
Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.15
Consistency Management Techniques for Variability Modelling 207
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Consistency Management Techniques for Variability Modelling

Alexander Felfernig*,a, Thomas Grubera, Martin Stettingera

a Graz University of Technology, Institute for Software Technology, Applied Software Engineering, Graz, Austria.

Abstract. Feature models are a means to represent software variability. Due to their logical grounding, such
representations allow for automated reasoning about specific model properties. In this article, we show
how the concepts of conflict detection and model-based diagnosis can be applied to analyse and improve
the quality of a feature model. The example feature model used in this context is based on the variability
information of a real-world event management environment.

Keywords. Variability Modelling • Feature Models • Consistency Management • Configuration

1 Introduction
Requirements Engineering (RE) is considered as
a crucial phase in software development (Kop
and Mayr 1998; Leffingwell and Widrig 2003;
Mayr and Kop 2002; Mayr et al. 2007). Low
quality requirement models can trigger enormous
follow-up costs manifested, for example, in terms
of re-design needs, re-implementation, debugging,
and testing. A specific task in the RE context is
to model software variability (Benavides et al.
2010; Kang et al. 1990; Thum et al. 2009), i. e.,
which combinations of components are allowed
when delivering a software. Feature models are
an approach to variability modelling especially
developed to support the construction of software
product lines (Kang et al. 1990). Due to the
increasing complexity of feature models, the iden-
tification of inconsistencies becomes a challenging
task. In this article, we discuss concepts that sup-
port the engineering of feature models on the basis
of consistency-based analysis approaches, more
specifically, conflict detection (Junker 2004) and
model-based diagnosis (Reiter 1987). These ap-
proaches support the automated identification of
inconsistencies in feature models and can be used
for further purposes such as automated testing and
debugging, redundancy detection, and software

* Corresponding author.
E-mail. alexander.felfernig@ist.tugraz.at

quality improvement related activities (Felfernig
et al. 2014).

Feature models can be distinguished with regard
to the degree of expressiveness of feature represent-
ations and corresponding constraints (Benavides
et al. 2010). Basic feature models (Kang et al.
1990) allow the definition of basic relationships
between features, for example, the inclusion of
a specific feature x excludes another feature y.
Cardinality-based feature representations (Czar-
necki et al. 2005) additionally allow the definition
of cardinalities of relationships (in basic models,
the upper bound of cardinalities is 1). Finally,
extended feature models allow the definition of
feature properties represented as feature attributes
(Batory 2005). Without loss of generality, our
examples are based on basic feature models. The
presented concepts can also be applied to the ad-
vanced feature model types introduced in (Batory
2005; Czarnecki et al. 2005).

Designing feature models is an error-prone
activity that results from a cognitive overload of
engineers engaged in the development and main-
tenance of such models (Benavides et al. 2013).
Artificial Intelligence (AI) techniques can support
the identification of different types of inconsist-
encies in an automated fashion (Benavides et al.
2010). Inconsistency identification and resolution

http://dx.doi.org/10.18417/emisa.si.hcm.15
alexander.felfernig@ist.tugraz.at

International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.15

208 Alexander Felfernig, Thomas Gruber, Martin Stettinger
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

techniques for feature models have been intro-
duced, for example, by (White et al. 2010) where
dead features are interpreted as a model anomaly (a
feature part of a model that can never be included
in a configuration). In this context, feature models
are translated into corresponding constraint-based
representations (Tsang 1993) and the identific-
ation of dead features is directly encoded as a
constraint satisfaction problem. An overview of
different types of model anomalies that can occur
in feature models is provided in (Benavides et al.
2010). These anomalies are also the basis for the
discussions in this article.

Feature models can be regarded as specific type
of configuration models (Felfernig et al. 2014)
represented, for example, in terms of constraint
satisfaction problems (Tsang 1993). The diagnosis
of inconsistent constraint-based representations
has first been introduced in (Bakker et al. 1993)
where inconsistencies in constraint models are
resolved on the basis of the concepts of model-
based diagnosis (Reiter 1987). This work has been
extended to test scenarios where diagnoses are
calculated on the basis of a given set of test cases
(Felfernig et al. 2004). This approach is based on
the idea of the identification of minimal conflict
sets (Junker 2004) and their resolution based on the
concept of a Hitting Set Directed Acyclic Graph
(HSDAG) (Reiter 1987). More recent approaches
to model-based diagnosis omit the calculation
of conflict sets and directly determine minimal
diagnoses (see, e.g., Felfernig et al. 2018).

