within Family-
Search, we also envision applying our reading
system to construct, populate, and query a Web of
Knowledge (WoK) for any domain of interest and
thus also for a collection of overlapping and non-
overlapping domains of interest. We report briefly
on the status of this effort and particularly on the
use of reading systems to “understand” queries
and map them to formal queries over a WoK.

8.1 Extraction Tools
Figure 27 shows the extraction tools within the
scope of our project categorized by methodology
type and ordered by the amount of human effort
required to configure the tools to read a document.
Wanting to cover the space of document types from
those that are highly structured (e.g. the document
in Figure 28) to those with free-running unstruc-
tured text (e.g. Figure 29) to everything in between
(e.g. Figure 1) prompted us to develop tools in a
variety of methodology paradigms. Within these
paradigms our research efforts are directed toward
reducing human involvement—generating expert
system rules from examples and discovered text
patterns, learning how to map parsed sentences to
ontologies, and reducing the amount of training
data needed for machine learning.

In Figure 27, tools in red (FROntIER, OntoES,
GreenFIE, ListReader, OntoSoar) have been de-
veloped and evaluated as academic prototypes.
Below, we give evaluation results of these tools
and assess their strengths and weaknesses. Tools
in green (GreenQQ, GreenML, GreenDDA, Onto-
Soar2) are academic prototypes in development.
Below, we briefly mention our expectations for
these tools. In violet are language machine learn-
ing paradigms. We may consider adopting or

adapting some of the tools developed in these
areas for our reading system. We have yet to
do a tech-transfer of any of these tools to our
administrative management system (Figure 26).

8.1.1 Completed Academic Work

FROntIER
Nearly 20 years ago we began building ontology-

based extraction systems (Embley et al. 1999a,
1998a,b). These systems extracted named entities
from small record-like write-ups like car ads and
obituaries. The extracted entities from these write-
ups were assumed to all be related to the primary
object, e.g. the car being advertised for car ads and
the deceased person for obituaries. As explained
in Sections 3.1 and 2.2, FROntIER extends this
work to extract and populate relationships and
ontology snippets (Park 2015).

In an evaluation of FROntIER extraction, we
developed entity and relationship extraction rules
sufficient to correctly extract the information from
The Ely Ancestry Page 419 in Figure 1 with respect
to the ontology in Figure 2. We then applied the
extraction ontology to Page 479 and obtained the
results in Table 1.

Table 1: FROntIER Results

Prec. Rec. F-score
Name 1.00 1.00 1.00
BirthDate 1.00 0.96 0.98
DeathDate 1.00 1.00 1.00
MarriageDate 1.00 1.00 1.00
born on 0.92 0.82 0.87
died on 0.75 0.75 0.75
son of 1.00 0.83 0.91
daughter of 0.67 0.33 0.44
child of 0.79 0.59 0.68
married 1.00 0.50 0.67

FROntIER’s strengths are its rich facilities for
expressing extraction rules for semi-structured
text and for repetitive phrases in free-running
text. Its weaknesses are that extraction rules
must be hand-coded by experts at developing
complex regular expressions and that no help is
available for identifying patterns for which rules
are needed (typically many dozen for a book like
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Figure 26: Management System Interface
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Figure 27: Extraction Tools: Methodology Type and Ease of Use
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Figure 28: Page 29 of the Kilbarchan Parish Record
(Grant 1912)

The Ely Ancestry). Painstakingly finding all the
patterns, or at least sufficient to make the rule-set
worthwhile, and developing a non-conflicting and
reasonably minimal set of rules can be tedious and
time-consuming.

OntoES
As explained in Section 3.2, OntoES adopts

FROntIER’s ontology-snippet extraction capabil-
ity and extends it for complex annotations. Further,
for our genealogy application, OntoES specific-
ally targets its extraction to the three ontologies
in Figures 7, 8, and 9, and will be supported by
the extraction rule creation and testing interface
illustrated in Figure 10.

