
Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.18
FlowagileXML 243
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Eliciting User Interface Requirements and Deriving Usability
Problems from Scenario Textual Descriptions

Josefina Guerrero-García*,a, Juan González-Callerosa

a Computer Science Faculty, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.

Abstract. Scenario Textual Descriptions (STD) are general-purpose natural language descriptions of a
narrative scenario of end users, real or potential, using an existing or a future interactive system. STDs
may take many forms: use cases, structured scenarios, user stories, and natural language expressions of
user actions. As such, these STDs contain useful information for initiating the development life cycle of a
user interface of this interactive system. On the one hand, when the end user expresses some interaction
through these STDs, user interface requirements can be elicited by deriving model fragments from them:
user model, task model, domain model, process model, etc. On the other hand, when the end user refers to
any previously used system to feed the requirements, usability problems can be derived from user interfaces
critiques: usability problems by interaction object, by dialogue box or window, by entire application. Both
approaches feed a bidirectional approach where requirements and usability problems co-exist in the same
STD. This article presents how FlowiXML supports the entire approach based on a real-world case study
for a distributed system for managing teaching students.

Keywords. Automated User Interface Generation • Business Modelling • Requirements Elicitation

1 Introduction
Scenario-based design (Rosson and Carroll 2009)
as well as Participatory Design and other forms of
user-centred design initiate typically initiate the
development life cycle of the User Interface (UI) of
an interactive application using Scenario Textual
Descriptions (STD), which are general-purpose
natural language descriptions of a narrative scen-
ario of end users, real or potential, using an ex-
isting or a future interactive system.Such STDs
usually consist of informal but structured narrative
descriptions of interaction sequences between the

* Corresponding author.
E-mail. jguerrero@cs.buap.mx
Note: In a previous work (Lemaigre et al. 2008), we have
introduced the process of how to elicit model requirements
from textual scenarios. This article generalizes the whole
process based on Scenario Textual Descriptions with two
original aspects: automatic text interpretation to select ele-
ments with CRUDS-based UI to support the handling of
selected objects and deriving usability problems from the
same source.

users and the interactive system, whether it is ex-
isting or envisioned. Scenarios have been proved
(Rosson and Carroll 2009) to be a valuable mean
to elicit, improve, and validate UI requirements.
On the other hand, descriptions of the UI domain
itself and the UI requirements are also expressed
using conceptual models depicting either static
(Tam et al. 1998) or dynamic (Fliedl et al. 2003)
aspects of the interactive system. The models res-
ulting from this process are supposed to raise the
level of abstraction with respect to the implement-
ation (Tam et al. 1998). The models are frequently
expressed in a formal way so as to enable model
reasoning. The process which ultimately leads
to these descriptions, whether they are informal
(such as scenarios) or semi-formal (such as mod-
els) is Requirement Engineering (RE) (Haumer
et al. 1998). STDs have the advantage to describe
UI requirements from captured or imagined user
interactions through concrete examples (Garland
et al. 2001) of the user carrying out her task. This

http://dx.doi.org/10.18417/emisa.si.hcm.18
jguerrero@cs.buap.mx


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.18

244 Josefina Guerrero-García, Juan González-Calleros
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

form is much more representative and evocative
for an end user to validate UI requirements than
models that are mainly used by software engin-
eers. Models, e. g., domain models, user models,
are expressed in a way that maximizes desirable
properties such as completeness, consistency, and
correctness (Vanderdonckt 2005). But their ex-
pression is significantly less understandable for
end users who are often in trouble of validating
their UI requirements when they are confronted to
models. Consequently, both types of descriptions,
scenarios and models, are needed interchangeably
in order to conduct a proper process that will
effectively and efficiently feed the remainder of
the UI development life cycle. STDs could be
also effectively used in various configurations of
the user interface development life cycle, like for-
ward engineering (Simarro et al. 2005), reverse
engineering (Bouillon et al. 2004), adaptation of
user interfaces (López-Jaquero et al. 2007), and
automated evaluation (Beirekdar et al. 2002).

We introduce model elicitation as the activity of
transforming textual scenarios into models that are
pertaining to the UI development. The remainder
of this article is structured as follows: some re-
lated work is reported in Section 2. Three levels
of model elicitation are defined in Section 3 and
consistently described and discussed in the light of
a model elicitation tool implementing these tech-
niques. Section 4 gives another example. Section
5 will sum up the benefits and the shortcomings
of the model elicitation techniques investigated so
far and will present some future avenues for this
work.

