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Abstract. In the Industrial Internet of Things, cyber-physical systems bridge the gap between the physical
and digital world by connecting advanced manufacturing systems with digital services in so-called smart
factories. This interplay generates a large amount of data. By analyzing the data, manufacturers can reap
many benefits and optimize their operations. Here, the value of information is at its highest with low latency
to its emergence and its value decreases over time. Complex Event Processing (CEP) is a technology,
which enables real-time analysis of complex events (i.e., combined data values from different sources).
In this way, CEP assists in the identification and localization of anomalous process sequences in smart
factories. However, CEP comes with limitations that reduce its effectiveness. Setting up CEP requires
in-depth domain knowledge and is primarily declarative as well as reactive by nature. Combining CEP with
machine learning is a possible extension to circumvent these technological limitations. However, there is no
up-to-date overview on the integration of both paradigms in research and no review of their transferability
for application in smart factories. In this article, we provide (1) a synthesis of research on the integration of
CEP and machine learning identifying supervised learning as the predominant approach, and (2) a transfer
of potentials for the use in smart factories. Here, reactive and proactive policies are used in equal frequency.
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1 Introduction

The amount of generated data in the modern
industry is increasing rapidly (Yin and Kaynak
2015). Traditionally data analytics was performed
chiefly on historical data. However, the focus of
contemporary research is shifting towards real-
time analytics, which fosters situation-dependent
and dynamic decision making (Bruns and Dunkel
2015). An approach to achieve this is complex
event processing (CEP), a technological paradigm
for processing continuous data streams based on
events rather than batched log files (Luckham
2011).
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Real-time capability is a central design prin-
ciple of the Industrial Internet of Things (IIoT).
In smart factories, CEP can enable the real-time
analysis of sensor and process data, which can
lead to cost reduction and improved operational
performance (Kagermann et al. 2013). Olsson
and Janiesch (2015) suggest that the shorter the
action distance, that is the lower the latency of the
data, the higher the value of information can be
for decision making. Despite the practicability of
CEP in manufacturing environments, fundamen-
tal limitations exist: CEP processes and analyzes
events based on manually specified rules (Akbar
et al. 2015a; Turchin et al. 2009). A rule-based re-
alization inhibits proactivity (Turchin et al. 2009).
It requires costly and complex identification and
implementation tasks, which have to be performed
manually. In addition, a large amount of in-depth
domain knowledge is necessary for the effective
use in smart factories (Mutschler and Philippsen
2012). Optimization potential cannot be realized
if machine events and, thus, machine states are
not properly recognized.

As a result, researchers from the domain of CEP
have recently turned to machine learning (ML) to
change and improve the declarative nature of CEP
(Akbar et al. 2015b; Artikis et al. 2010; Mehdiyev
et al. 2015; Mousheimish et al. 2016; Widder et
al. 2009). ML is an approach in which computer
systems automatically learn from experience based
on algorithms (Samuel 1959).

In summary, we observe a need to reduce the
current limitations of CEP. ML techniques seem to
be a suitable candidate to possibly even obliterate
them altogether. In our work, we focus on the
applicability of integrating CEP with ML for smart
manufacturing in the IIoT. We derive the following
two research questions (RQ):

RQ1 Which ML approaches and techniques are
used integrated with CEP and how can they be
synthesized?

RQ2 What potential can be derived from com-
bining CEP and ML for smart factories in the
IIoT?

For answering the research questions, we struc-
ture our work as follows: Sect. 2 provides an
overview of the theoretical principles of the IIoT
and smart factories, CEP, and ML. In Sect. 3,
we introduce our research methodology. Sect.
4 addresses research question RQ1 based on a
literature-based taxonomy for the identification of
potential applications. We transfer our findings to
investigate challenges and improvement potentials
for real-time data analytics in smart factories in
Sect. 5, answering the research question RQ2. In
Sect. 6, we highlight identified gaps and propose
items for a research agenda. Finally, we conclude
with a brief summary and outlook.