In an evaluation of OntoES, we created 25

Figure 29: Page 84 of the History of the Harwood
Families (Harwood 1911)

ontology-snippet extraction rules—7 for the Per-
son ontology, 4 for Couple, and 14 for Family—
which together were sufficient to capture all the
information of interest from the Kilbarchan page
in Figure 28 and also the previous and subsequent
page. Then, in a fully automatic extraction run
over the 143 pages of The Kilbarchan Parish
Record, these 25 rules extracted information for
8,539 individuals. Based on a check of several
randomly chosen pages, the automatic extraction’s
F-score was judged to be near 95%.

Strengths of OntoES include its form-filling
paradigm and its support for ontology-snippet
extraction rule creation. Its weakness, like FROn-
tIER’s, is its requirement for hand-coded extrac-
tion rules. However, an interface like the one in
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Figure 10 nicely supports rule creation and testing,
and goes a long way to mitigate the problems
associated with hand-coding extraction rules.

GreenFIE
As explained in Section 3.3, GreenFIE syner-

gistically works with users who are filling in forms.
Once a record’s fields are filled in, GreenFIE can
generate a regular-expression extraction rule that
would extract the same information, generalize the
rule, execute it, and populate subsequent records.

Table 2 gives the results of an experiment we
conducted. For both The Ely Ancestry and The Kil-
barchan Parish Record we selected a sequence of
three pages and filled in records until we achieved
100% recall. GreenFIE generated an extraction
rule for every record filled in by the user and ex-
ecuted it to fill in subsequent records for the user
to check and in some cases complete if GreenFIE
filled in only part of the record. Although incor-
rectly filled-in records could have been deleted, for
the experiment none were deleted so that we could
measure the precision of the GreenFIE-generated
extraction rules.

The rate of task completion is the total number
of records correctly extracted divided by the total
number of user actions (new records filled-in
and partially filled-in records completed). The
maximum rate, for example, is 19.60, which tells
us that filling in just five records is sufficient to
extract all the information in the 98 records for the
Person form on the three Kilbarchan pages. Table 2
also gives the total number of records extracted,
333, and the total number of user actions, 121.
We estimated the number of data values extracted
in these 333 records to be about 1,000 so that
approximately 8.2 data values were obtained for
each user-extracted or user-edited record.

As strengths, we note that GreenFIE users never
need to write, or even edit, extraction rules. We
also note that GreenFIE’s rules are highly precise
(0.99 for the overall precision in Table 2), which
when coupled with COMET’s highlighting of ex-
tracted text for records greatly facilitates check and
correct. Considering weaknesses, we were disap-
pointed with the overall rate of task completion.

Although quite precise, GreenFIE’s heuristic gen-
eralization of regular-expression rules will likely
never rival a human expert. Human experts may,
however, benefit from having GreenFIE generate
regular expressions for them to adjust rather than
having to write rules manually.

ListReader
As explained in Section 3.5, ListReader discov-

ers record patterns in text and generates extraction
rules to recognize these records. To extract the
information from recognized records, a human
provides labels for the component parts of the
recognized text to map each part to an ontology.

Table 3 shows the results of an experiment we
conducted. We developed ListReader using The
Ely Ancestry and tested it on a similar book, Shaver-
Dougherty (Shaffer 1997), and on The Kilbarchan
Parish Record. For the ground truth, we labeled
a few dozen pages in these books. The Shaver-
Dougherty results in Table 3 were essentially
obtained after labeling about 25 patterns, and
the Kilbarchan after only about a half dozen—
“essentially” because both books have a long tail
of less frequent patterns, many of which were
labeled.

As strengths, ListReader processes an entire
book at once, discovering patterns without hu-
man intervention, and it efficiently assists users
with the labeling task by ordering the patterns by
greatest impact first and by cross-labeling, which
sometimes obviates the need to label a pattern at
all. ListReader’s weaknesses include its inability
to recognize large patterns such as parents-with-
child lists and its apparent low recall as seen in
the experimental results.