2 Related Work

Model elicitation consists of transforming scen-
arios into models so that they are usable in the rest
of the UI development life cycle (Haumer et al.
1998), for instance by conducting a model-driven
engineering method (e. g., Clerckx et al. 2006;
Vanderdonckt 2005). Model verbalization (Jarrar
et al. 2014) is the inverse process: it consists of
transforming model elements into textual scen-
arios while preserving some quality properties

(e. g., concision, consistency). Any model may be
considered for this purpose: models found in HCI
(e. g., task, user) or in RE (e. g., domain, organiz-
ation). In (Bono and Ficorilli 1992), the system
restates queries expressed on a domain model
(here, an entity-relationship attribute model) into
natural language expression. As such, model eli-
citation is not new in software engineering (Fliedl
et al. 2005, 2004), but at least four significant
works have been conducted in Human-Computer
Interaction (HCI):

1. U-TEL (Lu et al. 1999) is a user-task elicita-
tion software that enables designers to allocate
elements of a textual scenarios into elements
of three models: actions names (relevant to the
task model), user classes (relevant to a user
model), and objects names (relevant to a do-
main model). This allocation can be conducted
manually or automatically.

2. In (Caffiau and Portet 2017), a task model
is expressed through a STD and a mapping
(Simarro et al. 2005), manipulate, and correct
better a STD representation of the task model
than the task model itself, which may involve a
special notation.

3. T2T (Paris et al. 2002) is a tool for automatic
acquisition of task elements (names and relation-
ships) from textual documents such as manuals.
Another version exists for the same purpose
from a domain model (here, an object-oriented
diagram) (Lu et al. 1999) and fro multiple het-
erogeneous sources (Lu et al. 2002).

4. Garland et al. (Garland et al. 2001) present
general software for gathering UI requirements
from examples containing various elements that
are relevant for different models, but models
are not constructed per se.

From these works, we observed the following
shortcomings: some, e. g., (Garland et al. 2001)
do not produce a genuine model in the end, some
other produce model elements that are relevant to
HCI (e. g., Garland et al. 2001; Paris et al. 2002;
Paternò and Mancini 1999), but the only some
model elements are derived (e. g., task names)

http://dx.doi.org/10.18417/emisa.si.hcm.18


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.18
FlowagileXML 245
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

or they mostly focus on task models whereas
several models are typically found in HCI, not
only the task model. When other models are
considered, e. g., the user and the domain (Lu
et al. 1999), only the names of the classes are
captured. In this article, we would like to capture
all elements (classes, attributes, and relationships)
of several interrelated models to inform the UI
development life cycle. It is however fundamental
that the task model is considered to initiate a full
model-driven engineering life cycle (Clerckx et al.
2006; Paternò and Mancini 1999). DYNAMO-
AID (Clerckx et al. 2006) provides a distribution
manager which distributes the sub-tasks of a task
model to various computing platforms in the same
physical environment, thus fostering a task-based
approach for distributing UIs across locations of
the physical environment. In the next section,
an elicitation of UI model elements is provided
according to three levels of sophistication.

3 User Interface Model Elements
Elicitation

In order to effectively support UI model elicita-
tion, the model elements that are typically involved
in the UI development life cycle should be con-
sidered. Figure 1 reproduces a simplified version
of the ontology of these model elements that will
be used throughout this article: only classes and
relationships are depicted here for concision, not
their attributes and methods. The complete ver-
sion of this ontology along with its definition and
justification is detailed in (Guerrero Garcia et al.
2008). We choose this ontology because it char-
acterizes the concepts used in the development
life cycle of UIs for workflow systems, which are
assumed to have the one of the largest coverage
possible. Any other similar ontology could be
used instead. In this ontology, tasks are organized
into processes which are in turn ordered in a Work-
flow. A job consists of a logical grouping of tasks,
as we know them (Paternò and Mancini 1999).
Jobs are usually assigned to organizational units
(e. g., a department, a service) independently of
the workers who are responsible to conduct these

jobs. These workers are characterized thanks to
the notion of user stereotype. But a same task
could require other types of resources such as
material resources (e. g., hardware, network) or
immaterial resources (e. g., electricity, power).
A task may manipulate objects that can invoke
methods in order to ensure their role. Figure 1
represents the conceptual coverage of model ele-
ments that will be subject to model elicitation
techniques. This coverage is therefore larger than
merely a task, an object, a user as observed today
in the state of the art. In the next subsections, three
progressively more sophisticated elicitation tech-
niques based on this ontology will be described,
motivated, and exemplified on a running textual
scenario. This scenario explains the workflow for
obtaining administrative documents in a town hall.

