
Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5
Repairing Outlier Behavior in Event Logs using Contextual Behavior 1
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

Repairing Outlier Behavior in Event Logs using Contextual
Behavior

Mohammadreza Fani Sani*,a, Sebastiaan J. van Zelsta,b, Wil M. P. van der Aalsta,b

a Process and Data Science Chair, RWTH Aachen University, 52056 Aachen, Germany
b Fraunhofer Institute for Applied Information Technology (FIT), Konrad-Adenauer-Strasse, 53754 Sankt Augustin, Germany

Abstract. It is common in practice, e. g., due to logging errors in information systems or the presence of
exeptional process behavior, to have outlier behavior in real event data. Such behavior often leads to
incomprehensible, complex, and inaccurate analysis results and makes correct and/or important behavior
undetectable. In this paper, we propose a novel data preprocessing method, that detects and subsequently
repairs outlier behavior in event data. We propose a probabilistic method that detects outlier behavior
based on the occurrence probability of a sequence of activities among its surronding contextual behavior.
We replace the outlier behavior with more probable behavior among that behavioral context. Our approach
allows to remove outlier behavior, which enables us to obtain a more global view of the process. The
proposed method has been implemented in both the prom- and the rapidprom frameworks. Using these
implementations, we conducted several experiments that show that most types of outlier behavior in event
data are detectable and repairable via the proposed method. The evaluation clearly demonstrates that we
are able to improve process discovery results by repairing event logs upfront. Results show that using the
proposed method we obtain more understandable process models with higher accuracy.

Keywords. Process Mining • Data Cleansing • Log Repair • Event Log Preprocessing • Conditional
Probability • Outlier Detection

Communicated by Milena Stróżyna. Received 2018-11-07. Accepted on 2019-06-30.

1 Introduction

Process Mining bridges the gap between tradi-
tional data mining and business process manage-
ment analysis (Aalst 2011). The main subfields of
process mining are 1) process discovery, i.e, find-
ing a descriptive model of the underlying process,
2) conformance checking, i.e, monitoring and in-
specting whether the execution of the process in
reality conforms to the corresponding designed
(or discovered) reference process model, and 3)
enhancement, i.e, the improvement of a process
model, based on the related event data (Aalst 2016).
With process mining we discover knowledge from
event data, also referred to as event logs, readily

* Corresponding author.
E-mail. fanisani@pads.rwth-aachen.de

available in most modern information systems. In
all these subfields, event logs are used as a start-
ing point. An event log is a collection of events
extracted in the context of a process that indicates
which activity has happened at a specific time.

Many process mining techniques, in any of
these subfields, work under the assumption that
the behavior related to the execution of the underly-
ing process is stored correctly within the event log.
Moreover, completeness of the recorded behavior,
i. e., each instance of the process, as stored in the
event log, is already finished, is assumed as well.
However, real event data often contains inaccurate
or corrupt behavior that is/should not be part of
the process (Hernández and Stolfo 1998). This is
common in practice, e. g., due to logging errors,
human mistakes and the inaccuracy of logging

http://dx.doi.org/10.18417/emisa.14.5
fanisani@pads.rwth-aachen.de

International Journal of Conceptual Modeling
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5

2 Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

tools. Furthermore, an event log often contains
data related to infrequent behavior, i. e., behavior
that is rather rare due to the handling of exceptional
cases. Here, we use the term outlier to consider
both noise and infrequent behavior. The presence
of such behavior makes most process mining algo-
rithms return inexplicable, incomprehensible or
even inaccurate results. To reduce these negative
effects, process mining projects often comprise of
a preprocessing phase in which one tries to detect
and remove traces that contain such undesired be-
havior (Andrews et al. 2018). This cleaning phase
is usually performed manually and it is therefore
rather time consuming and costly.

Despite the negative impacts of the presence
of outlier behavior, little research has been done
towards automated data cleansing techniques that
help to improve process mining results. Recently,
research has been performed aiming at filtering
out traces/behavior that contain outlier behavior
from an event log (Conforti et al. 2017; Fani Sani
et al. 2017). Even though both techniques show
improvements in process discovery algorithm re-
sults, only a little fragment of outlier behavior
within a trace of event data leads to ignoring the
trace as a whole. This problem potentially leads
to a distortion of the general distribution of com-
mon behavior of the process, yielding potentially
wrong process mining results.

Therefore, we propose a general purpose repair
method that, given an event log that potentially
contains outlier behavior, detects and modifies
such behavior in order to obtain a more reliable in-
put for all possible process mining algorithms. In
particular, we use a probabilistic method to iden-
tify outlier behavior according to the behavioral
context of a process, i. e., fragments of activity
sequences that occur before and after the potential
outlier behavior. After detecting a fragment of
outlier behavior, it is replaced with behavior that
is more probable to occur given the context in
which the outlier behavior occurs.

Using the prom-based (Aalst et al. 2009) ex-
tension of rapidminer, i. e., rapidprom (Aalst
et al. 2017), we study the usefulness of our ap-
proach, using both synthetic and real event data.

The experimental results show that the proposed
approach adequately detects and repairs outlier
behavior, and as a consequence, increases the
overall quality of results of several process discov-
ery algorithms. Additionally, we show that our
method is able to improve process discovery re-
sults compared to a state-of-the-art existing event
log filtering technique (Fani Sani et al. 2017).

This paper extends the work Fani Sani et al.
(2018b). Here, we formally define the proposed
method and explain it with more details. The pro-
posed method is also applied on many new avail-
able real event logs with state-of-the-art process
discovery algorithms, i. e., the Inductive Miner,
the Split Miner and the ILP Miner. Also, in this
paper we used complexity metrics to evaluate the
understandability of discovered process models.

The remainder of this paper is structured as fol-
lows. Sect. 2 motivates the need for data cleansing
and repair methods in the context of process min-
ing. In Sect. 3, we discuss related work, and Sect. 4
defines some preliminary notations. We present
our proposed outlier repair method in Sect. 5.
Evaluation details and corresponding results are
given in Sect. 6. Finally, Sect. 7 concludes the
paper and presents directions for future work.

2 Motivation

Real event data often contains outlier behavior.
The presence of such behavior causes many prob-
lems for process mining algorithms. In particular,
most process discovery algorithms incorporate
all behavior in event logs as much as possible.
As a result, most outlier behavior is incorporated
as well, which in general decreases the overall
quality of the discovered process models (e. g.,
by generating flower models), and moreover, in-
creases their complexity. Therefore, it is essential
to accurately preprocess event data. In fact, ac-
cording to the process mining manifesto (Aalst
et al. 2011), cleaning event logs is one of the
main challenges in the process mining field. The
statement “garbage in, garbage out”, i. e., referring
to the fact that low quality data leads to low final
quality knowledge (Ribeiro and Zárate 2016) also

http://dx.doi.org/10.18417/emisa.14.5

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5
Repairing Outlier Behavior in Event Logs using Contextual Behavior 3
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

applies to the field of process mining. Therefore,
accurate preprocessing steps are critical for being
able to obtain event data which we consider to be
correct and useful for process mining methods.

A naive approach to solve data quality related
issues is to remove traces/behavior that seem to
describe outlier behavior (Conforti et al. 2017;
Fani Sani et al. 2017). In heavy presence of
concurrency, these filtering methods remove most
of the traces in the event log, i. e., often a large
part of the traces is unique. As a result, these
approaches, by removing a large part of the traces,
potentially jeopardize the statistical distribution
of the normal accurate behavior.

For many businesses, all process instances in
an event log are valuable and ignoring them is
potentially harmful for the trustworthiness of the
analyses performed on the basis of the data. For ex-
ample, in patient treatment in a hospital, recorded
over several years, it is undesirable to remove all
process related records of a patient just because
there exists a small portion of wrongly logged
behavior. Also, in some cases, mixed granulari-
ties of time-stamps in the logging, e. g., both on a
day- and minute level, does not always allow us to
obtain a correct ordering of activities. Moreover,
because of various reasons such as database errors,
one activity may not be recorded in the event log.
Because of data gathering policies, it is also possi-
ble that we just keep activities that were executed
in a specific period of time. This causes to have
many incomplete and abrupt process instances.

In such scenarios, after detecting outliers, it
is more desirable to repair such behavior instead
of removing it. Note that, if there is no noise
in an event log, by repairing infrequent behavior
and removing too detailed patterns, we may alter
correct infrequent behavior into more frequent
behavior which allows us to discover more general
views on the process. Therefore, by repairing,
rather than removing outlier behavior, the quality
of discovered process models improves.

A simple example event log with some outlier
behavior is shown in Tab. 1. In this event log there
are 74 events that belong to 11 traces. Except for
the first variant, i. e., unique behavior of a process

Tab. 1: Event log with 11 traces and 10 different
trace-variants.

Row Variant Frequency
1 ⟨a, b, c, d, e, f , h⟩ 2
2 ⟨a, b, d, c, e, f , h⟩ 1
3 ⟨a, b, c, d, e, g, h⟩ 1
4 ⟨a, b, d, c, e, g⟩ 1
5 ⟨b, d, c, e, g, h⟩ 1
6 ⟨a, b, c, d, e⟩ 1
7 ⟨a, b, c, d, g, h⟩ 1
8 ⟨a, b, b, c, d, e, f , h⟩ 1
9 ⟨a, b, c, d, g, h⟩ 1
10 ⟨a, b, d, c, a, e, g, f , h⟩ 1

instance, each variant has just one corresponding
trace. This is very common in several application
domains, e. g., the medical treatment process (Re-
buge and Ferreira 2012). The first three traces
contain no outlier behavior. However, the other
seven variants (row 4 to 10) have different types
of outlier behavior. For example, in the fourth and
fifth rows of Tab. 1, the activities “h” and “a” are
missing, respectively.