OntoSoar
As explained in Section 3.7 OntoSoar parses

text and then applies a cognitive reasoner to map
the resulting parse to an ontology (Lindes et al.
2015). The results of running OntoSoar over a
text snippet from Figure 1 are in Table 4 and
over a text snippet from Figure 29 are in Table 5.
Recall errors are mostly due to information ex-
pressed in linguistic patterns—especially for list-
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Table 2: GreenFIE Results

User Correct Correct per
Action (=Total) User Action Incorrect Precision Recall F-score

Ely 86 157 1.83 2 0.99 1.00 0.99
Person 28 76 2.71 2 0.97 1.00 0.99
Couple 26 43 1.65 0 1.00 1.00 1.00
Family 32 38 1.19 0 1.00 1.00 1.00

Kilbarchan 35 176 5.03 3 0.98 1.00 0.99
Person 5 98 19.60 0 1.00 1.00 1.00
Couple 15 30 2.00 2 0.94 1.00 0.97
Family 15 48 3.20 1 0.98 1.00 0.99

Overall 121 333 2.75 5 0.99 1.00 0.99

ing children—that have not yet been encoded into
the system.

As strengths, OntoSoar works on free running
text, and it can process semi-structured text as
well. The LG-parser it uses does not depend on
the chunks of text it processes being complete
sentences nor on the phrases being grammatically
correct. OntoSoar’s main weakness is its depend-
ence on hand-coded production rules for Soar
(Laird 2012). Obtaining the results in Tables 4
and 5 required 240 hand-coded production rules.

8.1.2 Academic Work in Progress
Preliminary results for the extraction tools we
present in this section look promising, but much
more academic work is needed to bring these
tools to fruition and ready for tech-transfer to a
production environment.

GreenQQ
Developed in an independent effort, GreenQQ

is currently being investigated for adaption and
use in our FamilySearch reading system. As
explained in Section 3.3, it interacts with users via
text-snippet examples. Beginning with the most
frequently occurring token-sequence patterns that
contain information of interest, GreenQQ proposes
extraction rules for a user to adjust and accept
for execution. After execution, GreenQQ again
proposes rules and continues in this synergistic
interaction cycle until the results are satisfactory.

In an initial trial run, we applied GreenQQ to
the 119 pages of The Kilbarchan Parish Record

that are similar to the page in Figure 28. Interact-
ing with a user for less than 50 minutes, GreenQQ
created 40 templates that classified sequences of
tokens into 5 classes (HEAD of household, WIFE,
BABY, GEO location, and DATE of birth, christen-
ing, marriage, or proclamation of marriage). In
the final cycle, GreenQQ processed 9,464 lines of
text with 89,391 tokens and found 17,206 matches
in 5 seconds of runtime. Table 6 shows the ac-
curacy results of the extraction for three randomly
chosen pages (Embley and Nagy 2017).

A strength of GreenQQ is its ease of use. Clas-
sified text snippets presented to users as candidate
extraction rules require only that a user is know-
ledgeable enough to identify and classify the part
of the text snippet to be extracted. A weakness of
GreenQQ is that it only does named entity recog-
nition (NER). Thus, we must restrict GreenQQ’s
usage to ontologies with one central non-lexical
object set that is directly connected to all of its
lexical object sets through relationship sets—like
the ontologies in Figures 7, 8, and 9. Furthermore,
in its currently implemented state, an additional
weakness is that it cannot be used when ontology
records are interleaved as Couple and Family re-
cords are in Figure 1. However, as explained in
Section 3.3, we expect to be able to resolve this
weakness. Resolving it may require human input,
which could lessen GreenQQ’s ease of use.

GreenML/GreenDDA
We have begun to carry out experiments using

the different levels of machine learning discussed
in Section 3.6. In a preliminary test we used the
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Table 3: ListReader Results

Prec. Rec. F-score
Shaver-Dougherty 0.94 0.39 0.55
Kilbarchan 0.94 0.54 0.68

Table 4: OntoSoar Results for the Charles Christopher Lathrop Family and the First Three Lines of the Commentary
about Miss Emma Goble Lathrop in Figure 1

Category Exists Found Correct P Errors R Errors P R F
Persons 12 11 11 0 1 100.0% 91.7% 95.7%

