
International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.16

216 Klaus-Dieter Schewe, Karoly Bósa, Andreea Buga, Sorana Tania Nemeş
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Conceptual Modelling of Service-Oriented Software Systems

Klaus-Dieter Schewe*,a, Karoly Bósaa, Andreea Bugaa, Sorana Tania Nemeşa

a Christian-Doppler Laboratory for Client-Centric Cloud Computing, Hagenberg, Austria

Abstract. Conceptual modelling has originated from the areas of software engineering, databases and
knowledge representation, and Heinrich C. Mayr, to whom this article is dedicated, has been involved in
this area from the very beginnings. While in these areas a high degree of maturity has been achieved,
conceptual modelling still lacks this maturity in other areas such as service-oriented systems despite the
demand from novel application areas such as cloud computing. In this article we discuss the axiomatic
BDCM2 framework capturing behaviour, description, contracting, monitoring and mediation. We argue
that the framework gives an abstract answer to the ontological question what service-oriented systems are.
On these grounds we address the intrinsically connected modelling question how to capture cloud-enabled
service-oriented systems. We outline a conceptual modelling approach that is grounded in a distributed
middleware coordinating the client access to multiple clouds through a concept of mediator. For this we
exploit abstract machines with interconnected layers for normal operation, monitoring and adaptation. We
illustrate the model by the use case of a robotic care system showing that the general model can be fruitfully
exploited for failure alerts, failure anticipation and prevention, and safety hazards detection, which links the
research to recent interests of Heinrich in conceptual modelling for ambient assistance systems.

Keywords. Conceptual Modelling • Service-Oriented System • Ambient Assistance

1 Introduction

The field of conceptual modelling has originated
from the areas of software engineering, databases
and knowledge representation (see e. g. the early
collection by Brodie 1984). The emphasis was
to create a bridge connecting the informal under-
standing of stakeholders and the formally precise
understanding of system developers. The con-
ceptual model should be a precise blueprint of a
system to be built, which at the same time is on
a sufficiently high level of abstraction to support
mutual comprehensibility. Conceptual modelling
was successfully applied to the development of
data-centric information systems. The so-called
semantic data models (see Hull and King 1987 for

* Corresponding author.
E-mail. kdschewe@acm.org
The research reported in this paper has been supported by
the Christian-Doppler Society in the frame of the Christian-
Doppler Laboratory for Client-Centric Cloud Computing.

a survey) played an important role in this success,
in particular the Entity-Relationship model (exten-
ded to perfection by Thalheim 2000) was adopted
by researchers, consultant, users and developers.

In the further development of the field two
main directions of the research can be identified.
The first direction is dedicated to novel modelling
methods that extend the mature ones in ways that
enable different classes of systems to be addressed.
Prominent examples are web information systems
by Schewe and Thalheim (2018) and business
processes by Kossak et al. (2016). The other direc-
tion emphasises the application of the methods in
specialised application areas such as e-commerce
(see e. g. Kaschek et al. 2006) or e-learning (see
e. g. Schewe et al. 2005).

Heinrich C. Mayr, to whom this article is ded-
icated, has been an active researcher in the area of
conceptual modelling from the various beginnings.

http://dx.doi.org/10.18417/emisa.si.hcm.16
kdschewe@acm.org

Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.16
Conceptual Modelling of Service-Oriented Software Systems 217
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

In particular, he emphasised the generation of skel-
etons of conceptual database schemata by applying
natural language processing. Fliedl et al. (2005)
summarise main results of this research. This
is also connected to research on the conceptual
modelling process, in particular the involvement
of stakeholders addressed by Shekhovtsov et al.
(2012). While this research stays with the original
emphasis of conceptual modelling in the context
of the development of data-centric information
systems, his research also addressed ontologies in
conceptual modelling (see Hesse et al. 2004) and
business processes (see Mayr et al. 2007).

His more recent research has been directed
towards specific applications. Together with col-
leagues (see Michael and Mayr 2016) he invest-
igated domain-specific conceptual modelling in
general, and in particular the application of con-
ceptual modelling to ambient assistance systems
(see among others Al Machot et al. 2014 and
Michael and Mayr 2013).

1.1 Service-Oriented Systems
Surprisingly, despite the long successful history
of conceptual modelling, there is no commonly
accepted conceptual model for service-oriented
systems, not even an understanding what services
are. According to (Bergholtz et al. 2015) the
many approaches to service-oriented systems can
be roughly classified into those taking a business-
centric view and those taking a software-centric
view. Examples of the former class are among
others the service science framework by Ferrario
et al. (2011), the so-called Unified Theory of
Services (UTS) by Sampson and Froehle (2006),
the approach to semantic web services by Preist
(2004) or the OASIS framework by Alves et al.
(2007). Examples of the latter class are among oth-
ers the service-oriented architecture frameworks
(SOA) by Arsanjani et al. (2008), Erl (2007) and
Papazoglou and van den Heuvel (2006), service-
oriented computing (SOC) by Papazoglou and
van den Heuvel (2007), web services by Alonso
et al. (2003) and Benatallah et al. (2006) and the
corresponding W3C standards (Universal Descrip-
tion, Discovery and Integration (UDDI) 2009 and

Simple Object Access Protocol (SOAP) 2008), and
the behavioural model of Abstract State Services
by Ma et al. (2008) and its extension by Ma et al.
(2009a). Both lists can be extended by many other
examples (see for instance the literature review by
Ma et al. 2009a or by Bergholtz et al. 2015).

The research towards the fundamental question
“what constitutes a service” has led to the model
of Abstract State Services (AS2s) (see Ma et al.
2009a), the model of service mediators based
on AS2s (see Ma et al. 2012 and Schewe and
Wang 2012), and the service ontology model
(see Ma et al. 2009b). The discussion of further
properties characterising a software service (on
the web) led to the BDCM2 framework capturing
behaviour, description, contracting, monitoring
and mediation (see Schewe and Wang 2015). In
addition, the W∗H framework by Dahanayake and
Thalheim (2015) puts services into the context
of their usage, intention and added value, which
are more relevant for the modelling of service-
oriented systems than for the clarification of the
question what they are.

The BDCM2 framework has been successfully
adopted in a conceptual model for multi-cloud in-
teraction by Buga et al. (2017a). The emphasis is
on distributed systems exploiting software services
from multiple clouds. The services themselves can
be modelled as abstract state services specified by
Abstract State Machines (ASMs) (see Börger and
Stärk 2003 for a general introduction to ASMs).
The services can be integrated using the mediator
model, by means of which general skeletons are
provided that are instantiated by concrete services
that are selected according to a service ontology
comprising functional, categorical and SLA-based
properties. The concrete interaction of a medi-
ator instance with the service providing clouds
is subject of a middleware system, developed by
Bósa et al. (2015) (see also Bósa 2012 and Bósa
et al. 2014), which handles the interaction with
the clouds and supports the interaction between
different systems through the clouds (see Bósa
2013 for this aspect). For the rigorous specifica-
tion of this middleware the ambient extension of
ASMs by Börger et al. (2012) has been exploited.

http://dx.doi.org/10.18417/emisa.si.hcm.16

International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.16

218 Klaus-Dieter Schewe, Karoly Bósa, Andreea Buga, Sorana Tania Nemeş
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

The monitoring aspect with respect to security and
SLA satisfaction has been addressed by Lampes-
berger and Rady (2015). Buga et al. (2017b)
show how such cloud-enabled distributed systems
can be used for modelling a robotic care system
showing that the general model can be fruitfully
exploited for failure alerts, failure anticipation and
prevention, and safety hazards detection. This
links the research to recent interests of Heinrich
in conceptual modelling for ambient assistance
systems.