The results of applying various process discov-
ery algorithms on the event log of Tab. 1 are shown
in Fig. 1. Some process discovery algorithms like
the Alpha Miner (Aalst et al. 2004) are sensitive
to such outlier behavior and yield inferior process
discovery results when applied directly to such
event logs. Other process discovery algorithms,
like the Inductive Miner (Leemans et al. 2013b)
and the Split Miner (Augusto et al. 2019), have
embedded filtering mechanisms to handle some
types of outliers.

All the mentioned process discovery algorithms
have difficulties to discover an accurate process
model from the given event log. Also, if we apply
the filtering method of Fani Sani et al. (2017) on
this event log, just variants 1 − 5 are retained. A
resulting process model using this filtered event
data combined with the Inductive Miner is shown
in Fig. 1f. However, if we first repair the event
log and then apply the Alpha Miner (or any other
mentioned process discovery methods), we obtain
a more accurate process model, i. e., as presented
in Fig. 1g. This is because there is no outlier
behavior in the repaired event log and the resulted

http://dx.doi.org/10.18417/emisa.14.5

International Journal of Conceptual Modeling
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5

4 Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

(a) Result of the Alpha Miner on the event log of Tab. 1

(b) Result of the Inductive Miner on the event log of Tab. 1

(c) Result of the ILP Miner on the event log of Tab. 1

(d) Result of the Inductive Miner with integrated filtering (IMi) on the event log of Tab. 1

(e) Result of the Split Miner on the event log of Tab. 1

(f) Result of the Inductive Miner on the filtered event log by Fani Sani et al. (2017)

(g) Result of the Alpha miner on the even log of Tab. 1 after repairing outlier behavior in it.

Fig. 1: Resulting process models of applying different process discovery techniques (with and without filtering/repairing)
on the event log that is presented in Tab. 1. Applying our proposed repair method outperforms discovery techniques,
even when combined with state-of-the-art filtering techniques.

http://dx.doi.org/10.18417/emisa.14.5

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5
Repairing Outlier Behavior in Event Logs using Contextual Behavior 5
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

process model is more accurate and more under-
standable.

3 Related Work

Some discovery algorithms, e. g., the Alpha
Miner (Aalst et al. 2004), the ILP Miner (Werf
et al. 2009), and the basic Inductive Miner (Lee-
mans et al. 2013a) were designed to incorporate all
behavior in the event log. Consequently, they are
sensitive to outlier behavior. Other process discov-
ery algorithms, such as the Split Miner (Augusto
et al. 2019), the Flexible Heuristic Miner (Wei-
jters and Ribeiro 2011), the Fuzzy Miner (Günther
and Aalst 2007) and extended versions of the In-
ductive Miner (Leemans et al. 2013b), and ILP
Miner (Zelst et al. 2017) were designed to be able
to handle outliers as well. However, these filtering
techniques are tailored towards the internal work-
ing of the corresponding algorithms and they are
not able to be used for general purpose event log
preprocessing. In addition, they typically focus
on a specific type of outlier, e. g., incompleteness.

Commercial tools usually use variant-based
filtering methods that make it possible to only
consider the most frequent trace variants, i. e.,
unique sequence of activities. However, the pres-
ence of parallelism and loops often hampers the
applicability of such filtering techniques, because
it is possible to have lots of variants that indicate
the same behavior. There are also some basic
filtering plug-ins developed in the prom frame-
work (Aalst et al. 2009) that are working based
on activity frequencies and users input. But, they
are usually only helpful for slicing or dicing the
event log, e. g., just considering process instances
that have a certain value for a specific attribute.

Outlier detection for general discrete data is
addressed in some research, e. g., in Chandola
et al. (2012) a survey on different methods of
detecting outliers in sequential data is presented.
In Gupta et al. (2014) a similar study for temporal
data is presented. Also, there are some related
techniques that were specifically proposed for the
process mining domain. In Wang et al. (2015)
and Cheng and Kumar (2015) the authors propose

filtering techniques that use additional information
such as training event data or business rules. In
reality, providing a sufficiently complete set of
training traces is impractical or even impossible.

Recently, some general purpose filtering tech-
niques were proposed in the process mining do-
main. In Conforti et al. (2017) an Anomaly Free
Automaton (AFA) is constructed from the whole
event log. Subsequently, all non-fitting behavior,
w.r.t. the AFA is removed from the event log.
In Fani Sani et al. (2017), the authors propose a
filtering method that detects outliers based on con-
ditional probabilities of subsequences and their
possible following activities. In Zelst et al. (2018)
an adjustable on-line filtering method is proposed
that detects outlier behavior for streaming events
that also works based on conditional probabilities.
Another filtering method that detects outlier be-
havior based on sequential patterns is presented
in Fani Sani et al. (2018a) that performs better in
event logs with the huge presence of parallel be-
havior. Moreover, in Mannhardt et al. (2017) the
authors propose to use data attributes to detect out-
liers. Finally, in Tax et al. (2019) an entropy-based
method is proposed to filter chaotic activities, i. e.,
activities that occur spontaneously at any point in
the process.

All aforementioned methods, after detecting
outlier behavior in a trace, aim to remove traces/be-
havior. As motivated in Sect. 2, repairing outlier
behavior in some cases is more valuable compared
to remove it. The only research in general pur-
pose repair event logs is presented by Conforti
et al. (2018) that aims to fix the time-stamps and
change the order of activities that have the same
time-stamp in a process instance. The order of
activities are adjusted based on the most frequent
behaviour that have been seen in the event log
using an Automata. This method is not able to
repair all type of outlier behavior like extra or
missed activities.

In addition, Fahland and Aalst (2015)
and Armas-Cervantes et al. (2017) aim to
repair process models based on event logs. More-
over, Rogge-Solti et al. (2013) proposed a method
that uses a reference process model to repair event

http://dx.doi.org/10.18417/emisa.14.5

International Journal of Conceptual Modeling
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5

6 Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

logs. However, as we aim to design a general
purpose repair method, we assume there does not
exist a process model as an input of our proposed
algorithm.

4 Preliminaries

In this section, we present basic preliminaries and
notations, used throughout the paper. We first in-
troduce some basic process mining terminologies
and notations, such as subsequence and event log,
which we use in the proposed method.

4.1 Multisets and Sequences
Given a set X , a multiset M over X is a function
M : X → N≥0, that allows certain elements of X
to appear multiple times. We write a multiset as
M = [xk1

1 , x
k2
2 , ..., x

kn
n], where for 1 ≤ i ≤ n we

have M(xi) = ki with ki ∈ N>0. If ki = 1, we omit
its superscript, and, if for some x ∈ X we have
M(x) = 0, we omit it from the multiset notation.
Also, M = [] denotes the empty multiset, i. e.,
∀x ∈ X , M(x) = 0. We let M = {x ∈ X | M(x) >
0}, i. e., M ⊆ X . The set of all possible multisets
over a set X is written asM(X).

A sequence σ of length n over X is a func-
tion σ : {1,2, ...,n} → X , alternatively written as
σ = ⟨x1, x2, ..., xn⟩ where xi = σ(i) for 1 ≤ i ≤ n.
The empty sequence is written as ϵ . Concatena-
tion of sequencesσ andσ′ is written asσ ·σ′. Let
X∗ denote the set of all possible sequences over a
set X . We let function hd : X∗×N≥0 ↛ X∗, repre-
sents the head of a sequence, i. e., given a sequence
σ ∈ X∗ and k ≤ |σ |, hd(σ, k) = ⟨x1, x2, .., xk⟩,
i. e., the sequence of the first k elements of σ.
In case k = 0 we have hd(σ,0) = ϵ . Sym-
metrically, tl : X∗ × N≥0 ↛ X∗ represents the
tail of a sequence and is defined as tl(σ, k) =
⟨xn−k+1, xn−k+2, ..., xn⟩, i. e., the sequence of the
last k elements of σ, with, again, tl(σ,0) = ϵ .
Sequence σ′ is a subsequence of sequence σ,
which we denote as σ′ ∈ σ, if and only if
∃σ1, σ2 ∈ X∗(σ = σ1 · σ

′ · σ2).

Definition 1 (Subsequence Frequency) Let
σ = ⟨x1, .., xn⟩, σ′ = ⟨x ′1, .., x

′
m⟩ ∈ X∗. We define

the occurrence frequency of σ′ in σ by function
f r : X∗ × X∗ → N≥0, formulated as follows.

f r(σ′, σ) = |{1 ≤ i ≤ n | σ′ = ⟨xi, .., xi+m⟩}|
(1)

i. e., |σσ′ | = f r(σ′, σ).

Given the example event log presented
in Tab. 1, we have |⟨a, d, b, d, c, f , h⟩⟨d⟩ | = 2
and |⟨a, d, b, d, c, f , h⟩⟨b,d⟩ | = 1.

4.2 Event Data
Event logs describe sequences of executed busi-
ness process activities, typically in the context of
some cases (or process instances), e. g., a customer
or an order-id. Moreover, they act as the primary
data source of any process mining analysis. Con-
sider Tab. 2, in which we present a synthetic event
log. The execution of an activity in context of a
case is referred to an event. A sequence of events
for a specific case is also referred to a trace. Thus,
it is possible that multiple traces describe the same
sequence of activities, yet, since events are unique,
each trace itself contains different events. An
example event log, adopted from Aalst (2016), is
presented in Tab. 2.

Consider the events related to Case-id value
1. Nour registers a request, after which Al-
fredo examines it thoroughly. William checks
the ticket and checks resources. Ali makes de-
cision, Josef sends the request to manager and
Fatima accepts the request. Finally, Daniel emails
the decision to the client. This example trace
is written as ⟨a, b, c, d, e, f , h⟩ (using short-hand
activity names).