Births 6 6 6 0 0 100.0% 100.0% 100.0%
Deaths 4 4 4 0 0 100.0% 100.0% 100.0%

Marriages 1 1 1 0 0 100.0% 100.0% 100.0%
Sons & Daughters 7 2 2 0 5 100.0% 28.6% 44.4%

Totals/Average 30 24 24 0 6 100.0% 80.0% 88.9%

Table 5: OntoSoar Results for Paragraph 229 Plus the Header Preceding the Paragraph in Figure 29

Category Exists Found Correct P Errors R Errors P R F
Persons 19 15 14 1 4 93.3% 73.7% 82.4%

Births 8 8 7 1 0 87.5% 87.5% 87.5%
Deaths 5 3 3 0 2 100.0% 60.0% 75.0%

Marriages 6 6 4 2 0 66.7% 66.7% 66.7%
Sons & Daughters 9 0 0 0 9 N/A 0.0% 0.0%

Totals/Average 47 32 28 4 15 87.5% 59.6% 70.9%

Table 6: GreenQQ Results

Soft:Correct=Correct+Partial Hard:Incorrect=Partial+Incorrect
Class Total Correct Partial Incorrect Recall Precision F-score Recall Precision F-score
HEAD 72 71 0 0 0.99 1.00 0.99 0.99 1.00 0.99
WIFE 56 53 1 0 0.96 1.00 0.98 0.95 0.98 0.96
BABY 92 91 0 1 0.99 0.99 0.99 0.99 0.99 0.99
DATE 123 116 0 0 0.94 1.00 0.97 0.94 1.00 0.97
GEO 65 63 0 4 0.97 0.94 0.95 0.97 0.94 0.95
Overall 408 394 1 5 0.97 0.99 0.98 0.97 0.99 0.98

An extract was judged to be partially correct if the sequence of labeled tokens for the extract was a proper
subsequence of the ground-truth token sequence for the extract. Soft scoring counted partially correct
extracts as being correct, while Hard scoring counted them as being incorrect.
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Stanford CoreNLP system (Stanford CoreNLP
n.d.) in OTS (off-the-shelf), GreenML, and
GreenDDA settings to perform human-supervised
annotation of a typical 10-page range of The Ely
Ancestry. Figure 30 displays the results.
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0.95

1

1.05

573 574 575 576 577 578 579 580 581 582

OTS	vs.	Green	Methods

OTS GreenDDA GreenML

Figure 30: OTS vs. Green Methods: F-measure Anno-
tation Results for a 10-page Range

For the green techniques, we annotated accord-
ing to the following general scenario:

1. A user initiates the process by hand-annotating
the first page in a book.

2. A (so-far small) machine learning model is
trained on that gold standard, and it serves to
annotate the next page. The user then corrects
that page, which is added to the gold standard,
and the process repeats.

3. After some number of these iterations, from
at least one to some empirically-determined
number, the user stops hand-annotating. Call
this the transition point.

From the transition point, the two green meth-
ods differ:

• GreenML builds the final user-supervised
model and then proceeds to annotate the rest of
the book without further user intervention or
learning.

• GreenDDA, after building the final user-
supervised model, proceeds to annotate the
rest of the book alone. However, after each
page, its raw annotations are added increment-
ally to the entire training set and a new model
is trained.

To assess and illustrate the difference in per-
formance in these two approaches, we swept across
all possible user involvement scenarios in the
10-page range. For each method we averaged
performance (measured by F-measure) across all
possible transition points.

OTS annotation performance varies substan-
tially by page, given the variability of the data
across pages. GreenML gradually decreases as
more pages are encountered, reflecting the static
nature of the trained model past the transition
point. After the eighth page, the other two ap-
proaches perform better than GreenML. However,
GreenDDA—after the fifth page—generally out-
performs OTS on average. This is because training
past the transition point occurs after every page,
albeit with raw annotations. With such a high
F-measure (over 0.9), the results (even after user
supervision) are reasonable enough to yield better
models over time. Whether these NER results will
hold for other page sequences in the book or in
other books and whether results for relationship
recognition will be similar remains to be seen.