3.1 Model Elicitation Level 1: Manual
Classification

The UI designer is probably the most reliable
person to identify in the textual scenario frag-
ments that need to be elicited into model elements.
Therefore, manual classification of model ele-
ments remains of high importance for flexibility,
reliability, and speed. In a manual classification,
any name that represents an instance of a model
element belonging to the ontology can be manu-
ally selected, highlighted, and assigned to the
corresponding concept, such as a task, a job, an
organizational unit, etc. Consequently, all occur-
rences of this instance are automatically identified
in the scenario and highlighted in the colour as-
signed to this concept. For instance, grey for an
object, yellow for a user, red for an organizational
unit, blue for a task. This colour coding scheme
can be parametrized according to the designer’s
preferences.

Elicitation of a class. Any class belonging to
the ontology can be manually classified according
to the aforementioned technique. For example,
“statement” is considered as an object instance in
Figure 2 and is therefore assigned to the corres-
ponding tab . Since a model element may appear
in the scenario in multiple alternative forms (e. g.,

http://dx.doi.org/10.18417/emisa.si.hcm.18


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.18

246 Josefina Guerrero-García, Juan González-Calleros
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 1: Simplified ontology of the model elements.

a plural form, a synonym), an alias mechanism
enables designers to defines names that are con-
sidered equivalent to a previously defined one.
For example, “statements” and “stated text” could
be considered aliases of “statement”.

In User-Centred Design (UCD), tasks, users,
and objects are often considered as first-class
citizens. Therefore, it is likely that the design
will initiate the classification by identifying firstly
tasks and related objects for instance. An object
or a task could be of course elicited separately. In
order to speed up this activity, the designer may
directly associate a task to its related object when
selected according to the same mechanism. All
occurrences are highlighted similarly. Figure 3
illustrates this situation: a “birth statement” object
is selected and a task “issuing” is attached to this
object in order to create a complete task “issuing
a birth statement”.

A special support exists for tasks: at any time,
the designer may specify for a task:

• A predefined task type: a taxonomy of task types
(e. g., communicate, create, delete, duplicate)
is made accessible for the designer to pick a
name from, while a definition for each task
type is displayed. This taxonomy consists of 15
basic task types that are decomposed into +/-
40 synonyms or sub-task types as used in the
UsiXML User Interface Description Language
[18]. Each predefined task type comes with a
precise definition and scope of the task, some

synonyms if any, and its decomposition into
sub-tasks if any.

• A custom task name: any non-predefined task
name can be entered, such as “issuing” in Figure
3.

• A pattern of tasks: any set of predefined task
types and of custom task names. Such a set
can be defined by the designer and reused at
any time. For example, the pattern CRUD
(acronym for Create, Read, Update, Delete)
will automatically enter four predefined task
types for a designated object.

Elicitation of an attribute. The same technique
is used in order to elicit an attribute of a class:
either this attribute is predefined in the ontology
(e. g., “frequency” to denote the frequency of a
task) or a custom name can be manually entered.
For example, in Figure 4, the designer has iden-
tified in the scenario the expression denoting the
frequency of task and therefore elicits this attrib-
ute for the corresponding task (here, “ticketing”).
The attribute is then represented as a facer of the
corresponding task. Figure 5 graphically depicts
the three main steps for entering a custom name
for an attribute, here an organizational unit. The
location of an organization unit is an attribute that
does not belong to the ontology. Therefore, once
such a parameter has been selected (Figure 5a), it
can be identified with a unique name (Figure 5b),
and then included in the hierarchy (Figure 5c).

Elicitation of a relationship. By using drag and
drop, the designer can arrange model elements

http://dx.doi.org/10.18417/emisa.si.hcm.18


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.18
FlowagileXML 247
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 2: Elicitation of a class (here, an object) in manual classification.