2 Theoretical Background

Smart Factories and the Industrial Internet
of Things. The IIoT is a fundamental pillar of
the fourth industrial revolution. It describes in-
dustrial objects, whose capacity go beyond the
collection of local data. They optimize based on
the collected data and use it to interact with further
objects or workers by communicating over a net-
work (Janiesch et al. 2019). Hence, the primary
production factor of the IIoT is information and
communication technology (Bauernhansl 2017),
which are necessary for developing cyber-physical
systems. They include objects, buildings, tools,
or manufacturing machines that can communicate
through embedded systems, detect their surround-
ings using connected sensors, and interact with
their environment using actuators. Altogether,
this makes a factory intelligent and constitutes
a so-called smart factory. By interconnecting
cyber-physical systems, new optimization and au-
tomation potential manifest, which are enabled
by the real-time analysis of events (Bauernhansl
2017).

Complex Event Processing. CEP is a tech-
nological paradigm for the real-time analysis of
continuous event data streams (Luckham 2011).
According to Luckham (2011), an event can be
anything that happens or is expected to happen.
Etzion et al. (2011) extend this and refer to an
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Figure 1: Concept of the Event Driven Architecture

event as an occurrence in a specific system or do-
main. Examples of events can be technical events
such as sensor data in a production process, or
business events such as financial transactions in a
business process (Bruns and Dunkel 2015).

An event becomes complex if atomic events
are related to each other. These relationships are
based, for example, on time, causality, and aggre-
gation (Luckham 2002), and enable abstraction
across multiple levels. Low-level events comprise
the lowest level of abstraction. That is the events
that are transmitted directly from the event source
(Luckham 2011). Low-level events can be ab-
stracted into complex events. This abstraction is
made possible by CEP through operations that
are performed on (complex) events such as creat-
ing, reading, filtering, transforming, relating, and
deleting events (Etzion et al. 2011).

The concept of the event-driven architecture
(EDA) provides the foundation of the triparti-
tion of the CEP reference architecture. EDA is
an architectural style in which the components
are event-driven and communicate unidirectional
through events (Luckham 2011). The concept of
the EDA is visualized in Fig. 1. It illustrates the
central components of CEP and their interaction.
An EDA comprises three roles with underlying
components: the event producer, the event proces-
sor, and the event consumer (Bruns and Dunkel
2015).

Event producers are entities that generate low-
level events and transfer them to the event proces-
sor. Examples are RFID sensors, software sys-
tems, and Web services (Bruns and Dunkel 2015).
These events are forwarded through event chan-
nels, often connected through a publish-subscribe
broker such as Apache Kafka (Apache Software
Foundation 2019).

The event processor, that is the CEP system
in a narrower sense, is the middle layer. It anal-
yses events by step-wise processing and, thus,
generates complex events to notify anyone who
listens. According to Etzion et al. (2011), a CEP
engine typically contains input adapters, the event
processing network (EPN), and output adapters.
Input adapters are responsible for converting the
events of the event producers to the internal format
of the CEP system. The events are then transferred
to the EPN via an input event stream (Etzion et al.
2011). An EPN is a network of event processing
agents (EPA) connected by information exchange
channels. An EPA is an autonomous entity that
process events based on manually predefined rules
to detect pattern constellations of interest (Janiesch
and Diebold 2016; Luckham 2011). They assume
certain roles, such as filtering, transformation, and
pattern recognition. Filtering describes the elimi-
nation of events that are not relevant depending
on the given context or use case. Transformation
describes the derivation of new events, which may
become complex events. Exemplary operations
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are the translation, enrichment, projection, split,
composition, and aggregation of events (Etzion
et al. 2011). Another approach is pattern recog-
nition. An event pattern can be regarded as a
predefined template, which specifies a correlation
of multiple events. After processing, (complex)
events are passed to an output event stream, which
passes them on to the event consumers via an
output adapter for formatting (Etzion et al. 2011).

Event consumers perform the actual visible
event handling in response to the event provided
by CEP. In the IIoT, this entails enterprise applica-
tions or smart machinery. Examples of reactions
are calling a Web service (e.g., to automate an ac-
tion), updating an analytics dashboard (e.g., with
live key performance indicators), publishing an
event message (e.g., app notification) or triggering
human process handling (Janiesch et al. 2012).

Machine Learning Approaches. ML is the
science of mathematical models and algorithms
that machines employ to solve tasks without re-
lying on explicit instructions. In ML, we differ-
entiate three fundamental learning approaches:
supervised learning, unsupervised learning, and
reinforcement learning.