1.2 Organisation of the Article
In Section 2 we address the ontological question:
what are services and what are service-oriented
systems. Here we refer to the BDCM2 framework
and its underpinnings in the behavioural theory of
distributed adaptive systems. That is, we emphas-
ise an axiomatic characterisation, though we will
abstain from going too much into theoretical depth.
Section 3 is then dedicated to the intrinsically
connected modelling question: how can service-
oriented systems be modelled conceptually. Here
our research emphasises Abstract State Machines
with various extensions as well as service onto-
logies as the key building blocks. In view of the
many non-technical additions that are needed in
design and development of very complex software
systems (as discussed by Dahanayake and Thal-
heim 2015 for services and deeply investigated by
Schewe and Thalheim (2018) for web information
systems that are largely related) we acknowledge
that our presentation here does not cover the com-
plete picture. To illustrate the model we briefly
outline the application to the robotic care system
use case. Finally, in Section 4 we discuss perspect-
ives for future research in this area, which are an
open invitation to Heinrich and his colleagues to
remain active and to further contribute to the area
of conceptual modelling.

2 The Ontological Question: What Are
Services and Service-Oriented Systems?

The BDCM2 framework addresses the question
how to obtain a language independent definition of

the notions of service and service-oriented system.
We will rephrase the definition in an axiomatic
way, but for the sake of brevity we have to leave
out many technical details, for which we refer to
the literature.

2.1 Functional Behaviour
A behavioural theory provides first a language-
independent clarification of a class of systems by
means of a set of axioms, which is complemented
in a second step by an abstract machine model,
for which it is then proven in a third step that
the machine model captures exactly the systems
stipulated by the axioms. For the case of services,
Ma et al. (2009a) started with the introduction of
Abstract State Service (AS2) defining the func-
tional behaviour of a service. Roughly speaking,
an AS2 provides a process that can be used by
someone else knowing only what the process im-
plementing the service is supposed to do. The
user does neither own the service nor is he able to
manipulate it.

Each service will provide some form of work-
flow that will access data resources. Therefore,
the AS2 model refers to an underlying database
(using this term in a very general sense), which
defines an internal layer. For services there must
be an additional external layer made out of views,
which export the data that can then be used by
users or programs. We complete this picture by
adding operations on both the conceptual and
the external layer, the former one being handled
as database transactions, whereas the latter ones
provide the means with which users can interact
with a database.

Axiom 1. A service comprises an internal (data-
base) layer, which consists of

• a set S of states together with a subset I ⊆ S

of initial states,
• a wide-step transition relation τ ⊆ S × S,

and
• a set T of transactions, each of which is as-

sociated with a small-step transition relation
τt ⊆ S × S (t ∈ T) satisfying the axioms of
a database transformation over S.

http://dx.doi.org/10.18417/emisa.si.hcm.16

Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.16
Conceptual Modelling of Service-Oriented Software Systems 219
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Axiom 2. A service comprises an external (view)
layer comprising a finite set V of (extended)
views.

• Each view v ∈ V is associated with a data-
base transformation such that for each state
S ∈ S there are views v1, . . . , vk ∈ V with
finite runs S j

0, . . . , S
j
n j

of vj (j = 1, . . . , k),
starting with S j

0 = Sd and terminating with
S j
n j
= Sd ∪ Vj .

• Each view v ∈ V is further associated with a
finite setOv of (service) operations o1, . . . , on
such that for each i ∈ {1, . . . , n} and each
S ∈ S there is a unique state S′ ∈ S with
(S, S′) ∈ τ.

• If S = Sd ∪ V1 ∪ · · · ∪ Vk with Vi defined by
vi and o is an operation associated with vk ,
then S′ = S′

d
∪V ′

1 ∪ · · · ∪V ′
m with m ≥ k − 1,

and V ′
i for 1 ≤ i ≤ k − 1 is still defined by vi .

We omit further technical details of the model
of abstract state services (for these see Ma et
al. 2009a or Schewe and Wang 2015). Both
axioms above refer to database transformations,
which have been axiomatically defined by Schewe
and Wang (2010) with a further sharpening of
the underlying behavioural theory by Ferrarotti
et al. (2016). Database transformation can be
axiomatically characterised by four further axioms,
which we will sketch next (for details we have to
refer to the lengthy treatment in the literature).

Axiom 3. A database transformation comprises
a set S of states, a subset I ⊆ S of initial
states, and a state transition function ς ⊆ S×S

(sequential time).
Axiom 4. States of a database transformation

are meta-finite states over a signature Σ =
Σdb ∪ Σa ∪ Σb comprising database functions,
algorithmic functions and bridge functions.
States are closed are isomorphisms (abstract
state).

Axiom 5. A database transformation comprises
a background structure, which captures at least
truth values, constructors for records and finite
multisets, and eventually further constructors

for the building blocks of the database model
as well as operators associated with these con-
structors for values and terms (background).

Axiom 6. There is a finite set W of multiset com-
prehensions terms built over Σ and the back-
ground structure such that for any two states
S1, S2 that coincide on them the corresponding
update sets ∆(S1) and ∆(S2) (defined by the
state transition function) are equal (bounded
exploration).

2.2 Description of Services
We may assume that abstract state services as
defined above are available through service repos-
itories, for which we adopt the notion of “cloud”.
In a service-oriented system several such services
are combined including third-party services. For
the latter ones it has to be known, which function-
ality is provided, despite the fact that the internal
layer (and thus the implementation) is hidden. So
the question arises how meaningful services can
be located, for which a description of the available
services is needed. The key idea is that given a
coarse description of the service needed, it should
be possible to search for such a service. This is
exactly what ontologies are meant to capture, a de-
scription of the (semantics of) services. Therefore,
we adopt the common idea of a service ontology,
which is already omnipresent in the area of the
semantic web, also in our own work (see e. g. Ma
et al. 2012, 2009b).

This is usually grounded in some more or less
expressive description logic, e.g. the web ontology
language OWL (see Grau et al. 2008). While it
is not possible to precisely describe an abstract
state service in a way that it can be automatically
matched to a service request, it is commonly
accepted that a service ontology should capture
three aspects (see e. g. Fensel et al. 2007 and the
references in there), which leads to the following
axiom:

Axiom 7. Each service is equipped with a descrip-
tion in a service ontology, which comprises

• a functional description covering the specific-
ation of input- and output types as well as

http://dx.doi.org/10.18417/emisa.si.hcm.16

International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.16

220 Klaus-Dieter Schewe, Karoly Bósa, Andreea Buga, Sorana Tania Nemeş
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

pre- and post-conditions telling in technical
terms, what the service will do;

• a categorical description capturing inter-
related keywords telling what the service
operation does by using common termino-
logy of the application area;

• a quality of service (QoS) description captur-
ing non-functional properties such as avail-
ability, response time, cost, etc.

A functional description alone would be insuf-
ficient. For instance, a flight booking service may
functionally be almost identical to a train book-
ing system. Therefore, an additional categorical
description is indispensable. The terminology
of the application domain defines an ontology in
the widest sense, i. e.. we have to provide defin-
itions of “concepts” and relationships between
them, such that each offered service becomes an
instantiation of one or several concepts in the
terminology.

The QoS description is not needed for service
discovery, but for selection among alternatives.
However, the non-functional properties cover also
the description of how a service is meant to be
used, what are the obligations and rights of the
participating agents, at least of the service pro-
vider and the service user, how conflicts are to
be handled, etc. These non-functional aspects
should be considered as being intrinsically part of
a service. (Schewe and Wang 2015) discuss them
in detail.

2.3 Service Mediation
Service mediation addresses collaboration of ser-
vices, which is another necessary aspect of ser-
vices. While the functional behaviour of a service
is entirely in the hands of a service provider and
the service description addresses how a service is
offered by the provider to the potential users, ser-
vice mediation covers how users can make use of
a service. For instance, it is commonly known that
online sales services are often used as information
repositories without the slightest intention to buy
something. In other words, while the functionality

of a service is defined by the provider and con-
ditions of use are subject of the QoS part of the
service ontology, it is exclusively up to the user to
exploit the service for his own purposes. There-
fore, service mediation is an important aspect of a
theory of services.

First, in order to make the workflow within
a service explicit we require the notion of plot,
which actually captures the possible sequencing
of service operations. For this Ma et al. (2012)
exploit Kleene algebras with tests (KAT), which
are known to be the most expressive formalism to
capture propositional process specifications. So
adding plots to the AS2 model is a little extension
of the behavioural model, which in addition im-
pacts on the functional description in the service
ontology.