Figure 3: Assigning a task to a already defined object.

in their corresponding hierarchy in order to re-
flect the decomposition relationships of Figure 1.
For example, a task is decomposed into sub-task,
tasks are composed in a process, processes are
composed into a workflow. Apart from these de-
composition relationships, only the “manipulates”
relationship between a task and an object can be
encoded in this level because it can be recorded
thanks to the special support for tasks described
above. For example in the right pane of Figure
3, the object “statement” is further refined into
the two sub-classes “birth statement” and “death
statement”, that automatically inherit from the
attributes of the super-class.

3.2 Model Elicitation Level 2:
Dictionary-based Classification

The model elicitation technique described in the
previous sub-section, although flexible, reliable,
and fast, represents a tedious task for the designer
since it is likely to be repeated. Therefore, instead
of manually designating in the textual scenario
the fragments that are subject to model elicitation,
these fragments could be automatically classified
according to a dictionary of model terms. We
distinguish two categories of dictionary:

1. Generic dictionaries contain fragments repres-
enting model elements that are supposed to

http://dx.doi.org/10.18417/emisa.si.hcm.18


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.18

248 Josefina Guerrero-García, Juan González-Calleros
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 4: Elicitation of a predefined attribute for a task.

be domain-independent (e. g., “a worker”, “a
manager”, “a clerk” for a user model; “create”,
“read”, “update”, “delete” for a task model, etc.)

2. Specific dictionaries that contain fragments
representing model elements that are domain-
dependent (e. g., a “physician”, “a pharmacist”
in medicine for a user model; “administrate”
for a task model, “physiology ” for a domain
model).

Each dictionary may contain predefined terms
(like the task types) and aliases (e. g. plural, syn-
onyms) in order to maximize the coverage of the
automatic classification. In order to tailor this
classification, two types of filters could be applied
Tam et al. 1998:

1. Positive filters force some model terms to be
considered anyway, whatever the domain or the
context of use are.

2. Negative filters prevent the automatic classific-
ation from classifying irrelevant terms, such as
articles (e. g., “the”, “a”), conjunctions (e. g.,
“with”, “along”).

The terms collected in such filters can be edited
manually within any ASCII-compliant text editor.
The advantage of this dictionary-based classifica-
tion over the manual one is certainly its speed: in

a very short amount of time, most terms belong-
ing to the dictionaries, modulo their inclusion or
rejection through the usage of filters, are classified.
The most important drawback of this technique is
that the identified terms are not necessarily located
in the right place in their corresponding hierarch-
ies. For example, a task hierarchy resulting from
this process may consist of a one-level hierarchy
of dozens of sub-tasks located in the same level
without any relationships between them. In order
to overcome this serious drawback, a semantic-
based technique is required that is addressed in
the next subsection.

3.3 Model Elicitation Level 3: Towards
Semantic Understanding

Different techniques exist that elicit model ele-
ments from textual scenarios, but so far they have
never been applied in HCI to our knowledge: syn-
tactic tagging (Fliedl et al. 2003), semantic tagging
(Fliedl et al. 2004), chunk parsing (Fliedl et al.
2004). Genuine semantic understanding requires
natural language understanding and processing,
which is far beyond the scope of this work. What
can be done however is to substitute a semantic
understanding by a combination of syntactic and
semantic tagging (Fliedl et al. 2005, 2004) in
order to recognize possible terms that express,
depict, reveal model elements. For instance, a

http://dx.doi.org/10.18417/emisa.si.hcm.18


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.18
FlowagileXML 249
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 5: Section a. Elicitation of a custom attribute for an organizational unit: selection. Selection b Elicitation
of a custom attribute for an organizational unit: identification. Section c. Elicitation of a custom attribute for an
organizational unit: inclusion.

scenario sentence like “An accountant receives
taxes complaints, but she is also in charge of
receipts perception” should generate: a task “Re-
ceive taxes complaint”, a task “charge of receipts
perception”, both being assigned to the user stereo-
type “Accountant”, and a concurrency temporal
operator between those two tasks because no spe-
cific term is included to designate how these tasks
are actually carried out by an accountant. We may
then assume the most general temporal operator,
like a concurrency temporal operator. To reach
this goal, this level attempts to identify possible
terms in a syntactical structure (e. g., a set, a list,