Figure 2: Supervised Learning (Tokic 2013)

Supervised learning describes a learning
paradigm where inputs are assigned deliberately
to predefined outputs (cf. Fig. 2). By transferring
the input-output pairs for training purposes, the
machine can automatically assign future cases
(Marsland 2011; Shalev-Shwartz and Ben-David
2014; S. Wang et al. 2012). Supervised learn-
ing can be further sub-categorized into classifi-
cation and regression approaches. In addition,

techniques such as probabilistic methods, induc-
tive logic programming, statistical estimators, and
deep learning are used to train the artificial pro-
cessing agents.

Classification comprises the transfer of input
vectors and the decision of the assignment to
classes (output). This is calculated on the basis
of previously learned examples in the form of a
training set (Marsland 2011). An example is a
classification algorithm of detecting anomalies in
financial transactions. At the outset, a training set
is assigned to the algorithm with financial transac-
tions (input) and their result of "OK" or "not OK"
(output). Thereby, the algorithm derives a func-
tion that subsequently classifies other financial
transactions independently (Shalev-Shwartz and
Ben-David 2014; S. Wang et al. 2012). Prevalent
algorithms for classification problems are based
on decision trees, Bayesian networks, k-nearest
neighbors, naive Bayes classifiers, support-vector
machines (SVM), and artificial neural networks
(Kotsiantis et al. 2007; Phyu 2009).

Regression analyses are statistical analysis pro-
cedures to establish relationships between vari-
ables, trend lines, and to make predictions using
future output variables (Watt et al. 2016). Contrary
to classification, where the output is a categorical
or Boolean value, regression analysis returns a nu-
merical output. Thus, it uses a representative line,
curve, or hyper-level in relation to input-output
data points (training data). At the beginning,
the underlying function is unknown and must be
found by training the selected algorithm using the
available training data (Alpaydin 2004). Primary
regression approaches are linear and non-linear
techniques (Alpaydin 2004). Often, the concept
is combined with other algorithmic approaches,
such as support-vector regression (Drucker et al.
1997).

Probabilistic methods (or models) encompass
ML techniques that use probability theory to ex-
press forms of uncertainty and noise associated
with data. Among other things, this allows algo-
rithms to infer unknown quantities, predictions,
and learn from data (Ghahramani 2015). Exam-
ples for probabilistic techniques incorporated in
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ML are graphical models (e.g., Bayesian networks
or Markov networks), latent variable models (e.g.,
mixture models or linear factor analysis), and
Markov-based models (e.g., Markov chains or
hidden Markov models) (Bacciu et al. 2015).

Statistical estimators also referred to as op-
timal estimators, are computational algorithms
employed in ML, which process measurements to
derive the state of a system and its dynamics based
on minimum error estimation using knowledge
about the system itself. The analysis incorporates
the fact that systems are subject to noise. By esti-
mating an appropriate measurement error based
on conditional information, noise is filtered out
(Turchin et al. 2009). According to Gelb (1974),
there are three types of estimation problems: when
the time of an estimate corresponds to the last mea-
surement point the problem is termed as filtering;
when the time of interest falls within the range
of available measurements, the problem is called
smoothing; and when the time of interest is af-
ter the last available measurement, the problem
is referred to as prediction. The most common
and predominant estimation techniques are based
on Kalman’s work (e.g., discrete Kalman filter,
continuous Kalman filter) (Kalman 1960).

Inductive logic programming is a sub-field of
supervised learning based on logic programming,
which uses logic as a uniform representation lan-
guage for examples, background knowledge, and
hypotheses (Amin 2003; Muggleton 1991). In
addition, inductive logic programming also en-
compasses approaches that address learning from
structured relational data. One example is statisti-
cal relational learning, which focuses on extending
inductive logic programming to model uncertainty
(De Raedt and Kersting 2008; Skarlatidis et al.
2015).

The techniques discussed above are predom-
inantly task-specific (e.g., classify data inputs).
They often require data that is easy to process
mathematically. Hence, the reduction of complex-
ity is essential and can be achieved through feature
(or representation) learning methods (Argyriou
et al. 2008).

Deep learning is a further, comprehensive class
of ML algorithms based on artificial neural net-
works. It combines feature learning, but also
task-specific techniques such as classification or
regression, by using multiple layers to extract
higher-level features from raw input progressively
(Deng and Yu 2014). Consequently, deep learning
is used typically on data that is not represented
mathematically. This is a common case when
information from the real world (e.g., images,
speech, sensor data) is transferred to the digital
world (Srivastava and Salakhutdinov 2012).