Formally, the service operations give rise to
elementary processes of the form

ϕ(®x) op[®z](®y) ψ(®x, ®y, ®z),

in which op is the name of a service operation, ®z
denotes input for op selected from the view v with
op ∈ Opv, ®y denotes additional input from the
user, and ϕ and ψ are first-order formulae denoting
pre- and postconditions, respectively. The pre-
and postconditions can be omitted; also simple
formulae χ(®x) interpreted as tests checking their
validity constitute elementary processes. With
this (Ma et al. 2012) define the set of process
expressions of an AS2 as the smallest set P con-
taining all elementary processes that is closed
under sequential composition ·, parallel composi-
tion ∥, choice +, and iteration ∗. That is, whenever
p, q ∈ P hold, then also pq, p∥q, p+ q and p∗ are
process expressions in P. However, this definition
is tightly linked to KATs; it can be generalised in a
language-independent way emphasising any kind
of parallel process (as stipulated by Axioms 3-6)
that are composed out of the given elementary
processes.

Axiom 8. Each service is equipped with a plot,
which is a process expression over the service
operations of the service.

http://dx.doi.org/10.18417/emisa.si.hcm.16

Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.16
Conceptual Modelling of Service-Oriented Software Systems 221
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Second, service mediators exploit plots with
open slots for services to specify intended service-
based applications on a high level of abstraction.
The idea is to specify service-oriented applications
that involve yet unknown component services. On
these grounds matching criteria for services are
formally defined that are to fill the slots. A prob-
lem in finding such matching criteria is the fact
that it should be possible to skip component op-
erations of services and change their order. This
enhances the work on service composition, which
is already a well-explored area in service comput-
ing with respect to services that are understood
functionally. In the AS2 model this corresponds
to the service operations rather than the services
as a whole. More precisely, what actually needs
to be composed are “runs” of services that are
determined by the plot including conditions, un-
der which particular service operations can be
removed or their order can be changed. This
leads to rather complicated matching conditions
between services and slots in mediators as em-
phasised by Ma et al. (2012) and further refined
by Schewe and Wang (2012).

In order to capture this idea we relax the defin-
ition of a plot in such a way that service opera-
tions do not have to come from the same service.
Thus, in elementary processes we use prefixes
to indicate the corresponding AS2, so we obtain
ϕ(®x) X : op[®z](®y) ψ(®x, ®y, ®z), in which X denotes
a service slot, i. e. a placeholder for an actual
service.

Axiom 9. A service-oriented system consists of
service mediators, which are process expres-
sions with service slots. Each service operation
in a mediator is associated with input- and
output-types, pre- and postconditions, and a
concept in a service terminology. An instance
of a mediator is defined by services matching
the slots.

A service mediator specifies, which services
are needed and how they are composed into a
new plot of a composed AS2. So we now need
exact criteria to decide, when a service matches a
service slot in a service mediator.

It seems rather obvious that in such matching
criteria for all service operations in a mediator
associated with a slot X we must find matching ser-
vice operations in the same AS2, and the matching
of service operations has to be based on their func-
tional and categorical description. Functionally,
this means that the input for the service operation
as defined by the mediator must be accepted by
the matching service operation, while the output
of the matching service operation must be suitable
to continue with other operations as defined by the
mediator. This implies that we need supertypes
and subtypes of the specified input- and output-
types, respectively, in the mediator, as well as a
weakening of the precondition and a strengthening
of the postcondition. Categorically, the matching
service operation must satisfy all the properties of
the concept in the terminology that is associated
with the placeholder operation, i. e.. the concept
associated with the matching service operation
must be subsumed by that concept. We also have
to ensure that the projection of the mediator to a
particular slot X results in a subplot of the plot
of the matching AS2. The order of service oper-
ations may differ and certain service operations
may become redundant, which has to be taken
care of as well. (Ma et al. 2012) discuss matching
criteria in detail.

2.4 Service Contracts
The aspects of behaviour, description and me-
diation alone do not yet capture everything that
would characterise services. Zeithaml et al. (1985)
emphasise general properties such as intangibility,
inseparability, heterogeneity and perishability of
services, which in the community have been con-
troversially debated and rejected as being neither
necessary nor sufficient. Indeed, intangibility
refers to the fact that a service is owned by its pro-
vider, while a service user can exploit the service
for his own purpose, but there is never a transfer
of ownership nor does the user even know how
the service is realised. For instance, in the often
used example of a snow removal service it is up to
the provider to decide whether shovels, brooms or
snow ploughs are used, which the service client is

http://dx.doi.org/10.18417/emisa.si.hcm.16

International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.16

222 Klaus-Dieter Schewe, Karoly Bósa, Andreea Buga, Sorana Tania Nemeş
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

not interested in at all, as long as the agreed result
is guaranteed. Intangibility is de facto captured by
the behavioural model; in particular, in the AS2

model a hidden internal layer is separated from the
visible layer exposed to the user, which includes
the associated plot. Similarly, perishability is no
property of services at all. Every software system
is prone to perishability, if the hardware and sys-
tem software it is grounded in disappears. To the
contrary, it should be part of the usage agreement
between a service provider and a user that services
do not perish within the agreed period of service
usage. That is, availability agreements are part
of the service as well as the consequences, if the
agreement is violated. Inseparability has to be
treated also with care. Of course, from the point
of view of the provider the service is offered as a
whole, and there is an agreement about this with
each service user. However, as already discussed
in connection with mediation, it is up to the user to
exploit the services in his own way and for his own
purposes, regardless what the provider intended.
In this sense, a user may well cut out of a service
the parts that are really needed, even though for
the provider it still appears that the service was
used as a whole. Finally, heterogeneity is not a
characteristic at all, as it could only refer to the
collection of all services, in which case it is a
triviality. If it were to refer to a single service,
there is no reason for the claim that heterogeneity
of the components involved should always be the
case.

Schewe and Wang (2015) discuss in detail al-
ternative ideas by Bergholtz et al. (2015), in the
UTS by Sampson and Froehle (2006), in the REA
ontology, and in the classification of rights follow-
ing Hohfeld. While we cannot repeat this intensive
discussion here, we emphasise the conclusion that
this would still draw an incomplete picture regard-
ing non-functional aspects, as there are more rules
than those capturing rights and obligations. In gen-
eral, there should be a whole list of service-level
agreements, which altogether define a contract
between the provider of a service and a service
user. Rady (2012) has defined fragments of an
ontology capturing SLAs and implemented a tool

extracting contracts from such an SLA ontology
(see Rady 2014). For the time being the SLA on-
tology, which in our opinion should be part of the
service ontology, only addresses availability and
performance aspects, though more than 20 addi-
tional types of SLAs have already been discussed
in the literature. SLAs concerning availability,
performance, etc. but also security and privacy
regulations have nothing to do with rights. For
instance, availability on one hand concerns condi-
tions of usage, e.g., if the service is only available
on workdays within a specified time period, and
on the other hand a commitment and obligation
by the provider. Security and privacy may be
also handled as commitments, but it should prefer-
ably also include the means with which security
is supposed to be achieved, in which case the
SLA includes a statement about the functional
behaviour of the service or its environment. In
summary, for each service there must exist a ser-
vice contract capturing all SLAs, and the SLAs
may be expressed by obligations and rights in a
deontic action logic, refer to functional aspects,
or simply cover factual data. The decisive feature,
however, is that a model of services must comprise
the contracting aspect.

Axiom 10. For each service used in a service-
oriented system there must exist a contract
between service provider and service user cov-
ering all relevant SLAs for the service. The
conditions in the contract must be consistent
with the quality of service description in the
service ontology.

2.5 Monitoring and Adaptation
(Schewe and Wang 2015) emphasise that a con-
tract that cannot be validated is rather useless,
both technically and legally. Therefore, for every
service it should be possible to check not only its
behaviour, but also whether the SLAs are fulfilled.
That is, there must exist a monitoring software for
this purpose – this could again be a service, but
not necessarily. Lampesberger and Rady (2015)
make a promising step in the direction of SLA
monitoring in the context of cloud computing.

http://dx.doi.org/10.18417/emisa.si.hcm.16

Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.16
Conceptual Modelling of Service-Oriented Software Systems 223
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

While monitoring is a decisive aspect of service-
oriented systems, the focus on SLA monitoring is
too narrow.