In the context of this paper, we only focus on
the sequential ordering of the activities w.r.t. the
different process instances, i. e., the control-flow
perspective. In formal definitions, we omit addi-
tional data attributes such as resource information.
We formally define event logs as a multiset of
sequences of activities rather than a set of traces
describing sequences of unique events.

Definition 2 (Event Log) Let A be a set of ac-
tivities. An event log is a multiset of sequences
over A, i. e., L ∈ M(A∗).

http://dx.doi.org/10.18417/emisa.14.5

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5
Repairing Outlier Behavior in Event Logs using Contextual Behavior 7
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

Tab. 2: Fragment of a fictional event log, where each line corresponds to an event. An event at least describes
a case-id attribute, an activity attribute and a time-stamp attribute. The case-id attribute allows us to deduce to
which process instance the event belongs, whereas the activity attribute describes the activity that was executed. The
time-stamp attribute describes the time at which the event was executed, and allows us to order the events. Often more
data attributes are available as well, e. g., resource information.

Case-id Activity Resource Time-stamp
...
1 register request (a) Nour 2018-10-08:08.10
1 examine thoroughly (b) Alfredo 2018-10-08:09.17
2 register request (a) Nour 2018-10-08:10.14
1 check resources (c) William 2018-10-08:10.23
1 check ticket (d) William 2018-10-08:10.53
2 examine thoroughly (b) Alfredo 2018-10-08:11.13
1 decide (e) Ali 2018-04-08:12.14
1 Send to manager(e) Josef 2018-10-08:13.09
1 accept request (f) Fatima 2018-10-08:16.05
1 mail decision(h) Daniel 2018-10-08:16.18
3 register request (a) Nour 2018-10-08:17.14
...

Observe that each σ ∈ L describes a trace-
variant whereas L(σ) describes how many traces
of the form σ are present within the event
log. For example, in the event log of Tab. 1,
L(⟨a, b, c, d, e, f , h⟩) = 2.

5 Repairing Outliers in Event Data
In this section, we present the proposed repair
method. Consider Fig. 2, in which we present a
schematic overview of the repair method.

In this figure, we represent behavior, i. e., sub-
sequences of activities as a coloured block. Ac-
cording to the whole event log, for each process
instance, we replace outlier behavior according to
the context of behavior (i. e., proceeding/succeed-
ing behavior). For example, it is more probable
that among green and blue behavior red behavior
is executed. So, if we observe purple behavior
(the last process instance) surrounded by green
and blue blocks, we are able to replace it with a
red behavior. Note that, we assume that green
and blue behavior appears frequently enough in
the event log and the occurrence probability of
execution of purple behavior is low.

The main components used in our approach
are depicted in Fig. 3. Each of the three blocks
represents subsequences in a trace. Based on the

occurrence probability of a contextual sub-pattern
(i. e., the red block) among its context, we try to
detect outlier behavior and repair it. The green
block is the left context and the blue block is the
right context of the contextual sub-behavior. Each
of the three blocks are allowed to be of different
lengths.

The repair method consists of the following
main steps:

1. Frequent Context Identification
In this step, we identify common pairs of be-
havior, that frequently surround other, possibly
infrequent, behavior.

2. Infrequent Contextual Sub-Pattern Detection
In this step, we identify infrequent fragments of
behavior, surrounded by a frequently occuring
context, i. e., as identified in Step 1.

3. Infrequent Contextual Sub-Pattern Replace-
ment
In this step, we replace the infrequent behav-
ioral patterns, identified in Step 2, by more
likely/frequent behavior.

In the remainder of this section, we discuss
each component in detail.

http://dx.doi.org/10.18417/emisa.14.5

International Journal of Conceptual Modeling
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5

8 Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

,… 〉 〈 …, , ,

,… 〉 〈 …, , ,

,… 〉 〈 …, , ,

,… 〉 〈 …, , ,

,… 〉 〈 …, , ,

,… 〉 〈 …, , ,

,… 〉 〈 …, , ,

...
...

Event Log

,… 〉 〈 …, , ,

,… 〉 〈 …, , ,

,… 〉 〈 …, , ,

,… 〉 〈 …, , ,

,… 〉 〈 …, , ,

,… 〉 〈 …, , ,

,… 〉 〈 …, , ,

...
...

Repaired Event Log

Fig. 2: Schematic overview of the proposed repair method. We identify infrequent behavioral patterns, surrounded by
frequent behavior, and repair those patterns by more frequently occurring behavior.

,… 〉 〈 …, , ,

Left Context Right Context

Contextual Sub-Pattern

Trace:

Fig. 3: Schematic overview of the different behavioral
entities used throughout this paper. The behavioral
context consists of a left- and right argument, and it
surrounds a contextual sub-pattern.

5.1 Frequent Context Identification
In the first step of the approach, we identify
whether certain pairs of behavior frequently sur-
round other behavior. The underpinning moti-
vation of using pairs of behavior that surround
other behavior, is visualized in Fig. 4. We ob-
serve that many processes start with unique and/or
similar behavior, i. e., usually an initial (group)
of activities is performed in a fixed order. Sub-
sequently, depending on the specific instance of
the process, more variety is possible within the
process, e. g., by means of parallel branches, loops,

etc. At certain points in the process, the behavior
converges again into more structured, i. e., less
variable behavior, after which it diverges again.

For example, consider the process of requesting
a loan at a bank. Such a process always starts
with a loan request by the client. However, subse-
quently, more actions are possible, i. e., the bank
can request more details about the client’s credit
history, schedule an interview with the client, or,
if the client is not a customer of the bank yet, the
bank first needs to create a customer profile in its
information system. After these initial activities,
a manager needs to verify the loan request, after
which it is handed over to the risk department, i. e.,
the behavior converges and branches out again.
The same applies for sending a semi-large packet
by mail. The first step of such a process is usually
a customer handing out the packet at a postal office
desk. Secondly, the packet gets a unique id, and is
scanned into the system. After this, depending on
the size/weight of the packet, as well the destina-
tion (i. e., domestic vs. international) the activities
performed for the packet start to diversity.

http://dx.doi.org/10.18417/emisa.14.5

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5
Repairing Outlier Behavior in Event Logs using Contextual Behavior 9
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

Unstructured Behavior
Structured

Behavior
Unstructured Behavior

Structured

Behavior

Structured

Behavior

Start End

Fig. 4: Schematic overview of the typical flow of behavior in processes. Fragments of structured behavior, e. g.,
certain activities being always followed by the same other activity, are often followed by blocks of less structured
behavior. We identify the fragments of structured behavior and aim to identify and replace parts of the unstructured
behavior by the predominant behavior in that part of the process.

In the first step of the repair approach, we iden-
tify these pairs of frequent surrounding behavior,
which we refer to as behavioral contexts. We
define such surrounding behavior as behavioral
context, and are interested in those contexts that
occur frequently on a global event log level.

Definition 3 (Behavioral Context) Let A de-
note the universe of activities and let L ∈ M(A∗)
be an event log. A behavioral context c is a pair
of sequences of activities, i. e., c ∈ A∗ ×A∗. Fur-
thermore, we define the set of behavioral contexts
present in L, i. e., βL ∈ P(A∗ × A∗), as:

βL = {(σl, σr) ∈ A
∗ × A∗ | ∃σ ∈ L, σ′ ∈ A∗ (σl · σ′ · σr ∈ σ)}

(2)

For example, in trace ⟨a, b, c, d, e, f , h⟩, ⟨a, b⟩
and ⟨e⟩ are two subsequences that surround ⟨c, d⟩,
hence, the pair (⟨a, b⟩, ⟨e⟩) is a behavioral context.
As we are interested in those contexts that occur
frequently throughout the event log, we addition-
ally define the relative frequency of the different
behavioral contexts, present in the event log.

Definition 4 (Relative Context Frequency)
Let A∗ denote the universe of activities
and let L ∈ M(A∗) be an event log. Let
(σl, σr) ∈ A

∗ × A∗ denote a behavioral con-
text. We define the relative behavioral context
frequency of context (σl, σr) in L, as a function
fL : A∗ × A∗ → R≥0, where:

fL(σl, σr) =

∑
σ∈L

(
L(σ) ×

∑
σ′∈A∗

|σσl ·σ′ ·σr |
)

|L |
(3)

Observe that fL(σl, σr) represents the average
number of occurrences of context (σl, σr) in the
event log and is a value that is equal to or greater
than 0. Note that, it is possible that fL(σl, σr) > 1,
due to loop structures it is possible to observe a
context more than once in a trace.

The exact quantification of which behavioral
contexts are relevant, is largely domain, or even
event log, specific. Clearly, it is possible to use a
fully automated outlier detection technique that, on
the basis of the fL-values, identifies (in)frequent
behavioral contexts. Alternatively, we are able to
use a user-specified threshold tc and only include
those contexts (σl, σr) with fL(σl, σr) ≥ tc.

5.2 Infrequent Contextual Sub-Pattern
Detection

Given a set of frequent behavioral context, we
inspect the behavior that is surrounded by these
contexts. In the remainder of this paper, we refer
to such behavior as contextual sub-patterns. Iden-
tification of infrequent contextual sub-patterns, is
relatively easy. We simply compute the empirical
conditional probability of a behavioral sequence,
being surrounded by a certain context.

Definition 5 (Conditional Contextual Probability)
Let A∗ denotes the universe of activities. Let
σ′, σl, σr ∈ A

∗ be three sequences of activities
and let L ∈ M(A∗) be an event log. We define
the conditional contextual probability of σ′,
w.r.t., σl and σr in L, i. e., representing the
empirical conditional probability of σ′ being

http://dx.doi.org/10.18417/emisa.14.5

International Journal of Conceptual Modeling
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5

10 Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

surrounded by σl and σr in L, as a function
γL : A∗ × A∗ × A∗ → [0,1], where:

γL(σ
′, σl, σr) =

∑
σ∈L

(
L(σ)×|σσl ·σ

′·σr |
)

∑
σ∈L

(
L(σ)×

∑
σ′′∈A∗

|σσl ·σ
′′·σr |

)
(4)

We alternatively write PL(σ
′ | σl, σr) to represent

γL(σ
′, σl, σr).