Figure 3: Unsupervised Machine Learning (Tokic
2013)

In unsupervised learning, the input-output pairs
are not known (cf. Fig. 3). The machine re-
ceives only inputs. Thereby, the aim is to de-
tect previously undiscovered patterns (Ghahra-
mani 2003; Kubat 2017; Shalev-Shwartz and
Ben-David 2014). Clustering and dimension-
ality reduction are the predominant unsupervised
techniques.

In clustering, a data set is passed to the al-
gorithm as input. The goal is the grouping of
similar data, where the output consists of at least
two clusters (Kubat 2017). Thus, distance and
similarity between objects are the fundamental
elements for constructing clustering algorithms.
For quantitative data properties, distance is the
preferred way to establish relationships between
data. Qualitative analyses usually use similarity
functions. Thus, clustering algorithms can be
categorized based on their clustering model (Xu
and Tian 2015). Traditional models include, for
example, centroid-based models (e.g., k-means,
k-medoids) and hierarchy-based algorithms (e.g.,
BIRCH, CURE, HAC). Modern approaches in-
clude more complex models, which include ker-
nels, swarm intelligence, quantum theory, and
spectral graph theory.
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Dimensionality reduction is a learning process
in which data is scaled from a higher dimensional
level (input) to a lower level (output). The aim is
often to interpret a data set and to structure it in a
meaningful way (Shalev-Shwartz and Ben-David
2014). Common algorithms are based on mathe-
matical methods, for example principal component
analysis (Howley et al. 2005), linear discriminant
analysis (Pang et al. 2005), or non-negative matrix
factorization (Lee and Seung 2001).

Agent

Environment
t+1r
st+1

state
st

reward
rt

ac�on
at

Figure 4: Reinforcement Learning (Ludvig et al. 2011)

Reinforcement learning is a paradigm, which au-
tomates learning and decision-making processes
(cf. Fig. 4). In general, its logic follows a Markov
decision process. A learning agent acts based
on a predefined set of actions in a defined digi-
tal environment and is trained based on trial and
error in combination with rewards. The aim is
to maximize the cumulative rewards, whereby
the learning agent learns the task-optimal behav-
ior concerning conditions and actions (Alpaydin
2004; Sutton and Barto 2018; Tokic 2013; S.
Wang et al. 2012). An example is training an
artificial intelligence bot for chess. The bot adapts
to the opponent’s strategies and the current game
situation and decides his next move accordingly.
Combined with defined rewards about the changed
state, it learns to improve its performance over
time. Like a professional chess player, the agent
refines its intuition with which he evaluates board
configurations (Sutton and Barto 2018).

Combined learning integrates different ap-
proaches of ML (cf. Fig. 5). Thus, it joins tech-
niques from supervised learning, unsupervised
learning, or reinforcement learning to improve
the overall result. In IT security, the detection of

Figure 5: Combined Learning

malware is a common example. The variety of
malware is immense and continues to proliferate.
Using ML a new framework has been developed
to improve the accuracy of malware detection sig-
nificantly. For this purpose, classification (super-
vised learning) was used to detect known malware
classes. This was combined with the adaptability
of an unsupervised learning technique to detect
new classes (Comar et al. 2013).

In summary, ML approaches can be employed
to overcome the barriers and limitations of manual
specified processing instructions. They enable
automated rule formation and optimization for
known as well as yet undiscovered anomalies. For
example, in CEP threshold-based filtering could be
replaced by ML-based classification techniques.