In this article, we focus on aspects related to the
identification of erroneous constraints in feature
models. In this context, our major contributions
are the following. On the basis of a formalization
of feature models as constraint satisfaction prob-
lems, we discuss different types of inconsisten-
cies that can occur in feature model development.
Second, we show how these inconsistencies can
be localized on the basis of the concepts of con-
flict detection and model-based diagnosis. Finally,
we discuss open issues for future research. Our
examples are based on a feature model derived
from a commercial event management software.

The remainder of this article is organized as
follows. In Section 2, we introduce a feature
model from the EventHelpr1 environment.
This model serves as a working example through-
out this article. In Section 3, we sketch logic
approaches to detect and resolve inconsistencies.
In Section 4, we introduce and formalize differ-
ent types of inconsistencies that can occur when
developing feature models. Ways to resolve in-
consistencies in our example feature model are
discussed in Section 5. Section 6 provides a dis-
cussion of different open research issues. This
article is concluded with Section 7.

2 Example Feature Model and Semantics
A feature model defines a complete set of allowed
configurations, i.e., the combinations of features
that can be jointly included in a configuration. The
modelling concepts that can be used to build fea-
ture models are: features, relationships between
features (represented as constraints), and so-called
cross-hierarchy constraints (Kang et al. 1990). For
a detailed discussion of feature modelling tech-
niques we refer to (Batory 2005; Czarnecki et al.
2005; Kang et al. 1990).

Since feature models are a basic mechanism
to define variability properties, we can interpret
these models as configuration knowledge bases
(Felfernig et al. 2014). Features are the structural
elements of feature models. They can be either in-
cluded in or excluded from a specific configuration.
Each feature is associated with the domain {true,
false} where true specifies feature inclusion (into
a corresponding configuration) and false defines
feature exclusion. Features are connected via con-
straints (partially defined by relationships) that
specify additional restrictions on possible combin-
ations of features. In the following, we introduce
six different types of constraints that are typically
used in feature modeling: mandatory, optional,
alternative, or, requires, and excludes.

The formalization of these constraints is a basis
for performing automated reasoning on feature
model properties. Feature configuration tasks can

1 www.eventhelpr.com.

http://dx.doi.org/10.18417/emisa.si.hcm.15

Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.15
Consistency Management Techniques for Variability Modelling 209
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

be formalized as Constraint Satisfaction Problems
(CSPs) (Tsang 1993) as follows (see Definition 1).

Definition 1 (Feature Configuration Task). A
feature configuration task can be defined by a triple
(F,D,C) where F represents a set of features and
each feature fi ∈ F has an associated domain
dom(fi) ∈ D = {true, f alse}. Finally, FM ∪

CREQ represents a set of constraints ci ∈ C where
FM are domain model constraints contained in
the feature model and CREQ is a set of customer
requirements used to specify customer-specific
requirements with regard to a feature configuration
(FM ∪ CREQ = C).

Based on a feature configuration task definition,
different configurations can be determined. A
feature configuration (solution to a feature config-
uration task) can be defined as follows.

Definition 2 (Feature Configuration). A feature
configuration is a complete set of value assign-
ments (val(fi) ∈ {true, f alse}) to features fi ∈ F.
A feature configuration is consistent, if the value
assignments are consistent with the constraints
in C. Furthermore, it is regarded as valid if it
is consistent and complete (each variable has a
corresponding value assignment).

Constraint Types. The following six constraint
types are often used to build feature models
(Benavides et al. 2010). An example of a fea-
ture model using these constraint types is depicted
in Figure 1. In the following, we define the se-
mantics of these constraint types.