Lampesberger (2016) already emphasises an-
omaly detection as another aspect, for which mon-
itoring is required, in particular, if services exploit
public clouds or are in any other way exposed to
undesired external interference. This naturally
extends to failures and any other critical situation
as emphasised by Buga et al. (2017a).

Axiom 11. Every instance of a service-oriented
system constitutes a distributed adaptive system,
in which all transactions and service operations
of individual services are reflective, i. e.. they
satisfy the axioms for reflective database trans-
formations.

Note that this axiom includes the possibility to
provide specialised services for monitoring (as
e. g. for anomaly detection) and for adaptation, e. g.
replacing services in an instantiation as discussed
by Buga et al. (2017a). For the extension, that
reflective behaviour has to be supported; we refer
to the work by Schewe et al. (2017), who discuss
the axioms for distributed adaptive systems in
detail.

For our brief exposition here we restrict to
mention that only axioms 3-6 need to be slightly
amended. In a nutshell, reflection can be captured
by storing the specification of the system beha-
viour, e.g. the signature and ASM rule as part of
the system’s states. Then terms over the signature
Σ can also be used as values, and the interpretation
of some terms in a state may result in terms. For
the bounded exploration axiom we then need a
stronger notion for the coincidence of terms that
are extended in this way. For strong coincidence
we request (as before) that the interpretation of
the terms in W is the same for two states, but in
addition the interpretation of terms resulting from
this first interpretation also yields equal results.
Axiom 6 can then be rephrased as follows:

Axiom 6′. There is a finite set W of multiset
comprehensions terms built over Σ and the
background structure such that for any two

states S1, S2 that strongly coincide on them the
corresponding update sets ∆(S1) and ∆(S2) are
equal (reflective bounded exploration).

3 The Modelling Question: How to
Capture Service-Oriented Systems?

Our axiomatic definition of service-oriented sys-
tems is language-independent, so for the actual
task to model service-oriented systems we require
adequate languages by means of which we can
obtain models satisfying the axioms. Actually, in
behavioural theories we go further asking for the
capture of the class of systems of interest, which
requires to formally prove that all systems as stip-
ulated by the axioms are faithfully represented by
the modelling language. For conceptual model-
ling the focus is in addition on the capture on a
high level of abstraction, by means of which the
comprehensibility requirement can be fulfilled.

With respect to the axioms describing func-
tional behaviour, mediation and monitoring the
concepts of abstract state services, mediators and
reflection together, i. e. all axioms except Axioms
7 and 10, give rise to distributed adaptive sys-
tems. In a longer sequence of theoretical research
on foundations of such systems a behavioural
theory was discovered. In a nutshell, the final
result is that distributed adaptive systems are cap-
tured by concurrent reflective ASMs. Here we
abstain from a presentation (for technical details
see Schewe et al. 2017 and the references in there).
Instead we concentrate on a cloud-based middle-
ware architecture that enables distributed adaptive
service-oriented systems. While the middleware
itself is specified and verified using concurrent
reflective ASMs, applications can exploit the AS2

model for modelling of services, mediators for cre-
ating service-oriented systems, and an associated
service ontology.

3.1 Cloud-Enabled Service-Oriented
Systems

In the previous section we emphasised that ser-
vices should be taken from a service repository.
We deliberately use the term cloud to refer to such

http://dx.doi.org/10.18417/emisa.si.hcm.16

International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.16

224 Klaus-Dieter Schewe, Karoly Bósa, Andreea Buga, Sorana Tania Nemeş
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

a repository of services as emphasised by Ma
et al. (2012). From the definition of mediators
it is clear that an instantiated mediator is a high-
level specification of a distributed application that
runs several services at the same time. Refining
and implementing such a specification requires
several add-ons. The involved services have to
be started and terminated, which usually involves
a log-in and authentication process. Then data
has to be passed from the mediation process to
the individual services, which bypass the user
interaction, i. e. a control component associated
with the process is needed. Furthermore, output
from several services is combined, and a selection
made by a user is passed back to the originating
services, while non-selection leads to service ter-
mination. This must also be handled by the control
component, for which we employ the client-cloud
interaction middleware (CCIM) model defined by
Bósa et al. (2014).

Client-Cloud Interaction Middleware
The CCIM has been specified using ambient ASMs
in order to describe formal models of distributed
systems incorporating mobile components in two
abstraction layers. While the algorithms of execut-
able components are specified in terms of ASMs,
their communication topology, locality and mo-
bility are described with the terms of ambient
calculus. As each ambient ASM specification
can be translated into a pure ASM specification
as shown by Börger et al. (2012). The approach
provides a universal way to handle client-cloud
interaction independent from particularities of
certain cloud services or end-devices, while the
instantiation by means of particular ambient res-
ults in specifications for particular settings. Thus,
the architecture is highly flexible with respect to
additional end-devices or cloud services, which
would just require the definition of a particular
ambient. The architecture of the CCIM integ-
rates all novel software solutions such as Service
Plot-Based Access Management, Client-to-Client
Interaction (CTCI) Feature, Identity and Access
Management (IdMM), Content Adaptivity, SLA

Management and Security Monitoring Component
into a compound single software component.

In the general architecture (see e. g. Buga et al.
2017a) the middleware is replicated by several
components, each connected to one or more ser-
vice clouds, but each cloud is connected to exactly
one middleware component. Thus, there are three
modes of interaction: (1) interaction of users with
a middleware component, (2) interaction of a mid-
dleware component with a service in one of its
clouds, and (3) interaction among several mid-
dleware components. The challenge is to keep
users oblivious about the interaction among mid-
dleware components to locate individual services
and to manage the transfer of results among the
participating services. This challenge is addressed
by the propagation of service requests among the
middleware components. That is, when a middle-
ware component receives a request for access to a
particular service from a client or another middle-
ware component, it will route the request to the
middleware component owning the service, i. e.
being the component that connects to the cloud, on
which the service resides. Thus a service requests
always comprises also routing information.

In addition to the routing of requests to access
individual services each middleware component
will exploit the features of the mediator model
and analyse how to execute a particular mediator
by extracting services that it can handle itself and
those parts that have to be forwarded to other
components. This is captured by an ambient-
ASM specification of the distributed middleware
emphasising the normal execution model. The
normal execution mode requires the abstract ma-
chine, i. e. the ambientASM specification, the
service interfaces, the request handler that links
to the users and other middleware components,
and the communication handler that handles the
interaction among middleware components.

The CCIM provides a cloud service infrastruc-
ture that permits a transparent and uniform way for
clients to interact with multiple clouds. It permits
to access and combine the available functions of
cloud services, which may belong to various own-
ers, and it leaves the full control over the usage of

http://dx.doi.org/10.18417/emisa.si.hcm.16

Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.16
Conceptual Modelling of Service-Oriented Software Systems 225
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

their services in the hands of the service owners.
If a registered cloud user intends to subscribe
to a particular service, a subscription request is
sent to the cloud, which may forward it to such a
special client corresponding to the service owner.
This client responds with the service plot, which
defines how the service can be used by the user and
determines the permitted combination of service
operations.

The received service plots are collected together
with other available cloud functions in a personal
user area by the cloud. When the subscribed user
sends a service request, it is checked whether the
requested service operations are permitted by any
service plot. If a requested operation is permit-
ted, then it is triggered to perform, otherwise it
is blocked as long as a plot may allow to trigger
it in the future. Each triggered operation request
is authorized to enter into the user area of the
corresponding service owner to whom the reques-
ted service operation belongs. Here a scheduler
mechanism assigns to the request a one-off access
to a cloud resource on which an instance of the
corresponding service runs. Then the service
operation request is forwarded to this resource,
where the request is processed by an instance of the
service whose operation was requested. Finally,
the outcome of the performed operation returns to
the area of the initiator user, where the outcome
is either stored or send further to a given client
device.

In this way, the service owners have direct
influence on the service usage of particular users
via the provided service plots. If a user subscribes
to more than one service, he or she may have
access to more than one plot. These plots are
independent from each other and they can be
applied concurrently. If a service owner makes
available more than one service for a user, the
owner has the choice either to provide independent
plots for the user or to combine some functions
of various services into a common service plot.
This conceptual solution shows a transparent and
uniform way how to provide an advanced access
control mechanism for cloud services without

giving up the flexibility of heterogeneous cloud
access to these services.