Again, we are able to use a fully automated out-
lier detection technique that, on the basis of the
PL(σ

′ | σl, σr)-values, identifies (in)frequent be-
havioral contexts. Alternatively, we are able to
use a user-specified threshold.

5.3 Infrequent Contextual Sub-Pattern
Replacement

In the final step of the repair procedure, we replace
the infrequent patterns by more frequent patterns
according to subsection 5.1. We identify the
following replacement strategies:

• Randomized
Given a frequent context and a set of all its high-
probability sub-patterns, we randomly select
one, according to the corresponding probabili-
ties.

• Maximal
We select the sub-pattern with the highest prob-
ability that is surrounded by the context.

• Similarity Based
Considering all high-probability sub-patterns
of a given context, we select the sub-pattern
that has the highest similarity with the outlier
sub-pattern. If there are more than one sub-
patterns with the same similarity, we select the
sub-pattern with the highest probability.

5.4 Repair
In this section, we combine the main steps of
the approach together, in a concise algorithmic
description of the proposed repair approach. To
decrease the computational complexity of the
proposed approach we just consider behavioral
context with maximum length of subsequences

equal to r and l. Therefore, we redefine the
behavioral context as follows.

βr ,lL = {(σl, σr) ∈ βL | 1 ≤ |σl | ≤ l ∧ 1 ≤ |σr | ≤ r}
(5)

Observe that, the length of contexts’ subsequences
is not allowed to be equal to 0.

In addition, we limit the maximum length of
sub-pattern to the threshold pl. Then, relative
behavioral context frequency will be as follows.

f plβL
(σl, σr) =

∑
σ∈L

(
L(σ)×

∑
σ′∈A∗ ,σ′≤pl

|σσl ·σ
′·σr |

)
|L |

(6)
In the above equation, as we have σl and σr ,
βL equals to βr ,lL . In the same way, conditional
contextual probability is adopted to the following
equation:

γ
pl
L (σ

′, σl, σr) =

∑
σ∈L

(
L(σ)×|σσl ·σ

′·σr |
)

∑
σ∈L

(
L(σ)×

∑
σ′′∈A∗ , |σ′′ |≤pl

|σσl ·σ
′′·σr |

)
(7)

The pseudo-code of our repair method is given
in Algorithm 1. The inputs of this method are
an event log (i.e, L), the maximum length of sub-
pattern (i. e., pl ∈ Z≥0), the maximum length of
the left subsequence of contexts (i. e., l ∈ N),
the maximum length of the right subsequence of
contexts (i. e., r ∈ N), the minimum threshold
for the relative behavioral context frequency (i. e.,
Tc ∈ Z≥0) and the minimum threshold for the
conditional contextual probability (0 ≤ Tp ≤ 1)
and it returns a repaired event log (i. e., L ′).

For each trace, we start from a sub-
pattern length equals to 0. For the contexts,
we start searching from the longest ones
(equal l or r) to 1. We expect that, if a
context (⟨σln, σln−1, ..,σl1⟩, ⟨σr1, ..,σrn−1, σrn ⟩)

is frequent in an event log, the context
(⟨σln−1, ..,σl1⟩, ⟨σr1, ..,σrn−1⟩) is also frequent.
Therefore, longer contexts are more interesting
and we start searching from them. According to
line 17th of Algorithm 1, if the corresponding con-
text is significant (w.r.t., Tc) and the conditional
contextual probability of sub-pattern σ′ is not
high enough (w.r.t., Tp), we replace it with a more

http://dx.doi.org/10.18417/emisa.14.5

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5
Repairing Outlier Behavior in Event Logs using Contextual Behavior 11
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

Algorithm 1 Repairing outlier behavior in an event log
1: procedure Repair(L, pl, l, r , Tp ,Tc)
2: L ′← [] //empty multiset
3: for each (σ ∈ L) do
4: Add artificial start and end activities to σ
5: for (i ← 0 to pl) do //the sub-pattern
6: for (j ← l to 1) do // the left context
7: for (k ← r to 1) do //the right context
8: ind ← 0
9: if (i + j + k + ind ≤ |σ |) then // context + sub-pattern be part of a trace σ

10: σl ← ⟨σind, ..,σind+j⟩

11: σ′← ⟨σind+j+1, ..,σind+j+i⟩

12: σr ← ⟨σind+j+i+1, ..,σind+j+i+k⟩

13: if (f plβL
(σl, σr) ≥ Tc ∧ γ

pl
L (σ

′, σl, σr) ≥ Tp) then
14: Replace(σ′, (σl, σr))
15: σ′′← Replacement acc. strategy
16: Replace σ′ by σ′′ in σ
17: ind ← ind + |σ′′ |
18: ind ← ind + 1 // sliding through the trace
19: Remove artificial start and end activities from σ
20: ReparedEventLog← Add (ReparedEventLog, σ)
21: return ReparedEventLog

suitable sub-pattern according to subsection 5.3.
Please note that, after each replacement the index
is increased that guarantees termination of the
algorithm.

As we do not allow l and r to be equal to
0, to detect outlier behavior in the starting and
the ending part of traces, for each trace in the
event log, we insert an artificial start event and an
artificial end event. So, based on the explained
pseudo-code, these artificial events never be part
of contextual sub-patterns. After repairing a trace,
we omit these artificial events.

6 Evaluation

To be able to evaluate the proposed repair method,
we implemented the Repair Log plug-in (RL) in
the prom framework1 . The plug-in takes an
event log as an input and returns a repaired event

1 Repair Log plugin svn.win.tue.nl/repos/prom/Packages/
LogFiltering

log. Furthermore, the user is able to specify a
contextual sub-pattern probability threshold Tp,
a context frequency threshold Tc, a maximum
subsequence length pl and the length of left and
right sequences of both contexts.2

To apply our proposed method on various event
logs with different thresholds and applying dif-
ferent process mining algorithms with various
parameters, we ported the Repair Log (RL) plug-
in to rapidprom. rapidprom is an extension
of RapidMiner that combines scientific work-
flows (Bolt et al. 2016) with a range of (prom-
based) process mining algorithms. Using the
implementation in rapidprom, we evaluate our
proposed repair method compared to three state-of-
the-art process discovery algorithms and a general
filtering method on different event logs.

2 To decrease the usage complexity of the plug-in, in the
implementation we consider the length of both the left and
the right contexts are equal.

http://dx.doi.org/10.18417/emisa.14.5
svn.win.tue.nl/repos/prom/Packages/LogFiltering
svn.win.tue.nl/repos/prom/Packages/LogFiltering

International Journal of Conceptual Modeling
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5

12 Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

6.1 Event logs
In our evaluation, we used both real and syn-
thetic event logs. In this regard, 19 real event
logs were used that all of them are accessible
via 4tu Center for Research Data3 (De Leoni
and Mannhardt 2015; Dongen 2012; Dongen and
Borchert 2017, 2018; Mannhardt, F. (Felix) 2017;
Mannhardt 2016; Steeman 2013). Basic infor-
mation of these event logs is presented in Tab. 3.
Some of these event logs such as Road−Fine con-
tain high frequent variants, but in some others like
Sepci−Cases there are many variants that occur
only one time.

For real event logs that potentially contain out-
lier behavior there is no reference process model
available to compare with the results of process
discovery algorithms. Therefore, we designed six
artificial process models with different behavior
as shown in Fig. 5. These process models conse-
quently describe different types of behavior, i. e.,
the first model just contains sequence constructs
(Sequence), the second one contains sequence
and many exclusive choice constructs (Xor), the
third model contains sequence and many paral-
lel constructs (Parallel), the fourth one contains
sequence and loop constructs (Loop), the fifth
process model makes it possible to skip some
activities (Skip) and the last one contains all the
previous behavioral constructs (All). Using these
reference process models, we generated six event
logs containing 5000 traces each.

We also added outlier behavior with different
insertion probabilities to these original event logs.
As outlier behavior we consider adding of random
activities at random positions of traces, random
removal of activities, and swapping of activities
within traces. For example, in the Parallel−10
event log, we inserted 10% of all these three
aforementioned types of outlier behavior to the
original event log of Parallel. Note that, an event
log with 10% added outlier does not necessarily
have 90% of clean traces from the original even
log, because outlier behavior is injected on an
event level. However, unlike real event logs, for

3 https://data.4tu.nl/repository/collection:event_logs_real

each synthetic event log we have a corresponding
reference process model.

6.2 Experimental Setup
For discovering process models we apply both
the Inductive Miner, the Split Miner and the ILP
Miner (with and without their embedded filtering
mechanism) that all guarantee to find sound pro-
cess models. Soundness of discovered process
models is important for our evaluation, because
we are only able to compute fitness for sound
process models. However, as the ILP Miner is
time consuming to discover a process model, we
did not apply it in all experiments. In addition, to
simplify the evaluation, in all experiments we just
considered the length of contexts equals to 1 to
repair event logs.

We applied the process discovery algorithms
on event logs with and without preprocessing. To
preprocess event logs, we used both filtering and
repairing methods. Therefore, as shown in Fani
Sani et al. (2017), Matrix Filter algorithm has a
good performance on event logs that contain out-
lier behavior and we used this method for filtering
event logs. Also the proposed method was ap-
plied for repairing the event logs. As Conforti et al.
(2018) is designed to repair just the order of events
with the same time-stamp in a trace, we did not
consider it in the evaluation. For most of the event
logs that we used in the evaluation, it returns event
logs similar to the input event logs. Moreover,
we used preprocessed, i. e., filtered/repaired event
logs just for process discovery. For conformance
checking and quality assessment of discovered
process models, we always used original event
logs.