a sequence) that depicts a pattern for inferring
for instance a task, another task with a temporal
constraint, etc. For each model element, a table
of possible terms involved in this pattern structure
is maintained in accordance with the semantics
defined in Figure 1. On the one hand, this pattern
matching scheme is syntactical because it is only
based on detecting a particular combination of
terms. On the other hand, those terms are assumed
to reflect the precise semantics defined in the onto-
logy. But we cannot say that this is a true semantic
understanding anyway. Table 1 shows some ex-
cerpts of possible terms related to the concept

http://dx.doi.org/10.18417/emisa.si.hcm.18


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.18

250 Josefina Guerrero-García, Juan González-Calleros
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

of task, along with its attributes, while Table 2
shows some possible terms for detecting possible
temporal relationships between tasks. This pat-
tern matching can be executed automatically or
under the designer’s control who validates each
matching one by one. The reserved names for
model elements (e. g., task, the task attributes, and
the temporal operators between the tasks) are read
from the XML schema definition of the underly-
ing User Interface Description Language (UIDL),
which is UsiXML (Vanderdonckt 2005) in this
case. After performing the elicitation of model
elements according to any of the three aforemen-
tioned technique, the model elicitation tool can
export the results in UsiXML files for the whole
set of models or for any particular combination
(e. g., only the tasks with the users) at any time.
Afterwards, this file can be imported in any other
UsiXML-compliant editor, such as IDEALXML
for graphical editing.

4 Conclusion

In this article, we have investigated three differ-
ent techniques for eliciting model elements from
fragments found in a textual scenario. These
three techniques are progressively more advanced
in terms of consideration of the possible terms
found in the scenario: from purely manual syn-
tactical classification until ontology-based pseudo-
semantic understanding. Beyond the facilities for
automated classification of terms into the respect-
ive models, that are compatible with the initial
ontology, the model elicitation tool allows editing
facilities within a same model and across models.
Its main drawback today is the lack of graph-
ical visualization of inter-model relationships or
intra-model relationships, others than merely de-
composition relationships. For the moment, these
relationships are only collected in a table that can
be further edited. In the near future, we would
like to refine the level 3-technique in terms of
possible combinations of terms in an expression
to be subject for the pattern matching.

References
Beirekdar A., Vanderdonckt J., Noirhomme-
Fraiture M. (2002) A Framework and a Language
for Usability Automatic Evaluation of Web Sites
by Static Analysis of HTML Source Code. In: Kol-
ski C., Vanderdonckt J. (eds.) Computer-Aided
Design of User Interfaces III, Proceedings of the
Fourth International Conference on Computer-
Aided Design of User Interfaces, May, 15-17,
2002, Valenciennes, France. Kluwer, pp. 337–348

Bono G., Ficorilli P. (1992) Natural language re-
statement of queries expressed in a graphical lan-
guage. In: Entity-Relationship Approach—ER’92,
pp. 357–374

Bouillon L., Vanderdonckt J., Chow K. C. (2004)
Flexible re-engineering of web sites. In: Vander-
donckt J., Nunes N. J., Rich C. (eds.) Proceedings
of the 9th International Conference on Intelligent
User Interfaces, IUI 2004, Funchal, Madeira, Por-
tugal, January 13-16, 2004. ACM, pp. 132–139
http://doi.acm.org/10.1145/964442.964468

Caffiau S., Portet F. (2017) La génération auto-
matique de textes comme support de la compréhen-
sion de modèle de tâches en conception: une
étude préliminaire. In: Proceedings of IHM2017,
pp. 125–135 https://hal.archives-ouvertes.fr/hal-
01578499/file/1030.pdf

Clerckx T., Vandervelpen C., Luyten K., Coninx K.
(2006) A task-driven user interface architecture for
ambient intelligent environments. In: Proceedings
of the 11th international conference on Intelligent
user interfaces. ACM, pp. 309–311

Fliedl G., Kop C., Mayr H. C. (2003) From scen-
arios to KCPM dynamic schemas: aspects of auto-
matic mapping. In: NLDB, pp. 91–105

Fliedl G., Kop C., Mayr H. C. (2005) From textual
scenarios to a conceptual schema. In: Data &
Knowledge Engineering 55(1), pp. 20–37

Fliedl G., Kop C., Mayr H., Winkler C., Weber
G., Salbrechter A. (2004) Semantic tagging and
chunk-parsing in dynamic modeling. In: Natural
Language Processing and Information Systems,
pp. 440–446

http://dx.doi.org/10.18417/emisa.si.hcm.18
http://doi.acm.org/10.1145/964442.964468
https://hal.archives-ouvertes.fr/hal-01578499/file/1030.pdf
https://hal.archives-ouvertes.fr/hal-01578499/file/1030.pdf