Furthermore, due to the ambient concept the
relocation of system components is trivial, and
the model can be applied to different scenarios.
For instance, all our novel methods including our
client-cloud interaction solution can be shifted
to the client side and wrapped into a middleware
software which takes place between the end users
and cloud in order to control the interactions
of them. Note that the specified communication
among the distributed system components remains
the same in both scenarios.

Monitoring and Adaptation
In addition, the CCIM provides monitoring and as-
sessment layers. For each service there are several
dedicated monitors. For the observation of the
behaviour of these services sensors are deployed
across multiple clouds in order to collect environ-
mental data that are reported to the middleware.
The monitoring is part of an abstract machine,
which is specified using the ASM method. It
is important to consider that monitors are also
components of the distributed system, so they can
also exhibit failures themselves. This is taken
care of by assigning a trustworthiness measure
to each monitor. Monitoring components with
trustworthiness below a specified threshold are
removed from the network of monitors. In case of
an identified critical situation the adaptation layer
replaces one or several services, i. e. replacing the
given mediator instantiation by a new one.

Monitors collect data from the nodes. When
starting the system, each monitor is initialized by
the middleware in the Active state, from where
it submits a heartbeat request to the node it mon-
itors. The monitor advances afterwards to the
Wait for response state, where it checks two
guards. First, it verifies if a response to its request
is received. If so, it verifies if the delay of the
response is acceptable. If this condition holds,
the monitor moves to the Collect data state.
If no response is received or if the response has
a big delay, the monitor moves to the Report
problem state. In the Collect data state the

http://dx.doi.org/10.18417/emisa.si.hcm.16

International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.16

226 Klaus-Dieter Schewe, Karoly Bósa, Andreea Buga, Sorana Tania Nemeş
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

monitor gathers low level metrics (CPU, memory
and storage usage, bandwidth) and then moves
to the Retrieve information state, where it
checks local storage for past monitoring data. If
the repository is available, the monitor queries it.
The monitor moves to the Assign diagnosis
state, where it interprets the available data. If
it discovers a problem, it moves to the Report
problem state, otherwise it moves to the Log
data state, where meaningful data and operation
are logged. When an issue is identified, the mon-
itor modifies a constraint that triggers a request
towards the leader of the node to inquire all its
monitoring counterparts and carry out a collab-
orative diagnosis. After reporting the issue, the
monitor moves to the Log data state. Here, the
confidence degree of the monitor is checked, and
if the monitor is still trustworthy, it starts a new
monitoring cycle. Alternatively, it moves to the
Inactive state and waits to be deployed again in
the system.

Details of the CCIM model are covered in
several articles, e. g. by Bósa et al. (2015), Buga
et al. (2017a) and Lampesberger and Rady (2015).
We omit further details here.

3.2 Service Ontology
As outlined, the functional, categorical and QoS
description of services in a cloud requires the
definition of an ontology. That is, we need a
terminological knowledge layer (aka TBox in de-
scription logics) describing concepts and roles (or
relationships) among them. This usually includes
a subsumption hierarchy among concepts (and
maybe also roles), and cardinality constraints. In
addition, there is an assertional knowledge layer
(aka ABox in description logics) describing in-
dividuals. Thus, services in a cloud constitute
the ABox of an ontology, while the cloud itself
is defined by the TBox (for details see Ma et al.
2012 and Schewe and Wang 2015).

Terminologies
For simplicity let us assume that C0 and R0 repres-
ent not further specified sets of basic concepts and

roles, respectively. Then concepts C and roles R
are defined by the following grammar:

R = R0 | R−
0

A = C0 | ⊤ | ≥ m.R (with m > 0)
C = A | ¬C | C1 ⊓ C2 | C1 ⊔ C2 | ∃R.C | ∀R.C

A terminology (or TBox) is a finite set T of
assertions of the form C1 ⊑ C2 with concepts C1
and C2 as defined by the grammar above. Each
assertion C1 ⊑ C2 in a terminology T is called a
subsumption axiom. As usual, we use the shortcut
C1 ≡ C2 instead of C1 ⊑ C2 ⊑ C1. For concepts,
⊥ is a shortcut for ¬⊤, and ≤ m.R is a shortcut
for ¬ ≥ m + 1.R.

A structure S for a terminology T consists of a
non-empty set O together with subsetsS(C0) ⊆ O

and S(R0) ⊆ O × O for all basic concepts R0 and
basic roles R0, respectively. O is called the base
set of the structure.

We first extend the interpretation of basic con-
cepts and roles and to all concepts and roles
as defined by the grammar above, i. e. for each
concept C we define a subset S(C) ⊆ O, and for
each role R we define a subset S(R) ⊆ O × O as
follows:

S(R−
0) = {(y, x) | (x, y) ∈ S(R0)}

S(⊤) = O

S(¬C) = O − S(C)

S(≥ m.R) = {x ∈ O | #{y | (x, y) ∈ S(R)} ≥ m}

S(C1 ⊓ C2) = S(C1) ∩ S(C2)

S(C1 ⊔ C2) = S(C1) ∪ S(C2)

S(∃R.C) = {x ∈ O | (x, y) ∈ S(R)

for some y ∈ S(C)}

S(∀R.C) = {x ∈ O | (x, y) ∈ S(R) ⇒

y ∈ S(C) for all y}

A model for a terminology T is a structure S,
such that S(C1) ⊆ S(C2) holds for all assertions
C1 ⊑ C2 in T . A finite model, i. e. a model with
a finite base set, is also called instance or ABox
associated with T .

http://dx.doi.org/10.18417/emisa.si.hcm.16

Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.16
Conceptual Modelling of Service-Oriented Software Systems 227
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Functional and Categorical Description
As outlined above we expect the terminology T of
a cloud to provide the functional, categorical and
QoS description of its offered services. The func-
tional description of a service operation consists
of input- and output-types, and pre- and post-
conditions. For the types we need a type system
with base types and constructors. For instance,
the following grammar

t = b | 1 | (a1 : t1, . . . , an : tn) | {t} | [t] |

(a1 : t1) ⊕ · · · ⊕ (an : tn)

describes (the abstract syntax of) a type system
with a trivial type 1, a non-further specified collec-
tion of base types b, and four type constructors (·)
for record types, {·} for finite set types, [t] for list
types, and ⊕ for union types. Record and union
types use field labels ai.

The semantics of such types is basically de-
scribed by their domain, i. e. sets of values dom(t).
Usually, for a base type b such as Cardinal,
Decimal, Float, etc. the domain is some com-
monly known at most countable set with a com-
mon presentation. The domain of the trivial type
contains a single special value, say dom(1) = {⊥}.
For constructed types we obtain the domain in the
usual way:

dom((a1 : t1, . . . , an : tn)) = {(a1 : v1, . . . ,

an : vn) | ai ∈ dom(ti) for i = 1, . . . , n}
dom({t}) = {A | A ⊆ dom(t) finite}
dom([t]) = {[v1, . . . , vk] | vi ∈ dom(t)

for i = 1, . . . , k}

dom((a1 : t1) ⊕ · · · ⊕ (an : tn)) =⋃n

i=1
{(ai : vi) | vi ∈ dom(ti)}

In particular, a union type (a1 : 1) ⊕ · · · ⊕ (an :
1) has the domain {(a1 : ⊥), . . . , (an : ⊥)}, which
can be identified with the set {a1, . . . , an}, i. e.
such types are in fact enumeration types.

In addition to the types, the functional descrip-
tion of a service operation includes pre- and post-
conditions, which are defined by (first-order) pre-
dicate formulae. These formulae may contain fur-
ther functions and predicates, which are subject to

further (categorical) description. For instance, the
terminology may comprise the following axioms:

Service_Operation ⊑ ∀pre.Condition ⊓ ≤ 1.pre
⊓ ∃post.Condition ⊓ ≤ 1.post

Condition ⊑ Formula ⊓

∀uses.(Predicate ⊓ Function)
Predicate ⊑ ∃in.Type ⊓ ≤ 1.in ⊓ ¬ ≥ 1.out
Function ⊑ ∃in.Type ⊓ ≤ 1.in ⊓

∃out.Type ⊓ ≤ 1.out

There are no general requirements for the cat-
egorical description, as it depends completely
on the application domain. However, it will
always lead to subconcepts of the concept Ser-
vice_Operation plus additional concepts and roles.
It will also add more details to the predicates and
functions used in the pre- and post-conditions.