As explained, we aim to discover the best pro-
cess models according to the F-Measure of these
event logs using different methods. In Tab. 4, these
methods and their abbreviations are explained.
Two different process discovery algorithms that
are the Split Miner (S) and the Inductive Miner
(I) have been used with (E) and without (D) their
filtering thresholds. When we used the default
setting for the Inductive Miner (ID) we applied it
without the embedded filtering mechanism. For

http://dx.doi.org/10.18417/emisa.14.5
https://data.4tu.nl/repository/collection:event_logs_real
https://data.4tu.nl/repository/collection:event_logs_real

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5
Repairing Outlier Behavior in Event Logs using Contextual Behavior 13
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

(a) A process model with sequence constructs.

(b) A process model with exclusive choice constructs.

(c) A process model with parallel constructs.

(d) A process model with loop constructs.

(e) A process model with possibility to skip some activities.

(f) A process model with all above constructs.

Fig. 5: The reference process models that are used for generating synthetic event logs.

http://dx.doi.org/10.18417/emisa.14.5

International Journal of Conceptual Modeling
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5

14 Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

Tab. 3: Details of the real event logs that are used in the experiments.

Event Log Activity Count Trace Count Event Count Variant Counts
BPIC−2012−Application 10 13087 60849 17
BPIC−2012−Offer 7 5015 31244 168
BPIC−2012−Workflow 6 9658 72413 2263
BPIC−2013−CP 7 1487 6660 327
BPIC−2013−INC 13 7554 65533 2278
BPIC−2013−OP 5 819 2351 182
BPIC−2017−Application 10 31509 239595 102
BPIC−2017−Offer 8 42995 193849 16
BPIC−2017−Workfolow 8 31500 128227 406
BPIC−2018−Control 7 43808 161296 59
BPIC−2018−Department 6 29297 46669 349
BPIC−2018−Entitlement 40 15260 293245 2560
BPIC−2018−Financial 36 13087 262200 4366
BPIC−2018−Inspection 26 5485 197717 3190
BPIC−2018−Parcel 10 14750 132963 3615
BPIC−2018−Reference 6 43802 128554 515
Hospital−Billing 18 100000 451359 1020
Road−Fines 11 150370 561470 231
Sepsis−Cases 16 1050 15224 846

the extended version of the Inductive Miner (IE),
we applied different filtering thresholds from 0 to 1
with steps of 0.05. For the default Split Miner (SD)
method, we used ϵ = 0.1 and η = 0.4 that are the
default values of this method and for the extended
version of this algorithm (SE) we used ϵ and η
from 0 to 1 in 9 steps (100 different combinations).
We applied these algorithms on the original event
logs (N), filtered event logs (F), and repaired event
logs using our proposed method (R). To repair and
filter event logs we used threshold from 0 to 1 with
steps of 0.05 and subsequence length equals to 2,
3 and 4. For instance, the abbreviation SER refers
to applying the Split Miner with different filtering
thresholds on the repaired event log.

6.3 Evaluation Metrics
To evaluate discovered process models, we use
fitness, precision and complexity metrics. Fitness
computes how much behavior in the event log is
also described by the process model. A fitness
value equal to 1, indicates that all the behavior in
the event log is described by the process model.
Precision measures how much of behavior, that is
described by the process model, is also present in
the event log. A low precision value means that
the process model allows for much more behavior
compared to the event log. Note that, there is a

Tab. 4: The abbreviations of twelve different methods
that are used for discovering process models.

Process
Discovery

Embedded
Filtering Preprocessing Abbreviation

Inductive
M

iner

No Nothing IDN
Yes Filter IDF
No Repair IDR
Yes Nothing IEN
No Filter IEF
Yes Repair IER

SplitM
iner

No Nothing SDN
Yes Filter SDF
No Repair SDR
Yes Nothing SEN
No Filter SEF
Yes Repair SER

trade-off between these measures (Weerdt et al.
2011). Sometimes, putting aside a small amount
of behavior causes a slight decrease in the fitness
value, whereas the precision value increases much
more. Therefore, we use the F-Measure that
combines fitness and precision as follows.

F-Measure =
2 × Precision × Fitness

Precision + Fitness
(8)

Moreover, there are some complexity metrics
that measure the understandability of a process
model (Mendling 2008). The complexity metrics
relate the understandability of a process model to
some parameters like the size (number of the nodes

http://dx.doi.org/10.18417/emisa.14.5

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5
Repairing Outlier Behavior in Event Logs using Contextual Behavior 15
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

and arcs), control flow complexity (branchings
and gateways) and the structuredness of it.

6.4 Evaluation Results
To evaluate our proposed method we conducted
several experiments with both real and artificial
event logs. We first explain the experimental
results on real event logs, after which the results
of using synthetic event logs are discussed.

6.4.1 Experiments with Real Data
In the first experiment, we aim to investigate the
usefulness of applying the proposed method on im-
proving the F-Measure of discovered process mod-
els. Tab. 5 shows the best obtained F-Measure val-
ues of applying different methods (i. e., described
in Tab. 4) on real event logs. The results show that
preprocessing the event log using both the filtering
and repairing methods improves the F-Measure of
discovered process models. They usually improve
the F-Measure by sacrificing a bit in fitness and
increasing the precision. This improvement is
usually higher if the

Trace#
Variant#

is lower. So, if
the number of unique traces is higher we expect
the improvement of preprocessing to be higher.
Therefore, the improvements in F-Measure of dis-
covered process models for Hospital−Billing and
Sepsis event logs are higher, specifically when
the Split Miner was used. The results indicate
that usually the combination of the preprocessing
methods and filtering mechanisms that are embed-
ded in the process discovery algorithm leads to a
higher or equal F-Measure values. In addition, by
comparison of the preprocessing methods results
(i. e., IEF vs. IER and SEF vs. SER), we found that
for most event logs, applying the repair method
increases the value of F-Measure more.

As shown in Tab. 6, for most event logs, us-
ing the embedded filtering mechanism in process
discovery algorithms on the repaired event logs
(i. e., SER and IER) results in the process model
with the highest F-Measure. For 14 event logs out
of 19, the best process models for the Inductive
Miner is obtained when the repaired event logs

are used.4 . Thus, we conclude that preprocessing
event logs, specially using our method improves
the results of process discovery algorithms.

Note that, for some event logs such as the
Sepsis−Cases, neither repairing nor filtering
helps us to have an outstanding process model,
i.e, obtaining the high F-Measure value. It relates
to the fact that the discovered process model of
this event log is not precise and there is some be-
havior that is possible to happen anywhere during
the execution of the process. In general, having
any parallel and/or skip behavior in the model
causes a decrease at the precision value of the
process model, even when it depicts the behavior
in the event log correctly. We have shown the best
discovered process model for this event log to a
business expert and he expressed that the resulted
process model is acceptable (but, not perfect).

Fig. 6 shows the best process models of dif-
ferent methods resulted from the above experi-
ment for the BPIC−2017−Offer event log. Fig. 6f
and Fig. 6e which are discovered on repaired event
logs have less complexity and high F-Measure.
With respect to their F-Measure we are able to
say that they are the best process models for this
event log among the other methods. These process
models are depicting the same behavior, however,
in Fig. 6f, there is an unnecessary silent transi-
tion at the end of the process model. In addition,
from these results we found that preprocessing the
event log not only improves the F-Measure of the
process models, but the understandability of the
process models is increased as well.

In the second experiment, to evaluate the help-
fulness of our proposed method in reducing the
complexity, we discovered process models on re-
paired event logs using the ILP Miner (Zelst et
al. 2015). Please note that, as the ILP miner is
very time consuming, we repaired real event logs
with just six different thresholds and consider the
process models with the highest F-Measure. As
shown in Fig. 7, the F-Measures of discovered

4 For this comparison we used more accurate decimals values
compared to Tab. 5

http://dx.doi.org/10.18417/emisa.14.5

International Journal of Conceptual Modeling
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5

16 Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

(a) Results of Applying the Inductive Miner on the original event log (IEN).

(b) Results of Applying the Split Miner on the original event log (SEN).

(c) Results of Applying the Inductive Miner on the filtered event log (IEF).

(d) Results of Applying the Split Miner on the filtered event log (SEF).

(e) Results of Applying the Inductive Miner on the repaired event log (IER).

(f) Results of Applying the Split Miner on the repaired event log (SER).

Fig. 6: The best discovered process models on BPIC−2017−Offer with and without preprocessing. For preprocessing
we used filtering and repairing methods.

http://dx.doi.org/10.18417/emisa.14.5

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5
Repairing Outlier Behavior in Event Logs using Contextual Behavior 17
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

Tab. 5: Best F-Measure of applying the twelve different methods on some real event logs.