Mandatory. A feature f2 is in a mandatory
relationship with feature f1 if whenever f1 is part
of the configuration, f2 must be part of the config-
uration (and vice-versa). On the logical level, this
property can be defined in terms of an equivalence,
i. e., f1 ↔ f2. An example of a mandatory rela-
tionship in Figure 1 is the participation feature:
in any case, the type of participation in an event
has to be defined.

Optional. A feature f2 is in an optional relation-
ship with feature f1 if whenever f1 is part of the
configuration, f2 can be part of the configuration.
Vice-versa, if f2 is part of the configuration, f1
must be included. On the logical level, this prop-
erty can be defined in terms of an implication, i.e.,

f2 → f1. An example of an optional relationship
in Figure 1 is the content feature: sending emails
and uploading photos is considered as optional in
every EventHelpr instance.

Alternative. This type of relationship specifies
an "xor" semantics, i. e., exactly one of a given
set of features has to be included in a configura-
tion. Given a feature f1 and a set of sub-features
{ f11, f12, .., f1n}, the alternative relationship can
be formalized as follows: f1 = true ↔ ((f11 =

true ∧ f12 = f alse ∧ .. f1n = f alse) ∨ (f12 =

true ∧ f11 = f alse ∧ .. f1n = f alse) ∨ ...)). An
example of an alternative relationship depicted
in Figure 1 are the two participation subtypes
(invitation & login, no login needed).

Or. This type of relationship specifies an "or"
semantics, i. e., at least one of a given set of
alternative features has to be included in a config-
uration. Given a feature f1 and a set of sub-features
{ f11, f12, .., f1n}, the or relationship can be formal-
ized as follows: f1 = true ↔ f11 = true ∨ f12 =

true ∨ .. f1n = true. An example of an or rela-
tionship depicted in Figure 1 is the inclusion of
notification mechanisms, i.e., the sub-features of
the notification feature.

Requires. This type of relationship specifies a
"requires" semantics, i. e., the inclusion of a feature
f1 requires the inclusion of a feature f2 (f1 → f2).
An example of a requires relationship depicted
in Figure 1 is the needed inclusion of emails and
postings as a precondition for the feature new
postings notification. Requires relationships are
regarded as one type of cross-tree constraint.

Excludes. Such a relationship specifies an
"incompatibility" semantics, i. e., the inclusion of
a feature f1 excludes a feature f2 (and vice-versa).
On a logical level, this property can be specified as
¬(f1∧ f2). An example of an excludes relationship
depicted in Figure 1 is the incompatibility of the
interactive agenda service and scenarios where no
login is needed. Similar to requires relationships,
excludes constraints are regarded as a type of
cross-tree constraint.

Customer requirements (CREQ) are user pref-
erences that should be taken into account by a
constraint solver when searching for a solution. In

http://dx.doi.org/10.18417/emisa.si.hcm.15

International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.15

210 Alexander Felfernig, Thomas Gruber, Martin Stettinger
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 1: Variability model of a real-world event management environment (www.eventhelpr.com). The different
variants describe ways in which the application can be presented to end-users (dashed arrows specify requires and
dashed lines excludes constraints).

other words, CREQ specifies those features that
should be included in a feature configuration from
the user point of view.

An example of parts of a feature model of the
EventHelpr environment is depicted in Figure 1.
The constraint-based representation (Tsang 1993)
that can be derived thereof is the following.2

• F = {eventhelpr (eh), basicsettings (bas), admin
(adm), invite (inv), content (con), emailspost-
ings (email), photos (phot), notification (not),
newpostings (newpost), changes (ch), be-
foreeventstart (bef), participation (part), in-
vitationlogin (invit), nologin (nolog), interact-
iveagenda (intag), decisionsupport (dec)}.

• D = d fi ∈Fdom(fi).
• FM = {c0 : eh = true, c1 : eh ↔ bas, c2 :

adm → bas, c3 : inv → bas, c4 : con →

eh, c5 : email → con, c6 : phot → con, c7 :
not → eh, c8 : not ↔ newpost∨ch∨be f , c9 :
part ↔ eh, c10 : part ↔ (invit ∧ ¬nolog ∨

¬invit∧nolog), c11 : intag → eh, c12 : dec →

eh, c13 : email → newpost, c14 : ¬(intag ∧

nolog)}.