OntoSoar2
Writing Soar production rules by hand is a com-

plex and intensive process, calling into question
the scalability of the current OntoSoar approach.
Each new type of linguistic construction that con-
tains information that could map to the semantic
representation and ultimately the ontology needs
to be treated in this manner. A future instantiation
of the system, OntoSoar2, could include a rule
compiler which would allow for rules to be coded
in a metalinguistic grammar and compiled directly
into Soar code, as is being done elsewhere (Lindes
and Laird 2016).

Another potential feature for OntoSoar2 would
be an improved syntactic parsing process. The
current LG parser, while robust and flexible, also
requires hand-coding of custom rules, and does
not include any machine learning functionality.
Dependency parsers (Mel’čuk 1988) have been
implemented for many languages beyond English
in frameworks such as CoreNLP, which support
machine learning and incremental training.
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Furthermore, it is unclear how flexible the cur-
rent OntoSoar semantic representation framework
(Embodied Construction Grammar) is for support-
ing large-scale NLP applications like ours (Lindes
et al. 2017). While it has proven effective in rel-
atively narrow domains such as robotics (Lindes
and Laird 2017), OntoSoar2 work would need
to explore the appropriateness of this or other
alternative deep semantic representations.

Finally, OntoSoar2 has the potential to further
implement of some of the language processing
capabilities inherent in the current cognitive ar-
chitecture framework. This could include such
“human” aspects of processing such as being incre-
mental (i.e. word-by-word rather than a sentence
as a whole); eclectic (i.e. leveraging more prag-
matic and real-world knowledge); repair-based (i.e.
reformulating hypotheses that prove untenable in
the presence of further context); and grounded (i.e.
integrating perceptual input such as page layouts).

*********************************** 
Person osmx190: ALBRIGHT, ESTHER R.
*********************************** 
Name:
   Conclusion: Esther R. Albright 
   Interpreted Document Text: ALBRIGHT, ESTHER R.
   Original Document Text: ALBRIGHT, ESTHER R.
   Inferred Formal Name: Esther R. Morris Albright
      Title:
      First Names: Esther R.
      Last Names: Morris Albright
      Suffix:
   Inferred Birth Name: Esther R. Morris
   Inferred Married Name: Esther R. Albright
   Gender: Female 
Facts:
   BirthDate:
      Conclusion: 22 July 1863 
      Interpreted Document Text: 22 July 1863
      Original Document Text: 22 July 1863 
   BirthPlace:
      Interpreted Document Text: Butler Co OH 
   DeathDate:
      Conclusion: 1 January 1946
      Interpreted Document Text: 1 Jan 1946
      Original Document Text: 1 Jan 1946 
   DeathPlace:
      Interpreted Document Text: 113 Sherman St Dayton OH 
   BurialDate:
      Conclusion: 3 January 1946
      Interpreted Document Text: 3 Jan 1946
      Original Document Text: 3 Jan 1946 
   BurialPlace:
      Interpreted Document Text: Abbottsville Cem Dke Co OH 
Marriage Relationships:
   Spouse: osmx334 (l-linfield S. Albright)
ParentOf Relationships
ChildOf Relationships:
   osmx169 (Thomas Benton Morris)
   osmx480 (Angeline Harrod) 

Figure 31: Esther Albright Information as a Result of
Full Pipeline Processing

8.2 Pipeline Processing
Given a book that has been scanned and OCR’d,
the pipeline processes the book from import (a
single PDF document of the full book) to export
(a GedcomX document for each page that contains
genealogical information). The pipeline runs in
several steps:

1. Prepare Pages. Split the input PDF document
into pages. For each PDF page generate four
additional files: an xml file containing the OCR
information for the page; a text file of the OCR’d
characters assembled into words and lines; and a
PNG image and HTML document that together
let a COMET user view and work with the page
as an image superimposed over hidden OCR’d
text aligned with the text in the image.

2. Extract Information. Apply the extraction tools
to the text files and, for each tool and page,
populate the ontology in Figure 15.

3. Merge Information. For each page merge the
information in the tool-populated ontologies
and create a single populated ontology.