Event Log IDN IDF IDR IEN IEF IER SDN SDF SDR SEN SEF SER

BPIC_2012_Application 0.842 0.917 0.971 0.93 0.94 0.976 0.961 0.97 0.966 0.977 0.975 0.977

BPIC_2012_Offer 0.533 0.896 0.907 0.884 0.925 0.907 0.976 0.978 0.976 0.976 0.978 0.978

BPIC_2012_Work 0.447 0.667 0.589 0.76 0.775 0.817 0.739 0.764 0.806 0.739 0.769 0.809

BPIC_2013_CP 0.671 0.929 0.929 0.784 0.929 0.929 0.686 0.929 0.929 0.713 0.929 0.929

BPIC_2013_Inc 0.827 0.925 0.946 0.695 0.943 0.958 0.68 0.789 0.908 0.774 0.79 0.908

BPIC_2013_OP 0.735 0.877 0.882 0.858 0.877 0.923 0.797 0.877 0.866 0.816 0.877 0.866

BPIC_2017_APPlication 0.904 0.906 0.969 0.965 0.965 0.976 0.866 0.927 0.948 0.921 0.959 0.976

BPIC_2017_Offer 0.878 0.93 0.987 0.983 0.984 0.987 0.953 0.976 0.987 0.97 0.987 0.987

BPIC_2017_Workflow 0.716 0.905 0.852 0.905 0.909 0.906 0.918 0.918 0.92 0.921 0.921 0.921

BPIC_2018_Control 0.925 0.991 0.999 0.955 0.981 0.999 0.996 1 0.999 0.996 1 0.999

BPIC_2018_Department 0.796 0.892 0.894 0.85 0.882 0.894 0.882 0.89 0.889 0.889 0.893 0.891

BPIC_2018_Entitlement 0.528 0.929 0.751 0.649 0.943 0.924 0.68 0.929 0.929 0.867 0.929 0.939

BPIC_2018_Financial 0.537 0.817 0.707 0.729 0.862 0.791 ∼ 0.856 0.691 0.826 0.868 0.86

BPIC_2018_Inspection 0.657 0.727 0.748 0.726 0.734 0.86 0.783 0.784 0.878 0.83 0.806 0.881

BPIC_2018_Parcel 0.579 0.915 0.945 0.737 0.927 0.956 0.872 0.916 0.955 0.913 0.916 0.955

BPIC_2018_Reference 0.855 0.991 0.997 0.931 0.991 0.997 0.992 0.997 0.997 0.992 0.997 0.997

Hospital_Billing 0.817 0.912 0.871 0.876 0.921 0.961 0.934 0.988 0.98 0.984 0.988 0.991

Road_Traffic 0.595 0.957 0.958 0.776 0.951 0.952 0.693 0.933 0.956 0.924 0.933 0.976

Sepsis 0.621 0.763 0.817 0.651 0.787 0.834 0.379 0.727 0.777 0.671 0.73 0.783

Tab. 6: The number of event logs in which the pre-
processing method results in the best process model
according to F-Measure.

Method DN DF DR EN EF ER
Inductive Miner 0 1 5 0 5 14
Split Miner 0 5 4 2 9 13

process models are highly increased when we re-
paired the event logs beforehand. The difference
between F-Measure values in this figure is high
because in ILP miner no filtering method is used
to handle outliers. The ILP miner always guar-
antees the Fitness value equal 1 for the original
event log. However, it usually results in very
complex process models that are not understand-
able. Because this algorithm aims to depict the
outlier behavior in the process model (to have the
fitness value equals to 1). In Tab. 7, we compare
the complexity of discovered process models us-
ing three different complexity metrics. The −1

value in the Structuredness column means that
the corresponding process model is not sound. In
the Cyclomatic column, the −1 value means that
the process model is too complex and we are not
able to compute an accurate value according to
this metric. Considering these results, we found
that our proposed method is able to decrease the
complexity of the discovered process models and,
therefore, increase their understandability.

In addition, the Cardoso values of process mod-
els when we used filtering and repairing event
logs for the Inductive Miner and the Split Miner
are given in Tab. 8. In almost all of the event
logs, both the preprocessing methods by remov-
ing infrequent behavior reduce the complexity of
discovered process models.

6.4.2 Experiments with Synthetic Data
In the previous experiments, to compute F-
Measures the original event log that possibly con-
tains outliers is used as a ground truth. Here

http://dx.doi.org/10.18417/emisa.14.5

International Journal of Conceptual Modeling
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5

18 Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

0.0

0.2

0.4

0.6

0.8

1.0

B
P
IC
_
2
0
1
2_
A
p
p
li
ca
ti
o
n

B
P
IC
_
2
0
1
2_
O
ff
e
r

B
P
IC
_
2
0
1
2_
W
o
rk
fl
o
w

B
P
IC
_
2
0
1
3_
C
P

B
P
IC
_
2
0
1
3_
In
c

B
P
IC
_
2
0
1
3_
O
P

B
P
IC
_
2
0
1
7_
A
P
P

B
P
IC
_
2
0
1
7_
W
o
rk
fl
o
w

B
P
IC
_
2
0
1
7_
O
ff
e
r

B
P
IC
_
2
0
1
8_
C
o
n
tr
o
l

B
P
IC
_
2
0
1
8_
En

ti
tl
e
m
en

t

B
P
IC
_
2
0
1
8_
D
ep

a
rt
m
e
n
t

B
P
IC
_
2
0
1
8_
Fi
n
an

ci
a
l

B
P
IC
_
2
0
1
8_
In
sp
e
ct
io
n

B
P
IC
_
2
0
1
8_
P
ar
ce
l

B
P
IC
_
2
0
1
8_
R
ef
er
e
n
ce

H
o
sp
it
a
l_
B
ill
in
g

R
o
a
d
_T
ra
ff
ic

Se
p
si
s

F-
M
e
as
u
re

ILP ILP with Repair

Fig. 7: The best F-Measure of process models that are discovered by the ILP miner.

Tab. 7: The complexity of discovered process models using the ILP miner with/without repairing the real event logs.
ILP ILP with Repair

Event Logs Cardoso Cyclomatic Structuredness Cardoso Cyclomatic Structuredness
BPIC_2012_App 35 -1 -1 14 12 1101
BPIC_2012_Offer 20 8 1080 8 8 9.5
BPIC_2012_Workflow 16 8 1400 5 7 210
BPIC_2013_CP 15 9 1395 4 4 5
BPIC_2013_Inc 11 15 3000 4 4 5
BPIC_2013_OP 15 7 665 10 5 250
BPIC_2017_APP 27 15 3900 13 10 720
BPIC_2017_Offer 17 12 3200 8 9 36
BPIC_2017_Workflow 259 -1 -1 29 9 2475
BPIC_2018_Control 7 -1 -1 7 6 60
BPIC_2018_Department 6 6 75 3 8 16
BPIC_2018_Entitlement 71 22 23980 66 19 15865
BPIC_2018_Financial 438 -1 -1 150 -1 -1
BPIC_2018_Inspection 56 -1 -1 22 -1 5950
BPIC_2018_Parcel 21 -1 -1 7 8 90
BPIC_2018_Reference 6 -1 -1 6 5 50
Hospital_Billing 9 22 5400 5 20 1900
Road_Traffic 15 -1 -1 10 -1 -1
Sepsis 88 -1 14760 13 -1 -1

Tab. 8: The Cardoso values of discovered process models using different preprocessing methods with default settings.
Process Discovery Inductive Miner Split Miner
Event Log/ preprocess Nothing Filter Repair Nothing Filter Repair
BPIC_2012_App 14 14 14 25 19 17
BPIC_2012_Offer 17 12 8 9 10 10
BPIC_2012_Workflow 22 18 21 33 29 33
BPIC_2013_CP 17 4 4 11 4 4
BPIC_2013_Inc 10 9 4 15 13 7
BPIC_2013_OP 19 4 4 13 13 2
BPIC_2017_APP 21 12 10 30 20 14
BPIC_2017_Offer 5 6 6 18 9 7
BPIC_2017_Workflow 30 16 33 43 43 43
BPIC_2018_Control 17 8 4 19 8 12
BPIC_2018_Department 26 16 18 22 16 23
BPIC_2018_Entitlement 23 12 19 189 176 80
BPIC_2018_Financial 25 16 43 157 145 150
BPIC_2018_Inspection 23 11 25 59 58 31
BPIC_2018_Parcel 31 12 8 31 18 16
BPIC_2018_Reference 20 8 3 20 8 15
Hospital_Billing 41 14 25 83 43 69
Road_Traffic 17 7 16 86 62 76
Sepsis 20 12 16 173 13 90

http://dx.doi.org/10.18417/emisa.14.5

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5
Repairing Outlier Behavior in Event Logs using Contextual Behavior 19
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

similar to the previous experiment, we applied the
12 different methods (that are explained in Tab. 4)
on synthetic event logs to discover the best process
models w.r.t., F-Measure. For synthetic event logs,
we have event logs without outliers and we used
them for computing the F-Measure. Results of
this experiment are given in Tab. 9.

As shown in this table, for all event logs if
we insert some noisy behavior (even just 5%),
the Inductive Miner and the Split Miner have
problems to discover a process model with a high
F-Measure value. It means that the embedded
noise filtering mechanisms in these algorithms are
not able to deal with all types of outlier behavior.
As shown in Tab. 9 by the ∼ symbol, because of
the high complexity of discovered process models,
we are not able to compute the F-Measure for
the discovered models of some event logs. It is
interesting that for most of the event logs like All
and Parallel without noisy behavior (i. e., 0%)
the F-Measure of the discovered process models
do not equal to 1. It is because of the precision
algorithm that does not return value 1 even for the
reference process model when we have parallel
and Xor behavior. Furthermore, both filtering and
repairing of event logs increase the F-Measure of
the discovered models for both process discovery
algorithms. For the Split Miner, in most of the
cases, using the proposed repair method (SER)
results the best process models. However, for the
Inductive Miner; especially, when we have loop
and parallel behavior, using the filtering method
increases the F-Measure more. Because the Split
Miner has an internal mechanism to handle some
parallel behavior in event logs that the Inductive
Miner does not have it. Therefore, when we have
parallel and loop behavior in an event log and we
want to use the Inductive miner, it is proposed to
use the filtering methods instead of the repairing
method.

We observe again that the combination of fil-
tering mechanisms in the process discovery algo-
rithms and the proposed method results in the best
process model. The reason for this is related to the
fact that our method is able to detect and repair out-
lier behavior locally. Even for the event logs that

contain no noisy behavior (specially when there
is heavy presence of Xor behavior), repairing an
event log improves the process model according
to the F-Measure metric.