Service-Level Agreements
SLAs have been widely discussed in the literature.
By now around 20 different types of SLAs have
been identified by Rady (2012), and depending
on the viewpoint these SLAs have been differ-
ently classified. Following our discussion in the
introduction we consider that the main purpose
of SLAs is to determine as precisely as possible
the rights and obligations that govern the relation-
ship between a service providers, service users,
and, if applicable, third parties. Technically, our
approach consists of three parts:

• an extension of the service ontology describing
the content of the SLAs,

• a contracting framework that permits a contract
skeleton to be extracted from the ontology, and

• a monitoring system that can be used to check,
when a violation to an SLA has occurred.

As the service ontology is realised by some
description logic, the contracting framework can
be realised by queries against the ontology. This
has been discussed by Rady (2014) using SPARQL
to extract fragments of contracts from an SLA
ontology. We dispense with discussing this aspect
any further in this chapter. Also, as stated in

http://dx.doi.org/10.18417/emisa.si.hcm.16

International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.16

228 Klaus-Dieter Schewe, Karoly Bósa, Andreea Buga, Sorana Tania Nemeş
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

the introduction, SLA monitoring is still in an
infant state, so we will not discuss it here, but
we emphasise again that SLAs that cannot be
monitored are de facto useless, i. e.monitoribility
of SLAs is a necessary property of services.

Different from the classification by Rady we use
the following classification schema, which puts a
stronger emphasis on rights and obligations:

Terms of Usage: Some SLAs simply define gen-
eral facts about the usage of services. Among
these are the pricing schema, conditions for
termination and suspension, and the applicable
jurisdiction. In particular, these facts do not
require to be monitored. They will appear as
part of the contract extracted from the ontology
and can be used to check bills or determine
legal actions in case of inaccuracies.

Technical Aspects: Some SLAs refer to tech-
nical properties of the services that are de-
termined by the service model, i. e. they are
not SLAs in the proper sense. These technical
aspects cover two different areas:

Implementation Aspects: For instance, port-
ability refers to the property of a service to be
moved from one environment to another one,
which is a property of the implementation.
The same applies to interoperability, i. e. the
property that the service can be combined
with others, scalability, i. e. that the service
can be applied to various input sizes, and
modifiability, i. e. the property that the user
may tune the service.
Furthermore, properties such as testabil-
ity, maintainability and verifiability refer to
software-technical characteristics. Actually,
for a service user it is much more import-
ant that a service has been adequately tested
and verified, the results of these quality assur-
ance measures are available and reproducible,
and preferably the service has already been
certified according to some common qual-
ity standard rather than obtaining knowledge
that verification, validation and testing can
be done.

Usage Aspects: This is usually associated with
a usability SLA. Terms such as understand-
ability or learnability used in this context are
only vaguely defined and thus cannot be used
for monitoring purposes. Usability studies
can nonetheless give recommendations to
service users.

However, some of the technical aspects, in
particular the implementation aspects, may also be
regarded as defining obligations and commitments
of the provider to guarantee particular features
of the service, in which case the scope of the
commitments made has to become part of the
SLA.

Obligations and Rights of the Provider: The
most relevant class of SLAs covers obligations
of the service provider, which also capture
what the provider is committed to provide. The
most commonly discussed SLAs in this class
comprise the following:

Availability: The SLA should cover when and
for how long the service is guaranteed to be
available to the user. Normally, this is formu-
lated by some form of acceptable down-time.
We will discuss availability SLAs further
down.

Performance: The SLA defines the expected
(maximum / average) response time and
throughput. Same as for availability, probab-
ility distributions could be used, but this is
not state-of-the-art.

Security and Privacy: SLAs concerning secur-
ity and privacy could define the used meth-
ods for authentication, identity management,
firewall rules, secrets to be preserved, con-
fidentiality regulations, auditing procedures,
etc. In our point of view it appears advisable
not only to register the obligations of the pro-
vider but also the means to be taken to ensure
security and privacy.

Reliability: This refers to the measures taken
by the provider to ensure that message content
and the service results as a whole are reliable.

http://dx.doi.org/10.18417/emisa.si.hcm.16

Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.16
Conceptual Modelling of Service-Oriented Software Systems 229
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Penalty and Compensation: These SLA cap-
ture mainly factual data about the amount to
be repaid in case an SLA cannot be satisfied.

In addition they may be SLAs capturing rights
of the provider, e.g. to close down the service
for maintenance or in case of imminent security
threats – this could be coupled with alerting oblig-
ations – to update the service to a new version or
release, to cancel a contract in parts or as a whole,
to increase prices, etc.

Obligations and Rights of the User: Analogous-
ly, SLAs may refer to obligations of the users in
particular with respect to usage and security /
privacy regulations. These may also be subject
to penalty and compensation regulations.

3.3 A Perspective for Ambient Assistance
Buga et al. (2017b) discuss requirements
for a robotic care system based on the
commercially available GrowMu robot(see
http://www.growmeup.eu/index.php/home/growmu-
robot) with various extensions. The robot is to
support elderly people in everyday life activities.
While the core of the care system, the robot, acts
autonomously and cooperates with its client, a
key feature is its connection to a cloud to process
information, increase its knowledge, and to share
information with other care robots.

On a structural level the care robot is able to
move around in the elderly person’s household. It
provides means for audio-visual interaction com-
prising a tablet screen for additional input/output
of information, a camera to monitor the household
and the client in order to detect critical situations
(e. g. special requests of the client, reminders or
alerts, etc.), a microphone for receiving requests
by the client and enabling the discovery of critical
situations by analysing sound signals (e. g. a cry,
the sound of a falling object, etc.), and speakers
to deliver sound messages. Furthermore, the ro-
bot is equipped with sensors for temperature and
humidity, and with a tray attached to its body for
delivering small items (e. g. drugs the client has
to take).

Abstracting from the physical machine level
comprising among others the electric drive, the
sensors and the input/output devices, we consider
the core of the care system as a service-oriented
system. Thus, on the structural level we can think
of services such as Bring(®x), Come, Report(t(®x)),
Alert(®x), Observe(t(®x)) and Tacit!, respectively.
When issued the robot is to bring the small item
®x to the client, move to the client and wait for
further instructions, record the kind of task t(®x),
the time of issuing, the issuer, and (if applicable)
any rationale for the task, deliver audio-visual
information to the client and send the information
to the cloud, record information about an activity
t (with parameters ®x), or stop the transmission
of observations to the cloud, respectively (for
details see Buga et al. 2017b). All these structural
services assume a proper functioning of the robot.

On an operational level the care robot is to
learn the elderly person’s needs and habits over
time and enhance its functionality, which permits
compensation for the degradation of the client’s
capabilities, and supports encouragement for re-
maining active, independent and socially involved.
For this the cloud maintains an anonymised profile
of the client comprising routine activities, special
care needs, risks that require observation, particu-
lar interests, etc. The observations collected by the
robot are subject to machine learning mechanisms
that enable to learn changes to the profile. All
services provided by the care robot depend on such
profiles. Profiles are to be maintained by service
knowledge bases in the cloud. All robot-cloud
interaction will exploit a client-cloud middleware.
The middleware is used to support the interaction
of a robot with cloud-based services that are used
in several ways such as failure alerts, failure com-
pensation, anticipation of failure situations and
failure prevention, behavioural pattern detection,
safety hazards detection, and enabling of basic
security mechanisms.