4. Check and Correct Information. Run a con-
straint checker over the extracted and merged
information, discover anomalies, and fix those
identified as being automatically rectifiable. If
patrons are to check and correct the information,
split the information into Person, Couple, and
Family form data and for each form/page com-
bination display the filled in form in COMET
for a user to check and correct.

5. Enhance Information. To the extent possible,
standardize person names, place names, and
dates, and infer gender, birth names, married
names, and formal names.

6. Generate GedcomX. Generate a GedcomX file
for each page containing genealogical inform-
ation. In addition, for each person having as-
sociated genealogical information, generate a
person information document detailing associ-
ated names, event dates and places, and mar-
riage and parent-child relationships (e.g. see
Figure 31). Generate also an HTML document
with all the extracted information for a person
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highlighted on an image of the page (or pages,
if the information spans more than one page).

A prototype of the pipeline runs from beginning
to end, and the code is being improved as we
gain experience and encounter new edge cases.
(Pipeline processing for complex annotations, for
example, is currently being added.) The extraction
engines, whose academic prototypes are complete,
all run, but considerable work is still required to
convert them into tools usable by anyone besides
ourselves. Academic research is continuing for
extraction tools still under development. COMET
has been used by subjects in some experimental
evaluations; they generally find it usable after a
few minutes of training (Woodfield et al. 2016).
We have only begun to build a management system
that will control the processing of books through
the pipeline.

8.3 Ingest into Family Tree
We have conducted several field tests to determine
how our extraction results can contribute to Family
Tree (Embley et al. 2017).

Ely We processed the page in Figure 1 through the
pipeline—extracted information using FROnt-
IER, Ontos, and OntoSoar; merged it; checked
and corrected it with COMET; standardized
the data; inferred gender and extended name
information; and generated person information
documents for each person mention on the page
having associated genealogical information. To
compare the effort to ingest information manu-
ally with a proposed automatic ingest, we up-
dated Family Tree by hand according to the gen-
erated person information documents. We filled
in search forms, identified matching Family Tree
records, merged duplicates (if any), checked the
matching records, and added to them source
documentation and missing information. From
31 unique generated person information docu-
ments, we found that 28 matched exactly one
Family Tree person record. For the Mary Ely
married to Gerard Lathrop we found two, as
Figure 21 shows, and we merged them. Donald
McKenzie’s and Abigail Huntington Lathrop’s

person information documents both matched
three records that were themselves duplicates,
and in both cases we merged the three records.
We added highlighted source documents like the
one in Figure 32 for all 31 matched tree records.
Overall, we (1) replaced two primary names
with more complete names (e.g. “Emma Suth-
erland Goble” in place of “Emma S. Goble”);
(2) replaced six uncertain BMD (Birth/Mar-
riage/Death) facts (e.g. “about 1831” or merely
“deceased”) with certain facts; (3) added two
missing BMD facts, and (4) added eight supple-
mentary facts such as married names or altern-
ate spellings of names. All of this work, which
could have been done fully automatically within
seconds of compute time, took more than five
hours of tedious typing, checking, clicking, and
waiting for responses from the FamilySearch
web site.

Kilbarchan In a fully automatic extraction run
over the 143-pages of the Kilbarchan parish re-
cord (Grant 1912), the pipeline, running without
COMET-user intervention, created 8,539 per-
son information documents like the one in Fig-
ure 31. The F-score for the automatic extraction
was judged to be near 95%. In a sample of 150
of these 8,539 person information documents,
a prototype matching algorithm was 100% cor-
rect when the tools extracted eight or more
distinct items of information for the person. Of
the correctly matched person records, 20% had
information that could be added to Family Tree,
including adding or fixing first and last names,
event dates, and parent-child relationships.