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.18
FlowagileXML 251
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Garland A., Ryall K., Rich C. (2001) Learning
hierarchical task models by defining and refining
examples. In: Proceedings of the 1st international
conference on Knowledge capture. ACM, pp. 44–
51

Guerrero Garcia J., Vanderdonckt J., Gonzalez
Calleros J. M. (2008) FlowiXML: a step towards
designing workflow management systems. In: In-
ternational Journal of Web Engineering and Tech-
nology 4(2), pp. 163–182

Haumer P., Pohl K., Weidenhaupt K. (1998) Re-
quirements elicitation and validation with real
world scenes. In: IEEE Transactions on Software
Engineering 24(12), pp. 1036–1054

Jarrar M., Keet C. M., Dongilli P. (2014) Multi-
lingual verbalization of ORM conceptual models
and axiomatized ontologies. In:

Lemaigre C., Guerrero J., Vanderdonckt J. (2008)
Interface model elicitation from textual scenarios.
In: Human-Computer Interaction Symposium.
Springer, pp. 53–66

López-Jaquero V., Vanderdonckt J., Simarro F. M.,
González P. (2007) Towards an Extended Model
of User Interface Adaptation: The Isatine Frame-
work. In: Gulliksen J., Harning M. B., Palanque
P. A., van der Veer G. C., Wesson J. (eds.) En-
gineering Interactive Systems - EIS 2007 Joint
Working Conferences, EHCI 2007, DSV-IS 2007,
HCSE 2007, Salamanca, Spain, March 22-24,
2007. Selected Papers. Lecture Notes in Com-
puter Science Vol. 4940. Springer, pp. 374–392
https://doi.org/10.1007/978-3-540-92698-6_23

Lu S., Paris C., Vander Linden K. (1999) To-
ward the automatic construction of task models
from object-oriented diagrams. In: Engineering for
human-computer interaction. Springer, pp. 169–
189

Lu S., Paris C., Vander Linden K. (2002) Com-
puter Aided Task Model Acquisition From Het-
erogeneous Sources. In: Proc. of 5th Asia Pacific
Conference on Computer Human Interaction AP-
CHI, pp. 878–886

Paris C., Linden K. V., Lu S. (2002) Automated
knowledge acquisition for instructional text gen-
eration. In: Proceedings of the 20th annual inter-
national conference on Computer documentation.
ACM, pp. 142–151

Paternò F., Mancini C. (1999) Developing task
models from informal scenarios. In: CHI’99 Ex-
tended Abstracts on Human Factors in Computing
Systems. ACM, pp. 228–229

Rosson M. B., Carroll J. M. (2009) Scenario
based design. In: Human-computer interaction.
Boca Raton, FL, pp. 145–162

Simarro F. M., López-Jaquero V., Vanderdonckt J.,
González P., Lozano M. D., Limbourg Q. (2005)
Solving the Mapping Problem in User Interface
Design by Seamless Integration in IdealXML. In:
Gilroy S. W., Harrison M. D. (eds.) Interactive Sys-
tems, Design, Specification, and Verification, 12th
International Workshop, DSVIS 2005, Newcastle
upon Tyne, UK, July 13-15, 2005, Revised Papers.
Lecture Notes in Computer Science Vol. 3941.
Springer, pp. 161–172 https://doi.org/10.1007/
11752707_14

Tam R., Maulsby D., Puerta A. R. (1998) U-TEL:
A tool for eliciting user task models from domain
experts. In: Proceedings of the 3rd international
conference on Intelligent user interfaces. ACM,
pp. 77–80

Vanderdonckt J. (2005) A MDA-compliant en-
vironment for developing user interfaces of in-
formation systems. In: International Conference
on Advanced Information Systems Engineering.
Springer, pp. 16–31

This work is licensed under
a Creative Commons
‘Attribution-ShareAlike 4.0
International’ licence.

http://dx.doi.org/10.18417/emisa.si.hcm.18
https://doi.org/10.1007/978-3-540-92698-6_23
https://doi.org/10.1007/11752707_14
https://doi.org/10.1007/11752707_14
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