In order to support optimal care the cloud-
based robotic care system is to support multiple
interacting care robots. This addresses a learning
aspect as well as a collaboration aspect. These are
used in the various ways dealing with uncertainty

http://dx.doi.org/10.18417/emisa.si.hcm.16

International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.16

230 Klaus-Dieter Schewe, Karoly Bósa, Andreea Buga, Sorana Tania Nemeş
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

and privacy and enabling collaboration among
robots. For instance, in the case that multiple
robots take care of a group of elderly people, e.g. in
an elderly home, each robot having dedicated tasks
(e.g. being company during a walk, delivering
post or medicine, remind a caretaker to drink,
etc.), the robots have to interact with each other
and decide (by means of consensus algorithms),
which robot is responsible for a particular patient.
These responsibilities may change over time, for
which location-based information will be required
from the robot, that is analysed by the monitoring
layer to anticipate the upcoming needs of the
patient, and the adaptation layer will realise the
change of responsibilities when needed. This
is extended further to capture failure situations,
where other robots will have to step in to replace
the functionality of a broken down “colleague”.

4 A Proposal for Continued Research

We reported on our research on the foundations of
conceptual modelling for service-oriented systems.
The BDCM2 framework (reported in detail by
Schewe and Wang 2015) addresses in an axiomatic
way the following important features of services:

Behaviour: There must exist a general behavi-
oural theory of services. For this we outlined
our research on the model of Abstract State
Services (AS2s) by Ma et al. (2009a), which
follows the line of research of the ASM thesis.

Description: There must exist a description of
a service that allows it to be discovered and
used. For this we stressed services ontologies,
e. g. the model by Ma et al. (2009b) addressing
functional, categorical and quality aspects of
services.

Contracting: There must exist a contract between
service provider and user covering all relevant
SLAs for the service. Here we outlined that
quality aspects of services should be extended
to capture also all other aspects that could give
rise to SLAs. The collection of SLAs has to be
treated as a binding contract between service
provider and user.

Mediation: A user must use services in the con-
tracted way, but can build service mediations
to realise service-oriented systems satisfying
his purposes. For this we rely on the model
of service mediators developed by Ma et al.
(2012).

Monitoring and Adaptation: It must be possible
to monitor the execution of service mediator
instance in order to validate its behaviour and
contracted SLAs. In case of detected critical
situations or SLA violations the system config-
uration should be changed on-the-fly.

We then sketched the modelling of distributed,
adaptive systems that are based on services suppor-
ted by multiple clouds (for details see Buga et al.
2017a and the references in there). The underlying
model for service-oriented systems that exploit
cloud-enabled services is the mediator model, and
the selection of such services is driven by a service
ontology comprising functional, categorical and
SLA-based characteristics. The concrete inter-
action with the multiple clouds is realised by a
middleware architecture developed by Bósa et al.
(2014). This middleware is extended by monitor-
ing and adaptation layers that identify the need for
a change of a mediator instantiation and provide
an updated one. All parts of the model have been
specified using Abstract State Machines includ-
ing the extensions covering ambient computing
(see Börger et al. 2012), concurrency (see Börger
and Schewe 2016) and linguistic reflection (see
Schewe et al. 2017). We further illustrated the
model by a use case concerning a cloud-based
robotic care system providing services for the sup-
port of an elderly client (see Buga et al. 2017b for
more details).

What is more exciting for an active researcher
than an open invitation to contribute to still
open problems? The BDCM2 framework tries
to cover all aspects of software services and goes
much further than related work by Bergholtz et
al. (2015), Ferrario et al. (2011), Sampson and
Froehle (2006), Preist (2004) or Alves et al. (2007).
Nonetheless, there is still no common agreement
on the ontological question what services and

http://dx.doi.org/10.18417/emisa.si.hcm.16

Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.16
Conceptual Modelling of Service-Oriented Software Systems 231
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

service-oriented systems are. For instance, the
proposal by Dahanayake and Thalheim (2015)
contains ideas that are worth being considered as
well. It would be great, if aspects that have not
yet been covered adequately in the BDCM2 frame-
work (if any) were discovered and the framework
fine-tuned. Let us make cloud-enabled distributed
adaptive systems a prime theme for conceptual
modelling and use ambient assistance as an ap-
plication, where service-orientation, autonomous
systems and domain-specific conceptual model-
ling come together.

References
Al Machot F., Mayr H. C., Michael J. (2014)
Behavior Modeling and Reasoning for Ambient
Support: HCM-L Modeler. In: Ali M., Pan J.,
Chen S., Horng M. (eds.) Modern Advances in
Applied Intelligence (IEA/AIE 2014). Lecture
Notes in Computer Science Vol. 8482. Springer,
pp. 388–397
Alonso G. et al. (eds.) Web Services: Concepts,
Architectures and Applications. Springer-Verlag
Alves A. et al. (2007) Web Services Business Pro-
cess Execution Language, version 2.0. Last Access:
OASIS Standard Committee, http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html
Arsanjani A., Ghosh S., Allam A., Abdollah T.,
Ganapathy S., Holley K. (2008) SOMA: A method
for developing service-oriented solutions. In: IBM
Systems Journal 47(3), pp. 377–396
Benatallah B., Casati F., Toumani F. (2006) Rep-
resenting, Analysing and Managing Web Service
Protocols. In: Data and Knowledge Engineering
58(3), pp. 327–357
Bergholtz M., Andersson B., Johannesson P.
(2015) Towards a model of services based on
co-creation, abstraction and rights distribution. In:
Thalheim B., Schewe K.-D., Prinz A., Buchberger
B. (eds.) Correct Software in Web Applications
and Web Services. Springer, pp. 29–44
Börger E., Schewe K.-D. (2016) Concurrent Ab-
stract State Machines. In: Acta Informatica 53(5),
pp. 469–492

Börger E., Stärk R. (2003) Abstract State Machines.
Springer-Verlag, Berlin Heidelberg New York

Börger E., Cisternino A., Gervasi V. (2012) Am-
bient Abstract State Machines with Applications.
In: J. Comp. Syst. Sci. 78(3), pp. 939–959

Bósa K. (2012) Formal Modeling of Mobile Com-
puting Systems Based on Ambient Abstract State
Machines. In: Semantics in Data and Knowledge
Bases. LNCS Vol. 7693. Springer, pp. 18–49

Bósa K. (2013) An Ambient ASM Model for
Client-to-Client Interaction via Cloud Computing.
In: Proceedings of the 8th International Confer-
ence on Software and Data Technologies (IC-
SOFT). SciTePress, pp. 459–470

Bósa K., Chelemen R., Vleju M. B. (2015) A
Formal Model of Client-Cloud Interaction. In:
Thalheim B., Schewe K.-D., Prinz A., Buchberger
B. (eds.) Correct Software in Web Applications.
Springer, pp. 83–144

Bósa K., Holom R. M., Vleju M. B. (2014) A
Formal Model of Client-Cloud Interaction. In:
Thalheim B., Schewe K.-D., Prinz A., Buchberger
B. (eds.) Correct Software in Web Applications
and Web Services. Springer, pp. 83–144

Brodie M. L. (1984) On conceptual modelling –
perspectives from artificial intelligence, databases
and programming languages. Topics in informa-
tion systems. Springer

Buga A., Nemeş S. T., Schewe K.-D. (2017a) Con-
ceptual Modelling of Autonomous Multi-cloud
Interaction with Reflective Semantics. In: Mayr
H. C., Guizzardi G., Ma H., Pastor O. (eds.) Con-
ceptual Modeling - 36th International Conference
(ER 2017). Lecture Notes in Computer Science
Vol. 10650. Springer, pp. 120–133

Buga A., Nemeş S. T., Schewe K.-D. (2017b) To-
wards Care Systems Using Model-Driven Adapta-
tion and Monitoring of Autonomous Multi-clouds.
In: de Cesare S., Frank U. (eds.) Advances in Con-
ceptual Modeling (ER 2017 Workshops). Lecture
Notes in Computer Science Vol. 10651. Springer,
pp. 26–35

http://dx.doi.org/10.18417/emisa.si.hcm.16

International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.16

232 Klaus-Dieter Schewe, Karoly Bósa, Andreea Buga, Sorana Tania Nemeş
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Dahanayake A., Thalheim B. (2015) W∗H: The
Conceptual Model of Services. In: Thalheim B.,
Schewe K.-D., Prinz A., Buchberger B. (eds.)
Correct Software in Web Applications. Springer,
pp. 145–176

Erl T. (2007) SOA: Principles of Service Design.
Prentice Hall Press, Upper Saddle River, NJ, USA