2 The names in brackets are introduced to increase the
readability of constraints in FM .

A solution (configuration) for the feature model3
depicted in Figure 1 is: {eh = true, bas =

true, adm = true, inv = f alse, con = true,
email = f alse, phot = true, not = true,
newpost = f alse, ch = true, be f = f alse,
part = true, invit = f alse, nolog = true,
intag = f alse, dec = f alse}.

3 Resolving Inconsistencies

In this section, we discuss undesirable properties
of feature models which trigger an unintended
behaviour in one way or another. We explain
such properties in terms of inconsistencies on
the logical level. Inconsistent models include
conflicts (Junker 2004) that are induced internally
by model constraints (in FM) or externally, for
example, by test cases. Inconsistencies can be
explained on the basis of minimal conflict sets
(Junker 2004) (see Definition 3).

Definition 3 (Conflict Set). A conflict set CS ⊆

FM is a set of constraints s.t. inconsistent(CS).
CS is minimal if ¬∃CS′: conflict set (CS′).

Minimal conflict sets help to easily resolve
conflicts since the deletion of at least one element

3 Variable assignments are abbreviated, for example, eh =
true represents val(eh) = true.

http://dx.doi.org/10.18417/emisa.si.hcm.15

Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.15
Consistency Management Techniques for Variability Modelling 211
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

from the set guarantees that the conflict is already
resolved. A set, that contains all elements needed
to delete at least one element from each existing
conflict, is denoted as hitting set (Reiter 1987).
Conflict resolution can be performed on the basis
of the concepts of model-based diagnosis (Reiter
1987). Following the standard diagnosis approach
introduced by (Reiter 1987), Hitting Set Directed
Acyclic Graphs (HSDAGs) have to be constructed
where individual paths of the tree represent hitting
sets (diagnoses). A diagnosis task can be defined
as follows (see Definition 4). For an overview of
different conflict detection and related diagnosis
algorithms we refer, for example, to (Felfernig
et al. 2014).

Definition 4 (Diagnosis). A diagnosis ∆ ⊆ FM
is a set of constraints s.t. consistent(FM − ∆). ∆
is minimal if ¬∃∆′ ⊂ ∆: diagnosis (∆′).

Typically, we are interested in analysing specific
parts of C, i. e., either FM if we are interested
in faulty constraint parts of the feature model,
or CREQ if we are interested in (minimal sets
of) customer requirements that induce an incon-
sistency. Conflict sets and diagnoses are then
determined from the individual parts of C, i. e.,
CS is then either a subset of FM or CREQ, the
same holds for corresponding diagnoses ∆.

In the following, we focus on the first aspect,
i. e., constraints in the feature model responsible
for an inconsistency (as mentioned in Definitions
3 and 4, conflict sets and diagnoses are composed
of constraints in FM).4

4 Inconsistencies in Feature Models

In the following, we discuss feature model prop-
erties that make a feature model ill-formed. For
each property, we characterize the underlying in-
consistency on a formal level and show ways to
resolve the inconsistency (see also Table 1). Thus,
we try to explain ill-formed model properties in
terms of inconsistencies between intended and
unintended feature model properties.

4 Details on diagnosing CREQ can be found in (Felfernig
et al. 2004).

Void feature models. A void feature model is in-
consistent per-se, i. e., no solution can be identified
for a given feature configuration task (F,D, FM).
A diagnosis ∆ for a void feature model FM is
defined as ∆ ⊆ FM : consistent(FM − ∆).

Test-induced void feature models. Feature
models can be tested on the basis of a test
suite T = {t1, t2, .., tm} consisting of positive test
cases5 specifying the intended behaviour of a
knowledge base. A feature model is consist-
ent with T if ∀tj ∈ T : FM ∪ {tj} is consist-
ent. If some of the test cases induce conflicts
(CSk), these have to be resolved on the basis of
the concepts of model-based diagnosis (Reiter
1987). A diagnosis ∆ for a test-induced void
feature model is defined as ∆ ⊆ FM such that
∀tj ∈ T : consistent({tj} ∪ FM − ∆).