Miller Similar to our Kilbarchan field test, in a
fully automatic extraction run over the 396-page
Miller book (Miller Funeral Home Records,
1917 – 1950, Greenville, Ohio 1990), informa-
tion for 12,226 individuals was extracted. Of
the 1,280 individuals the matching algorithm
found in Family Tree with certainty, the Miller
records provided information that could be ad-
ded to 57% of them.
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Figure 32: Abigail’s Information Highlighted

8.4 Web of Knowledge
The grand challenge of collecting and representing
the world knowledge of any domain (scientific,
geo-political, or any other) in a structured, search-
able, online repository has been and is the dream
of many visionaries. Projects with this vision in
mind include: open information extraction sys-
tems that have extracted billions of assertions as
the basis for both common-sense knowledge and
novel question-answering systems (Banko et al.
2007; Etzioni 2011; Fader et al. 2011; Mausam
et al. 2012); Yahoo!’s Web of Concepts (Dalvi
et al. 2009); and large projects such as Cyc (Lenat
and Guha 1989), Freebase (Bollacker et al. 2008),
DBpedia (Auer et al. 2007), YAGO (Suchanek
et al. 2007), YAGO3 (Mahdisoltani et al. 2015),
and NELL (Mitchell et al. 2015).

A Web of Knowledge (WoK), as we envision
it (Embley et al. 2011), aims at a specific domain
of interest such as family history. The backbone
of each WoK is an ontology that describes the
domain and is to be populated with information.
As an example, FamilySearch’s conceptualization
of family history is populated with basic genea-
logical information for about 5.8 billion persons,
1.2 billion of which are on the public Family
Tree. In addition, it stores over a billion auxiliary
data items including more than 830 million im-
ages and transcripts of documents used as source
documentation of genealogical facts; more than
22 million stories and pictures submitted by in-

dividuals as memories of their ancestors; more
than 350,000 family history books with pages like
those in Figures 1, 28, and 29; and more than
2,000 historical record collections (e.g. census re-
cords, burial records, military records) consisting
of more than a billion historical documents, many
millions of which have been indexed for semantic
search (FamilySearch Company Facts 2017).

The backbone of a WoK should be an ontology
in its true sense—domain knowledge, agreed upon
and shared by a community (Dillon et al. 2008;
Gruber 1993). A WoK ontology is itself worthy of
study and understanding and may evolve over time
as its community comes to a greater understanding
of itself. When populated, the ontology may more
rightly be seen as a knowledge base—a particular
state of the domain whose information can be
queried and updated (Dillon et al. 2008). The
extraction ontologies we have been discussing
in this paper may more accurately be seen as
operational views of the larger WoK ontology—
views in the traditional database sense and thus
themselves ontologies albeit for a much smaller
domain and operational in the sense that they
enable document reading and query search along
with computational operations over stored data.

We focus our remaining comments on WoK
query formulation and execution and show its
connection to ontological document reading. The
correspondence among form, ontology, and semi-
structured text provides insight into how to query

http://dx.doi.org/10.18417/emisa.si.hcm.12


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.12

174 David W. Embley, Stephen W. Liddle, Deryle W. Lonsdale, Scott N. Woodfield
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

the WoK: (1) create a form for the results wanted
and have the system learn how to correlate it with
the WoK ontology and fill it in (Embley 1989); (2)
explore the graphical conceptual model view of
the WoK ontology and filter desired information
directly from the graphical view (Czejdo et al.
1990); (3) generate forms from WoK ontology
snippet views and allow constraints to be applied
to form fields (Zitzelberger et al. 2015); and (4)
from a free-form query “read” and “understand” it
to obtain what is wanted (Zitzelberger et al. 2015).