Finally, note that filtering methods achieve the
best results by removing a lot of behavior from
event logs. The percentages of remaining traces
in each event log for the best process model (ac-
cording to F-Measure) in IEF and SEF are given
in Tab. 10. In some event logs (e. g., Skip−05), a
few percentage of outlier behavior causes that the
best process model is discovered just with around
10% of the traces. Because of using random noise
generation and different parameters values of fil-
tering and process discovery algorithms, and just
showing the results of the situation with the high-
est F-Measure, we could not analyze all patterns
in this table. However, results show that using fil-
tering, we remove lots of traces to achieve the best
process models. Even, for some clean event logs,
the best process model is discovered by removing
more than 35% of traces of the original event log.
However, in the repair method all the traces remain
in the event log, but they may be modified. As
explained in Sect. 2, in some domains repairing
the process instances are more valuable compared
to just filtering them out. In addition, it is possible
that by repairing event logs, we remove/hide much
of normal infrequent behavior.

As explained in subsection 6.2, here, for all
methods we used a grid search on different param-
eters and show the best obtained result. However,
in reality like other state-of-the-art process mining
specific data cleansing methods, adjusting these
thresholds is a challenging task for users.

7 Conclusion

Process mining provides insights into the actual
execution of business processes, by exploiting
available event data. Unfortunately, many process
mining algorithms are designed to work under
the assumption that the input data is free of out-
liers. However, real event logs contain outlier
behavior (noise/infrequent) which typically leads

http://dx.doi.org/10.18417/emisa.14.5

International Journal of Conceptual Modeling
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5

20 Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

Tab. 9: Best F-Measure of applying the Split Miner and the Inductive Miner on synthetic event logs that contain
different percentages of outlier behavior.

Outlier% IDN IDF IDR IEN IEF IER SDN SDF SDR SEN SEF SER

Sequence

0% 1 1 1 1 1 1 1 1 1 1 1 1

5% 0.418 1 1 0.53 1 1 0.652 1 0.994 0.828 1 0.994

10% 0.213 0.637 0.947 0.379 1 1 0.629 0.947 0.988 0.81 0.947 0.988

20% 0.19 0.637 0.9 0.379 1 1 0.596 0.947 0.975 0.81 0.947 0.975

50% 0.209 0.653 0.775 0.379 1 1 0.611 0.947 0.951 0.81 0.947 0.956

Xor/Choice

0% 0.506 0.68 0.939 0.506 0.905 0.939 0.94 0.94 0.95 0.956 0.956 0.97

5% 0.495 0.806 0.815 0.619 0.909 0.908 0.7 0.943 0.97 0.908 0.953 0.973

10% 0.488 0.806 0.808 0.548 0.909 0.908 0.672 0.96 0.965 0.899 0.96 0.968

20% 0.34 0.82 0.872 0.333 0.867 0.908 0.606 0.962 0.945 0.893 0.962 0.945

50% 0.312 0.803 0.847 0.309 0.844 0.945 0.608 0.916 0.911 0.877 0.922 0.916

Parallel

0% 0.977 0.977 0.977 0.977 0.977 0.977 0.949 0.949 0.956 0.96 0.969 0.965

5% 0.314 0.697 0.781 0.447 0.902 0.88 0.685 0.889 0.941 0.853 0.906 0.95

10% 0.291 0.615 0.71 0.456 0.897 0.855 0.658 0.741 0.942 0.853 0.907 0.942

20% 0.282 0.537 0.747 0.456 0.854 0.807 0.654 0.856 0.921 0.856 0.879 0.921

50% 0.285 0.592 0.728 0.419 0.854 0.863 0.641 0.856 0.897 0.839 0.869 0.901

Loop

0% 0.892 0.901 0.892 0.919 0.95 0.919 0.94 0.94 0.942 0.94 0.959 0.959

5% 0.39 0.901 0.871 0.451 0.95 0.919 0.666 0.94 0.956 0.858 0.959 0.956

10% ∼ 0.826 0.871 0.375 0.95 0.919 0.641 0.94 0.951 0.858 0.959 0.952

20% ∼ 0.883 0.857 0.375 0.902 0.902 0.615 0.94 0.939 0.853 0.959 0.939

50% ∼ 0.883 0.851 0.375 0.919 0.902 0.636 0.944 0.904 0.853 0.944 0.918

Skip

0% 1 1 1 1 1 1 0.881 0.911 0.881 0.906 0.911 0.943

5% 0.295 0.821 0.765 0.346 0.899 0.95 0.697 0.904 0.99 0.858 0.948 0.992

10% 0.296 0.805 0.621 0.346 0.877 0.95 0.687 0.904 0.984 0.858 0.926 0.985

20% 0.295 0.675 0.695 0.346 0.898 0.931 0.699 0.818 0.955 0.858 0.901 0.962

50% 0.307 0.663 0.65 0.353 0.91 0.894 0.689 0.795 0.924 0.863 0.883 0.937

All

0% ∼ 0.731 0.822 0.882 0.889 0.867 0.866 0.863 0.886 0.883 0.879 0.889

5% ∼ 0.845 0.815 0.566 0.875 0.867 0.65 0.862 0.883 0.828 0.874 0.891

10% ∼ 0.815 0.791 0.563 0.87 0.867 0.651 0.862 0.883 0.828 0.873 0.893

20% ∼ 0.815 0.791 0.563 0.87 0.867 0.647 0.862 0.879 0.828 0.872 0.885

50% ∼ 0.762 0.828 0.563 0.854 0.867 0.648 0.869 0.863 0.828 0.869 0.872

http://dx.doi.org/10.18417/emisa.14.5

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5
Repairing Outlier Behavior in Event Logs using Contextual Behavior 21
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

Tab. 10: The percentage of remaining traces in event logs when filtering method is used as a preprocessing step.

Method IEF SEF
Outlier % 00 05 10 20 50 00 05 10 20 50
Sequence 100% 95% 89% 75% 53% 100% 95% 89% 74% 52%
Xor 51% 43% 41% 77% 30% 100% 100% 89% 77% 59%
Parallel 100% 94% 90% 53% 41% 98% 96% 92% 86% 78%
Loop 60% 58% 37% 75% 52% 100% 96% 90% 75% 52%
Skip 100% 37% 29% 30% 28% 38% 7% 96% 83% 28%
All 65% 62% 12% 10% 13% 100% 41% 41% 4% 39%

to inaccurate/unusable process mining results. De-
tecting such behavior in event logs and correcting
it, helps to improve process mining results, e. g.,
discovered process models.

To address this problem, we propose a method
that repairs event logs. It uses the occurrence fre-
quency of a control-flow-oriented context pattern
and the probabilities of different subsequences
appearing in the middle of it to detect outlier be-
havior. If such probability is lower than a given
threshold, the subsequence is substituted with a
more probable one according to the context.

To evaluate the proposed method, we have de-
veloped a plug-in in the prom platform and also
ported to rapidprom. As presented, we have
applied this method on several real event logs, and
compared it with other state-of-the-art process
mining specific data cleansing methods. Addition-
ally, we applied our method on synthetic event
logs. The results indicate that the proposed repair
approach is able to detect and modify outlier be-
havior and consequently is able to help process
discovery algorithms to return models that better
balance between different behavioral quality mea-
sures. Furthermore, using these experiments we
show that our repair method outperforms process
discovery algorithms like the Inductive Miner, the
Split Miner and ILP Miner as the best state-of-art
process discovery algorithms. The results show
that the proposed method is able to reduce the
complexity of process models and, consequently,
improves the understandability of them.

As future work, we want to combine different
preprocessing methods. We also plan to develop
techniques to automatically set adjustable filtering
and repairing parameters based on characteristics
of the input event log to guide users and speed-up

analysis. Moreover, we just used the sequence
abstraction in this research. As future work, it is
possible to use any other abstractions such as multi-
set and set for both of the contextual sub-patterns
and contexts.

References

van der Aalst W. M. P. (2011) Using Process
Mining to Bridge the Gap between BI and BPM.
In: IEEE Computer 44(12), pp. 77–80

van der Aalst W. M. P. (2016) Process Mining -
Data Science in Action, Second Edition. Springer

van der Aalst W. M. P., Bolt A., van Zelst S. J.
(2017) RapidProM: Mine Your Processes and
Not Just Your Data. In: CoRR abs/1703.03740
http://arxiv.org/abs/1703.03740

van der Aalst W. M. P., van Dongen B. F., Günther
C. W., Rozinat A., Verbeek E., Weijters T. (2009)
ProM: The Process Mining Toolkit. In: http://ceur-
ws.org/Vol-489/paper3.pdf

van der Aalst W. M. P., Weijters T., Maruster L.
(2004) Workflow Mining: Discovering Process
Models from Event Logs. In: IEEE Trans. Knowl.
Data Eng. 16(9), pp. 1128–1142

van der Aalst W., Adriansyah A., De Medeiros
A. K. A., Arcieri F., Baier T., Blickle T., Bose J. C.,
Van Den Brand P., Brandtjen R., Buijs J., et al.
(2011) Process mining manifesto. In: International
Conference on Business Process Management.
Springer, pp. 169–194

http://dx.doi.org/10.18417/emisa.14.5
http://arxiv.org/abs/1703.03740
http://ceur-ws.org/Vol-489/paper3.pdf
http://ceur-ws.org/Vol-489/paper3.pdf

International Journal of Conceptual Modeling
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5

22 Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

Andrews R., Suriadi S., Ouyang C., Poppe E.
(2018) Towards Event Log Querying for Data
Quality - Let’s Start with Detecting Log Imper-
fections. In: On the Move to Meaningful Internet
Systems. OTM 2018 Conferences - Confederated
International Conferences: CoopIS, C&TC, and
ODBASE 2018, Valletta, Malta, October 22-26,
2018, Proceedings, Part I, pp. 116–134

Armas-Cervantes A., van Beest N. R. T. P., Rosa
M. L., Dumas M., Raboczi S. (2017) Incremental
and Interactive Business Process Model Repair
in Apromore. In: Proceedings of the BPM Demo
Track and BPM Dissertation Award co-located
with 15th International Conference on Business
Process Modeling (BPM 2017), Barcelona, Spain,
September 13, 2017.