Dead features. A feature f ∈ F is regarded as a
dead one if it is not part of any of the theoretically
possible solutions. More formally, { f = true} ∪
FM is inconsistent. A diagnosis ∆ for a dead
feature is defined as consistent(FM − ∆ ∪ { f =
true}).

Fully mandatory features. A feature f is fully
mandatory, if it is included in every possible
configuration, i.e., inconsistent({ f = f alse} ∪
FM). If we want to allow configurations with f
not included (f = f alse), a diagnosis ∆ for a fully
mandatory feature is defined as consistent(FM −

∆ ∪ { f = f alse}).
False optional features. A feature f2 is false

optional, if it is modelled as optional with re-
gard to a parent feature f1 but in fact is contained
in every configuration f1 is included. A dia-
gnosis ∆ for a false optional feature is defined as
consistent(FM−∆∪{ f2 = f alse}∪{ f1 = true}),
i.e., there exists at least one configuration with
f2 = f alse and f1 = true.

Redundant constraints in FM. A constraint
ci ∈ FM is regarded as redundant if FM − {ci} �
ci, i.e., ci logically follows from FM − {ci}.
Consequently, deleting ci from FM preserves
the semantics of the feature model. In other

5 For a discussion of the handling of negative test cases we
refer to (Felfernig et al. 2004).

http://dx.doi.org/10.18417/emisa.si.hcm.15

International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.15

212 Alexander Felfernig, Thomas Gruber, Martin Stettinger
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

words, the solution space of the feature model
remains exactly the same. If FM = {c1, .., cn}
is a set of non-redundant constraints of a fea-
ture model, and F̂M is the negation of FM (i. e.,
F̂M = {¬c1 ∨ ¬c2 ∨ ... ∨ ¬cn}, then FM ∪ F̂M
is inconsistent. As a consequence, a redundant
constraint set FMr can be made non-redundant
by determining a minimal set of constraints
FM ⊆ FMr : inconsistent(FM ∪ F̂M). This
way, conflict detection algorithms can be applied
to make knowledge bases non-redundant.

Implicit feature groups. If two features have
exactly the same value in each possible configura-
tion, there is a strong dependency between these
features. In some cases, these features can even
be combined to reduce the number of needed con-
straints and thus increase model understandability
and maintainability. Two features f1 and f2 form
an implicit group if inconsistent({ f1∧¬ f2∨¬ f1∧
f2} ∪ FM), i. e., there does not exist a solution in
which the two features have different values.

5 Inconsistencies in Example Model

In order to exemplify the discussed model proper-
ties, we introduce an adapted version of the feature
model shown in Section 2 (see Figure 2). The
constraint-based representation (Tsang 1993) that
can be derived thereof, is the following.

• F = {eventhelpr (eh), basicsettings (bas), admin
(adm), invite (inv), content (con), emailspost-
ings (email), photos (phot), notification (not),
newpostings (newpost), changes (ch), be-
foreeventstart (bef), participation (part), in-
vitationlogin (invit), nologin (nolog), interact-
iveagenda (intag), decisionsupport (dec)}.

• D = d fi ∈Fdom(fi).
• FM = {c0 : eh = true, c1 : eh ↔ bas, c2 :

adm → bas, c3 : inv → bas, c4 : con ↔

eh, c5 : email ↔ con, c6 : phot → con, c7 :
not → eh, c8 : not ↔ newpost∨ch∨be f , c9 :
part ↔ eh, c10 : part ↔ (invit ∧ ¬noglog ∨

¬invit∧nolog), c11 : intag ↔ eh, c12 : dec ↔

eh, c13 : email → newpost, c14 : ¬(intag ∧

nolog), c15 : dec → nolog}.