Most interesting from the standpoint of docu-
ment reading are HyKSS free-form queries (Zitzel-
berger et al. 2015). “HyKSS” which stands for
“Hybrid Keyword and Semantic Search” allows
users to issue free-form queries such as “Find Abi-
gail McKenzie who lived to be nearly 100 years
old and whose husband was from the West Indies”
HyKSS applies its collection of extraction ontolo-
gies to the query. Here, the Name recognizer in the
ontology in Figure 2 recognizes “Abigail McKen-
zie” as a name, and “West Indies” is recognized as
a LocationName in the ontology in Figure 22. The
phrase “lived to be nearly 100 years old” associ-
ates with an Age operator in a Date data frame, and
“husband” associates with the marriage relation-
ship. The HyKSS keyword recognizer ignores stop
words (“Find”, “who”, “and”, “whose”, “was”,
“from”, “the”), words recognized as denoting oper-
ators (“lived to be”, “years old”), and non-equality
operands (“nearly 100”) and treats the remain-
ing words and any quoted phrases as keywords
(“Abigail”, “McKenzie”, “West”, “Indies”). As
is the case for all search engines, keywords in
source documents have been previously indexed.
For HyKSS, semantics have also been indexed by
applying extraction ontologies to documents, in
particular for this example the page in Figure 1.
Once the query has been “read” and “understood”
(i.e. once the information and keywords have
been extracted from the query and mapped to an
ontology), a formal query can be generated and
executed (Zitzelberger et al. 2015). The results
are returned in search-engine fashion—a ranked
clickable list of URLs with a snippet showing what
was matched. In our example, the first link would

likely lead to the page in Figure 1. Clicking would
bring up the page with the identified keywords
and semantic data highlighted.

Although processing free-form queries is inter-
esting from a document-reading point of view, in
applications like genealogy in which the ontolo-
gical conceptualizations are well known, starting
with a form search is likely better. Figure 33
shows one of FamilySearch’s forms mocked-up
with an additional search field for Children so
that it better matches the underlying ontology and
also an additional search field for Keywords to
allow for HyKSS-like search over a hybrid of
keywords and semantics. The form is filled in
for the information extracted from Figure 1 for
Abigail Huntington Lathrop with “Boonton” and
“New Jersey” as keywords. The results should
come back in a search-engine-like list of links to
documents, which when clicked should yield a
highlighted document like the one in Figure 32.

Figure 33: Query for Abigail Huntington Lathrop
McKenzie

Finally, we mention that for a world-wide applic-
ation like FamilySearch, query processing should
be multilingual. We show in (Embley et al. 2014)
how extraction ontologies can form the backbone
of a query processing system that allows quer-
ies to be expressed in a user’s native language,
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then processed in the language of the document,
with results translated back into the user’s native
language. Clicking on resulting document links
would bring up highlighted original-language doc-
uments.

9 Conclusion

We have defined ontology-based document read-
ing and have expounded upon our experience in
implementing an ontological document reading
system. The reading system transforms asserted
facts stated in a document into objects and rela-
tionships and populates the object and relationship
sets of a conceptual model. It thus populates the
ontology represented by the conceptual model,
which gives meaning to the extracted text. Lexical
object sets are populated directly with text tokens
found in the document. Non-lexical object sets
are populated by ontological commitment.

Besides directly populating lexical object sets
with text found in a document, a reading system
should also be able to “read between the lines”
and infer author-implied facts such as a female’s
married name given her spouse’s name or a birth
name given a child’s father’s name. The populat-
ing objects and relationships must also make sense
with respect to declared ontological constraints or
otherwise be rejected, fixed, or at least questioned.
An ideal reading system should also be able to
extend or adjust its ontological conceptualizations
and make connections among them.

In this experience report, we have described an
implemented ontology-based document reading
system for contributing to FamilySearch’s online
wiki-like Family Tree. The reading system reads
an input document, usually a book, and populates
the target extraction ontology in Figure 2 with
information extracted from the document’s text
by an ensemble of extraction engines. It then
merges and checks the information against ontolo-
gical constraints and corrects constraint violations
when possible. Optionally, it allows a human to
check and and correct extraction results. Given the
extraction results, it standardizes names and dates
and infers gender and various name forms. Finally,

it generates both a GedcomX document for each
book page and an individual report for each per-
son mentioned in the book who has genealogical
information. Either the GedcomX documents or
the individual reports can be used for automatic or
user-checked semi-automatic import into Family
Tree.

The document reading system we have elucid-
ated works particularly well for semi-structured
document reading and for populating ontologies
with facts within rich but narrow domains of in-
terest like family history. We nevertheless foresee
the possibility of using ontology-based document
reading as a means to contribute to the construction
of a general Web of Knowledge, possibly involving
many interconnected domains of interest.
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