Fensel D. et al. (2007) Enabling Semantic Web
Services. Springer-Verlag

Ferrario R., Guarino N., Fernández-Barrera M.
(2011) Towards an Ontological Foundation for Ser-
vices Science: The Legal Perspective. In: Sartor G.,
Casanovas P., Biasiotti M., Fernández-Barrera M.
(eds.) Approaches to Legal Ontologies. Law, Gov-
ernance and Technology Vol. 1. Springer, Nether-
lands, pp. 235–258

Ferrarotti F., Schewe K.-D., Tec L., Wang Q.
(2016) A New Thesis Concerning Synchronised
Parallel Computing – Simplified Parallel ASM
Thesis. In: Theoretical Computer Science 649,
pp. 25–53

Fliedl G., Kop C., Mayr H. C. (2005) From textual
scenarios to a conceptual schema. In: Data Knowl.
Eng. 55(1), pp. 20–37

Grau B. C., Horrocks I., Motik B., Parsia B., Patel-
Schneider P. F., Sattler U. (2008) OWL 2: The
next step for OWL. In: Journal of Web Semantics
6(4), pp. 309–322

Hesse W. et al. (2004) Ontologien in der und für die
Softwaretechnik. In: Rumpe B., Hesse W. (eds.)
Modellierung 2004. LNI Vol. 45. GI, pp. 269–270

Hull R., King R. (1987) Semantic Database Mod-
eling: Survey, Applications, and Research Issues.
In: ACM Comput. Surv. 19(3), pp. 201–260

Kaschek R. et al. (2006) Information systems
design: through adaptivity to ubiquity. In: Inf.
Syst. E-Business Management 4(2), pp. 137–158

Kossak F. et al. (2016) Hagenberg Business Pro-
cess Modelling Method. Springer

Lampesberger H., Rady M. (2015) Monitoring of
Client-Cloud Interaction. In: Thalheim B., Schewe
K.-D., Prinz A., Buchberger B. (eds.) Correct
Software in Web Applications. Springer, pp. 177–
228

Lampesberger H. (2016) Technologies for Web
and cloud service interaction: a survey. In: Ser-
vice Oriented Computing and Applications 10(2),
pp. 71–110

Ma H., Schewe K.-D., Thalheim B., Wang Q.
(2008) Abstract State Services. In: Song I.-Y. et al.
(eds.) Advances in Conceptual Modeling – Chal-
lenges and Opportunities, ER 2008 Workshops.
LNCS Vol. 5232. Springer-Verlag, pp. 406–415

Ma H., Schewe K.-D., Thalheim B., Wang Q.
(2009a) A Theory of Data-Intensive Software
Services. In: Service Oriented Computing and Its
Applications 3(4), pp. 263–283

Ma H., Schewe K.-D., Thalheim B., Wang Q.
(2012) A Formal Model for the Interoperability of
Service Clouds. In: Service Oriented Computing
and Its Applications 6(3), pp. 189–205

Ma H., Schewe K.-D., Wang Q. (2009b) An Ab-
stract Model for Service Provision, Search and
Composition. In: Kirchberg M. et al. (eds.) Ser-
vices Computing Conference - APSCC 2009.
IEEE Asia Pacific, pp. 95–102

Mayr H. C. et al. (2007) Business Process Model-
ing and Requirements Modeling. In: First Interna-
tional Conference on the Digital Society (ICDS
2007), p. 8

Michael J., Mayr H. C. (2013) Conceptual Mod-
eling for Ambient Assistance. In: Ng W., Storey
V. C., Trujillo J. (eds.) Conceptual Modeling -
32th International Conference (ER 2013). Lecture
Notes in Computer Science Vol. 8217. Springer,
pp. 403–413

Michael J., Mayr H. C. (2016) The Process of
Creating a Domain Specific Modelling Method
(Extended Abstract). In: Mendling J., Rinderle-
Ma S. (eds.) Proceedings of the 7th International
Workshop on Enterprise Modeling and Informa-
tion Systems Architectures (EMISA 2016). CEUR

http://dx.doi.org/10.18417/emisa.si.hcm.16

Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.16
Conceptual Modelling of Service-Oriented Software Systems 233
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Workshop Proceedings Vol. 1701. CEUR-WS.org,
pp. 40–43
Universal Description, Discovery and Integration
(UDDI). Last Access: http://www.uddi.org
Papazoglou M. P., van den Heuvel W.-J. (2006)
Service-oriented design and development meth-
odology. In: International Journal of Web Engin-
eering and Technology 2(4), pp. 4120–442
Papazoglou M. P., van den Heuvel W.-J. (2007)
Service Oriented Architectures: Approaches, Tech-
nologies and Research Issues. In: VLDB Journal
16(3), pp. 389–415
Preist C. (2004) A Conceptual Architecture for
Semantic Web Services. In: McIlraith S. A., Plex-
ousakis D., van Harmelen F. (eds.) The Semantic
Web – ISWC 2004. Lecture Notes in Computer
Science Vol. 3298. Springer, Berlin Heidelberg,
pp. 395–409
Rady M. (2012) Parameters for Service Level
Agreements Generation in Cloud Computing: A
Client-Centric Vision. In: Castano S. et al. (eds.)
Advances in Conceptual Modeling – ER 2012
Workshops. Lecture Notes in Computer Science
Vol. 7518. Springer, Berlin Heidelberg, pp. 13–22
Rady M. (2014) Generating An Excerpt Of A
Service Level Agreement From A Formal Defini-
tion of Non-Functional Aspects using OWL. In:
Journal of Universal Computer Science 20(3),
pp. 366–384 https://doi.org/10.3217/jucs-020-03-
0366

Sampson S. E., Froehle C. M. (2006) Foundations
and Implications of a Proposed Unified Services
Theory. In: Production and Operations Manage-
ment 15(2), pp. 329–343
Schewe K.-D. et al. (2005) A Conceptual View of
Web-Based E-Learning Systems. In: EAIT 10(1-
2), pp. 83–110
Schewe K.-D., Ferrarotti F., Tec L., Wang Q., An
W. (2017) Evolving Concurrent Systems – Be-
havioural Theory and Logic. In: Proceedings of
the Australasian Computer Science Week (ACSW
2017). ACM, Deakin University, Victoria, Aus-
tralia, 77:1-77-10

Schewe K.-D., Thalheim B. (2018) Design and
Development of Web Information Systems. (to
appear). Springer

Schewe K.-D., Wang Q. (2010) A Customised
ASM Thesis for Database Transformations. In:
Acta Cybernetica 19(4), pp. 765–805

Schewe K.-D., Wang Q. (2012) Preferential Re-
finements of Abstract State Machines for Service
Mediators. In: Muccini H., Tang A. (eds.) Proc.
QSIC 2012. IEEE CPS, pp. 158–166

Schewe K.-D., Wang Q. (2015) What Constitutes
a Service on the Web? In: Thalheim B., Schewe
K.-D., Prinz A., Buchberger B. (eds.) Correct
Software in Web Applications and Web Services.
Springer, pp. 257–292

Shekhovtsov V. A., Mayr H. C., Kop C. (2012)
Towards Conceptualizing Quality-Related Stake-
holder Interactions in Software Development. In:
Mayr H. C., Kop C., Liddle S. W., Ginige A.
(eds.) Information Systems: Methods, Models, and
Applications (UNISCON 2012). Lecture Notes
in Business Information Processing Vol. 137.
Springer, pp. 73–86

Simple Object Access Protocol (SOAP). Last Ac-
cess: http://www.w3c.org/TR/soap

Thalheim B. (2000) Entity-Relationship Modeling:
Foundations of Database Technology. Springer-
Verlag

Thalheim B., Schewe K.-D., Prinz A., Buchberger
B. (eds.) Correct Software in Web Applications
and Web Services. Springer

Zeithaml V. A., Parasuraman A., Berry L. L.
(1985) Problems and Strategies in Services Mar-
keting. In: Journal of Marketing 49(2), pp. 33–
46

This work is licensed under
a Creative Commons
‘Attribution-ShareAlike 4.0
International’ licence.

http://dx.doi.org/10.18417/emisa.si.hcm.16
https://doi.org/10.3217/jucs-020-03-0366
https://doi.org/10.3217/jucs-020-03-0366
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