Void feature model. No solution exists for the
feature model defined in Figure 2 since both fea-
tures, interactiveagenda (intag) and decisionsup-
port (dec) are mandatory, dec requires nolog and
intag excludes nolog. The (singleton) resulting
minimal conflict set is CS1 : {c0, c11, c12, c14, c15}.
In this example, only one minimal conflict set
exists and the deletion of any of these constraints
restores consistency, i.e., each individual con-
straint represents a diagnosis ∆ (e.g., ∆ = {c14}).
We want to emphasize that constraint c0 has a
specific role: if it is set to true, it is guaranteed
that only non-empty feature configurations, i.e.,
feature configurations with at lest one activated
feature, are taken into account. For this reason, c0
has a special role and is in most of the cases not
considered a diagnosis candidate.

Test-induced void feature model. In the follow-
ing, we assume that constraint c14 in the feature
model of Figure 2 has been deleted to restore
consistency. An example of a test-induced void
feature model is the model depicted in Figure 1
combined with the test-case t1 : intag∧nolog, i.e.,
inconsistent({t1} ∪ FM). The minimal conflict
set is CS : {c14} since inconsistent({t1} ∪ {c14}).

Dead features. In our example feature model
of Figure 2, feature invitationlogin (invit) can
be considered as dead since it is not possible to
include this feature in a configuration. The reason
is that feature decisionsupport (dec) requires the
inclusion of feature nolog. Due to the alternative
relationship between participation (part), inv, and
nolog, it is not possible to include feature inv.

False optional feature. Since the inclusion of
emailspostings (email) requires the inclusion of
newpostings (newpost), notification (not) will be
included in every configuration. For this reason,
noti f ication can be regarded as false optional.

Redundant constraint. Constraint c9 can be
regarded as redundant (assuming that constraint
c14 has been deleted) since feature participation
is part of every configuration (it is required by
feature decisionsupport).

http://dx.doi.org/10.18417/emisa.si.hcm.15

Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.15
Consistency Management Techniques for Variability Modelling 213
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

property property check analysis operation
void feature model inconsistent(FM) ∆ ⊆ FM : consistent(FM − ∆)

test-induced void
feature model ∃ti ∈ T : inconsistent(FM ∪ {ti})

∆ ⊆ FM, ∀ti ∈ T :
consistent(FM − ∆ ∪ {ti})

dead feature fi inconsistent({ fi = true} ∪ FM)
∆ ⊆ FM :

consistent(FM − ∆ ∪ { fi = true})
full mandatory feature

fi
inconsistent({ fi = f alse} ∪ FM)

∆ ⊆ FM :
consistent(FM − ∆ ∪ { fi = f alse})

false optional feature
fi

inconsistent({ fi = f alse ∧ fi−1 =

true} ∪ FM)

∆ ⊆ FM : consistent(FM−∆∪{ fi =
f alse ∧ fi−1 = true})

redundant constraints
ci ∈ FM

∃ci ∈ FM : FM − {ci} � ci
FMnr ⊆ FM : ∀ci ∈ FMnr :

FMnr − {ci} 2 ci

implicit feature groups
{ fa, fb} ∈ FM

∃{ fa, fb} ⊆ F : inconsistent({ fa =
true ∧ fb = f alse ∨ fa =
f alse ∧ fb = true} ∪ FM)

∆ ⊆ FM : consistent(FM − ∆ ∪

{ fa = true ∧ fb = f alse ∨ fa =
f alse ∧ fb = true})

Table 1: Summary of analysis operations for feature models. FMnr denotes a non-redundant feature model.

6 Research Issues
There are a couple of open issues for future re-
search directly related to the detection and resolu-
tion of inconsistencies in feature models.

Personalized Conflict Detection and Resolution
for Feature Modelling. When developing feature
models, inconsistencies in models can be resolved
in different ways (in many cases, there exist dif-
ferent conflict sets). A task in this context is to
propose conflict resolutions that are relevant, i.e.,
will be accepted by engineers. When developing
knowledge bases, this means to figure out relev-
ant faulty constraints where preferences can be
derived from the development history of the fea-
ture model (e.g., how often a constraint has been
changed in the last year, how often a constraint has
been activated when determining a solution etc.).
Initial related work can be found, for example, in
(Felfernig et al. 2015).