Augusto A., Conforti R., Dumas M., Rosa M. L.,
Polyvyanyy A. (2019) Split miner: automated
discovery of accurate and simple business process
models from event logs. In: Knowl. Inf. Syst. 59(2),
pp. 251–284

Bolt A., de Leoni M., van der Aalst W. M. P.
(2016) Scientific workflows for process mining:
building blocks, scenarios, and implementation.
In: STTT 18(6), pp. 607–628

Chandola V., Banerjee A., Kumar V. (2012)
Anomaly Detection for Discrete Sequences: A
Survey. In: IEEE Trans. Knowl. Data Eng. 24(5),
pp. 823–839

Cheng H.-J., Kumar A. (2015) Process Mining on
Noisy Logs —Can Log Sanitization Help to Im-
prove Performance? In: Decision Support Systems
79, pp. 138–149

Conforti R., La Rosa M., ter Hofstede A. (2018)
Timestamp Repair for Business Process Event
Logs.

Conforti R., Rosa M. L., ter Hofstede A. H. M.
(2017) Filtering Out Infrequent Behavior from
Business Process Event Logs. In: IEEE Trans.
Knowl. Data Eng. 29(2), pp. 300–314

De Leoni M., Mannhardt F. (2015) Road traffic fine
management process. In: Eindhoven University of
Technology. Dataset

van Dongen B. (2012) BPI Challenge 2012, Event
log of a loan application process

van Dongen B., Borchert F. (2017) BPI Chal-
lenge 2017. Eindhoven University of Technology.
Dataset.

van Dongen B., Borchert F. (2018) BPI Chal-
lenge 2018. Eindhoven University of Technology.
Dataset.

Fahland D., van der Aalst W. M. P. (2015) Model
repair - aligning process models to reality. In: Inf.
Syst. 47, pp. 220–243

Fani Sani M., van Zelst S. J., van der Aalst W. M. P.
(2017) Improving Process Discovery Results by
Filtering Outliers Using Conditional Behavioural
Probabilities. In: Business Process Management
Workshops - BPM 2017 International Workshops,
Barcelona, Spain, September 10-11, 2017, Revised
Papers, pp. 216–229

Fani Sani M., van Zelst S. J., van der Aalst W. M. P.
(2018a) Applying Sequence Mining for Outlier
Detection in Process Mining. In: On the Move to
Meaningful Internet Systems. OTM 2018 Confer-
ences - Confederated International Conferences:
CoopIS, C&TC, and ODBASE 2018, Valletta,
Malta, October 22-26, 2018, Proceedings, Part II,
pp. 98–116

Fani Sani M., van Zelst S. J., van der Aalst W. M. P.
(2018b) Repairing Outlier Behaviour in Event
Logs. In: Business Information Systems - 21st
International Conference, BIS 2018, Berlin, Ger-
many, July 18-20, 2018, Proceedings, pp. 115–
131

Günther C. W., van der Aalst W. M. P. (2007)
Fuzzy Mining - Adaptive Process Simplification
Based on Multi-perspective Metrics. In: Business
Process Management, 5th International Confer-
ence, BPM 2007, Brisbane, Australia, September
24-28, 2007, Proceedings, pp. 328–343

Gupta M., Gao J., Aggarwal C. C., Han J. (2014)
Outlier Detection for Temporal Data: A Survey. In:
IEEE Trans. Knowl. Data Eng. 26(9), pp. 2250–
2267

http://dx.doi.org/10.18417/emisa.14.5

Enterprise Modelling and Information Systems Architectures
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5
Repairing Outlier Behavior in Event Logs using Contextual Behavior 23
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

Hernández M. A., Stolfo S. J. (1998) Real-
world Data is Dirty: Data Cleansing and The
Merge/Purge Problem. In: Data Min. Knowl. Dis-
cov. 2(1), pp. 9–37

Leemans S. J. J., Fahland D., van der Aalst W. M. P.
(2013a) Discovering Block-Structured Process
Models from Event Logs - A Constructive Ap-
proach. In: Application and Theory of Petri Nets
and Concurrency - 34th International Conference,
PETRI NETS 2013, Milan, Italy, June 24-28, 2013.
Proceedings, pp. 311–329

Leemans S. J. J., Fahland D., van der Aalst W. M. P.
(2013b) Discovering Block-Structured Process
Models from Event Logs Containing Infrequent
Behaviour. In: Business Process Management
Workshops - BPM 2013 International Workshops,
Beijing, China, August 26, 2013, Revised Papers,
pp. 66–78

Mannhardt, F. (Felix) (2017) Hospital Billing -
Event Log. https://data.4tu.nl/ repository/uuid:
76c46b83-c930-4798-a1c9-4be94dfeb741

Mannhardt F. (2016) Sepsis cases-event log. Eind-
hoven University of Technology

Mannhardt F., de Leoni M., Reijers H. A., van der
Aalst W. M. P. (2017) Data-Driven Process Discov-
ery - Revealing Conditional Infrequent Behavior
from Event Logs. In: Advanced Information Sys-
tems Engineering - 29th International Conference,
CAiSE 2017, Essen, Germany, June 12-16, 2017,
Proceedings, pp. 545–560

Mendling J. (2008) Metrics for Process Models:
Empirical Foundations of Verification, Error Pre-
diction, and Guidelines for Correctness. Lecture
Notes in Business Information Processing Vol. 6.
Springer https: / / doi .org/10.1007/978- 3- 540-
89224-3

Rebuge Á., Ferreira D. R. (2012) Business process
analysis in healthcare environments: A methodol-
ogy based on process mining. In: Inf. Syst. 37(2),
pp. 99–116

Ribeiro C. E., Zárate L. E. (2016) Data Preparation
for Longitudinal Data Mining: a case study on
human ageing. In: JIDM 7(2), pp. 116–129

Rogge-Solti A., Mans R., van der Aalst W. M. P.,
Weske M. (2013) Improving Documentation by
Repairing Event Logs. In: The Practice of En-
terprise Modeling - 6th IFIP WG 8.1 Working
Conference, PoEM 2013, Riga, Latvia, November
6-7, 2013, Proceedings, pp. 129–144

Steeman W. (2013) BPI Challenge 2013, incidents

Tax N., Sidorova N., van der Aalst W. M. P. (2019)
Discovering more precise process models from
event logs by filtering out chaotic activities. In: J.
Intell. Inf. Syst. 52(1), pp. 107–139

Wang J., Song S., Lin X., Zhu X., Pei J. (2015)
Cleaning structured event logs: A graph repair
approach. In: 31st IEEE International Conference
on Data Engineering, ICDE 2015, Seoul, South
Korea, April 13-17, 2015, pp. 30–41

Weerdt J. D., Backer M. D., Vanthienen J., Bae-
sens B. (2011) A robust F-measure for evaluating
discovered process models. In: Proceedings of the
IEEE Symposium on Computational Intelligence
and Data Mining, CIDM 2011, part of the IEEE
Symposium Series on Computational Intelligence
2011, April 11-15, 2011, Paris, France, pp. 148–
155

Weijters A. J. M. M., Ribeiro J. T. S. (2011) Flexi-
ble Heuristics Miner (FHM). In: Proceedings of
the IEEE Symposium on Computational Intelli-
gence and Data Mining, CIDM 2011, part of the
IEEE Symposium Series on Computational Intel-
ligence 2011, April 11-15, 2011, Paris, France,
pp. 310–317

van der Werf J. M. E. M., van Dongen B. F.,
Hurkens C. A. J., Serebrenik A. (2009) Process
Discovery using Integer Linear Programming. In:
Fundam. Inform. 94(3-4), pp. 387–412

van Zelst S. J., van Dongen B. F., van der
Aalst W. M. P. (2015) Avoiding Over-Fitting in
ILP-Based Process Discovery. In: Business Pro-
cess Management - 13th International Confer-
ence, BPM 2015, Innsbruck, Austria, August 31 -
September 3, 2015, Proceedings, pp. 163–171

http://dx.doi.org/10.18417/emisa.14.5
https://data.4tu.nl/repository/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://data.4tu.nl/repository/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://doi.org/10.1007/978-3-540-89224-3
https://doi.org/10.1007/978-3-540-89224-3

International Journal of Conceptual Modeling
Vol. 14, No. 5 (2019). DOI:10.18417/emisa.14.5

24 Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
Special Issue on BIS 2018 by Witold Abramowicz and Milena Stróżyna

van Zelst S. J., van Dongen B. F., van der Aalst
W. M. P., Verbeek H. M. W. (2017) Discover-
ing Relaxed Sound Workflow Nets using Integer
Linear Programming. In: CoRR abs/1703.06733
http://arxiv.org/abs/1703.06733

van Zelst S. J., Fani Sani M., Ostovar A., Conforti
R., Rosa M. L. (2018) Filtering Spurious Events
from Event Streams of Business Processes. In:
Advanced Information Systems Engineering - 30th
International Conference, CAiSE 2018, Tallinn,
Estonia, June 11-15, 2018, Proceedings, pp. 35–52

This work is licensed under
a Creative Commons
“Attribution-ShareAlike 4.0
International” license.

http://dx.doi.org/10.18417/emisa.14.5
http://arxiv.org/abs/1703.06733
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