Anytime Conflict Detection. There is a tradeoff
between efficiency and accuracy that has to be
taken into account when applying conflict detec-
tion algorithms (Felfernig et al. 2018). A challenge
in this context is to identify conflicts of relevance
for the user within time limits acceptable for in-
teractive settings. Anytime conflict detection and
diagnosis algorithms are an area of research that

have to be investigated and further developed in
the context of feature model development.

Cognitive Effects. An important question to
answer is how knowledge engineers and domain
experts without computer science background in-
terpret the semantics of models (Fliedl et al. 2000;
Michael and Mayr 2017). A related question is
how easy it is for them to understand existing fea-
ture models and in which way we have to define
natural language statements that represent con-
straints in feature models. In a typical feature
model development process, constraints and fea-
ture hierarchies are defined by domain experts
and then formalized by knowledge engineers. In
this context, it has to be assured that knowledge
engineers understand (textually defined) domain
constraints to reduce the number of interaction
cycles between domain experts and knowledge
engineers (Fliedl et al. 2007; Kop and Mayr 1998;
Shekhovtsov et al. 2014).

Model Development Practices. A major is-
sue in the context of feature model development
and maintenance is how to structure the domain
knowledge in such a way that changing chunks of
knowledge can be easily managed. Maintainabil-
ity of variability models is still an open research
issue and especially in the context of large and

http://dx.doi.org/10.18417/emisa.si.hcm.15

International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.15

214 Alexander Felfernig, Thomas Gruber, Martin Stettinger
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 2: Example of a faulty feature model. Dashed arrows specify requires and dashed lines excludes constraints.

complex models, structuring mechanisms have
to be developed that help to achieve the goal of
easy maintenance. There is a branch of research
dealing with collecting knowledge from the crowd
and synthesizing configuration knowledge thereof
(Ulz et al. 2016). This is also a promising area for
the development of feature models.

Merging of Feature Models. In global con-
texts, for example, a car company selling cars
in countries with different legal contexts, feature
models have to take into account contextual in-
formation (sales strategies can differ and also
country-specific legal aspects have to be taken
into account). To analyze (e.g., in how many coun-
tries is it possible to sell feature x?) and adapt
the underlying feature models, country-individual
models have to be integrated. Existing research
in the area of model integration (Liberatore and
Schaerf 1998) has to be analysed with regard to
applicability in the context of variability model-
ling.

7 Conclusions
Requirements Engineering (RE) is a critical phase
in software development processes. In this art-
icle, we focused on software variability modelling
scenarios where features are used to specify the
inclusion or exclusion of specific software func-
tionalities. With increasing size and complexity

of those models, the probability of including in-
consistencies increases. We provided an overview
of different types of inconsistencies and showed
how to automatically detect these inconsistencies
on the basis of the concepts of conflict detection
and model-based diagnosis.

References

Bakker R., Dikker F., Tempelman F., Wogmim P.
(1993) Diagnosing and Solving Over-determined
Constraint Satisfaction Problems. In: 13th Interna-
tional Joint Conference on Artificial Intelligence.
Chambery, France, pp. 276–281

Batory D. (2005) Feature Models, Grammars,
and Propositional Formulas. In: Software Product
Lines Conference. Springer Lecture Notes in Com-
puter Science Vol. 3714, pp. 7–20

Benavides D., Felfernig A., Galindo J., Reinfrank
F. (2013) Automated Analysis in Feature Mod-
elling and Product Configuration. In: 13th Inter-
national Conference on Software Reuse. Lecture
Notes in Computer Science 7925. Springer, Pisa,
Italy, pp. 160–175

Benavides D., Segura S., Ruiz-Cortes A. (2010)
Automated Analysis of Feature Models 20 years
Later: a Literature Review. In: Information Sys-
tems 35(6), pp. 615–636

http://dx.doi.org/10.18417/emisa.si.hcm.15

Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.15
Consistency Management Techniques for Variability Modelling 215
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Czarnecki K., Helsen S., Eisenecker U. (2005)
Formalizing Cardinality-based Feature Models
and their Specialization. In: SoftwareProcess: Im-
provement and Practice 10(1), pp. 7–29

Felfernig A., Friedrich G., Jannach D., Stumptner
M. (2004) Consistency-based Diagnosis of Con-
figuration Knowledge Bases. In: Artificial Intelli-
gence 152(2), pp. 213–234

Felfernig A., Hotz L., Bagley C., Tiihonen J.
(2014) Knowledge-based Configuration: From Re-
search to Business Cases, 1st. Elsevier/Morgan
Kaufmann

Felfernig A., Reiterer S., Stettinger M., Tiihonen J.
(2015) Intelligent Techniques for Configuration
Knowledge Evolution. In: Vamos 2015 Workshop.
Hildesheim, Germany, pp. 51–60

Felfernig A., Walter R., Galindo J., Benavides D.,
Atas M., Polat-Erdeniz S., Reiterer S. (2018) Any-
time Diagnosis for Reconfiguration. In: Journal of
Intelligent Information Systems (JIIS)

Fliedl G., Kop C., Mayr H., Mayerthaler W., Wink-
ler C. (2000) Linguistically based requirements
engineering - The NIBA-project. In: Data & Know-
ledge Engineering 35 (2), pp. 111–120

Fliedl G., Kop C., Mayr H., Salbrechter A.,
Vöhringer J., Weber G., Winkler C. (2007) De-
riving static and dynamic concepts from software
requirements using sophisticated tagging. In: Data
& Knowledge Engineering 61 (3), pp. 433–448

Junker U. (2004) QuickXPlain: Preferred Explan-
ations and Relaxations for Over-constrained prob-
lems. In: 19th Intl. Conference on Artifical Intelli-
gence (AAAI’04). AAAI Press, San Jose, Califor-
nia, pp. 167–172

Kang K., Cohen S., Hess J., Novak W., Peterson S.
(1990) Feature-oriented Domain Analysis (FODA)
– Feasibility Study. In: Technical Report, CMU-
SEI-90-TR-21

Kop C., Mayr H. (1998) Conceptual predesign
bridging the gap between requirements and con-
ceptual design. In: 3rd International Conference
on Requirements Engineering. Colorado Springs,
CO, USA, pp. 90–98

Leffingwell D., Widrig D. (2003) Managing Soft-
ware Requirements: A Use Case Approach, 2nd.
Addison-Wesley

Liberatore P., Schaerf M. (1998) Arbitration (or
how to merge knowledge bases). In: IEEE Trans-
actions on Knowledge and Data Engineering 10
(1), pp. 76–90

Mayr H., Kop C. (2002) A User Centered Ap-
proach to Requirements Modeling. In: Modellier-
ung 2002, pp. 75–86

Mayr H., Kop C., Esberger D. (2007) Business
Process Modeling and Requirements Modeling.
In: International Conference on the Digital Society
(ICDS 2007). Guadeloupe, French Caribbean, p. 8

Michael J., Mayr H. (2017) Intuitive understanding
of a modeling language. In: Australasian Computer
Science Week Multiconference (ACSW 2017).
Geelong, Australia, 35:1–35:10

Reiter R. (1987) A Theory of Diagnosis From
First Principles. In: Artificial Intelligence 32(1),
pp. 57–95

Shekhovtsov V., Mayr H., Kop C. (2014) Facil-
itating effective stakeholder communication in
software development processes. In: Forum at the
Conference on Advanced Information Systems
Engineering (CAiSE), pp. 116–132

Thum T., Batory D., Kastne C. (2009) Reasoning
about edits to feature models. In: 31st IEEE In-
ternational Conference on Software Engineering.
IEEE, pp. 254–264

Tsang E. (1993) Foundations of Constraint Sat-
isfaction. Academic Press, London, San Diego,
New York

Ulz T., Schwarz M., Felfernig A., Haas S., Reiterer
S., Stettinger M. (2016) Human Computation for
Constraint-based Recommenders. In: Journal of
Intelligent Information Systems (JIIS)

White J., Benavides D., Schmidt D., Trinidad P.,
Dougherty B., Ruiz-Cortez A. (2010) Automated
Diagnosis of Feature Model Configurations. In:
Systems and Software 83(7), pp. 1094–1107

http://dx.doi.org/10.18417/emisa.si.hcm.15