3 Research Method

We employed the framework for structured litera-
ture research following vom Brocke et al. (2009).
The method comprises five phases: The first phase,
(1) the definition of the review scope, includes
aspects defining the purpose or goal of a literature
review. Subsequently, the (2) topic of interest
has to be conceptualized, which encompasses the
definition of key terms and issues of the research
area under review. The (3) literature search covers
the process of identifying relevant literature for
surveying the research area under review. After
collecting sufficient literature, it has to be (4) an-
alyzed and synthesized. The goal is to arrange,
discuss, and synthesize the literature to lastly (5)
establish an agenda of future research. We address

http://dx.doi.org/10.18417/emisa.15.1
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Characteristics Categories

Focus Research outcomes Research methods Theories Applications

Goal Integration Criticism Central issues

Perspective Neutral representation Espousal of position

Coverage Exhaustive Exhaustive selective Representational Central

Organization Historical Conceptual Methodological

Audience Specialized scholars General scholars Pracitioners General public

Figure 6: Definition of the Literature Search Scope based on Cooper (1988)
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Figure 7: Structure and Result of the Literature Search based on vom Brocke et al. (2009)

the first three phases below. The synthesis is car-
ried out in the subsequent sections (cf. Sect. 4 and
5) and the research agenda within our discussion
(cf. Sect. 6).

Definition of Review Scope. Our review scope
is based on the Cooper’s taxonomy of literature
reviews (Cooper 1988) as illustrated in Fig. 6.
Our focus is on research results and applications
with the aim to integrate the research areas of ML
and CEP in the IIoT for smart factories. Thereby,
we chose a neutral representation with a represen-
tative coverage. We do not claim our review to be
exhaustive as we have not reviewed literature from
neighboring fields relevant to the IIoT (such as
robotics or industrial engineering) and our initial
focus was narrower (central coverage). The results
themselves are organized conceptually to answer
our research questions. We define specialized re-
searchers from the fields of ML or CEP as well as

general researchers from the Information Systems
(IS) domain as the target groups.

Conceptualization of Topic. We conceptual-
ized the research topics of interest in our theo-
retical background (cf. Sect. 2) by defining key
terms of ML, that is the three fundamental learn-
ing paradigms as well as techniques frequently
applied in research. In addition, we presented the
foundations of CEP by describing the event-driven
architecture with its three main components, the
event producer, the event processor, and the event
consumer. Furthermore, we conclude that a rele-
vant search result must apply ML techniques in
CEP and be transferable to applications in manu-
facturing processes in smart factories in the IIoT.
We consider an approach to be transferable if the
application was not limited by the authors or is
clearly unrelated.

Literature Search. According to vom Brocke
et al. (2009) four sub-steps are necessary for the
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literature search: journal search, database search,
keyword search, and forward and backward search.

To gather high quality, pivotal search results,
we restricted the journal search initially to A+,
A, and B journals of the Business Information
Systems ranking of VHB-Jourqual 3 (Verband
der Hochschullehrer für Betriebswirtschaft e.V.
2019). Due to the low number of relevant search
results, we removed this restriction and opted for
representative coverage.

For the database selection (see Fig. 7), we
selected seven databases from the research areas
of computer science and business management.
The intention is to ensure that the search takes into
account both the technological aspects of ML and
CEP through IT-related databases as well as their
business application and sub-disciplines relevant
to the IIoT.

In the keyword search, we selected terminology
from CEP combined with the generic term "Ma-
chine Learning". For a comprehensive overview
of all search strings and filter options in the specific
scientific databases, please see Tab. 1.

Initially, we identified 710 potentially relevant
contributions. After analyzing title, abstract, key-
words, and removing duplicates, we retained 105
relevant publications. The full-text analysis re-
duced this number to 60. A large number of search
results were discovered in IT-related rather than
IS-related databases (IEEE Xplore and ACM Dig-
ital Library). The latter publishes contributions
from the highly relevant Distributed Event-Based
Systems (DEBS) conference. Backward search
was carried out based on the bibliography of rele-
vant articles, for forward search we used Google
Scholar citation data. Finally, the phase led to
another 33 results which in sum led to a total of
93 contributions. We collected data from all years
up to and including 2018 that was indexed by May
2019.

4 Literature Analysis and Synthesis

This section addresses research question RQ1:
Which ML approaches and techniques are used

integrated with CEP and how can they be synthe-
sized? In the following, we present our review by
synthesizing the results from the literature search.
For an overview of the results, see Fig. 8.

Approach for Synthesis. As recommended
by vom Brocke et al. (2009), we followed Web-
ster and Watson (2002) and employed a concept-
matrix-based approach for literature analysis and
synthesis, which is based on the work of Salipante
et al. (1982). Upon completion of the literature
search, we subdivided topic-related concepts into
units of analysis uncovered in the relevant text cor-
pus. Here, we cross-validated our findings with
existing literature reviews in the field of ML (Bau-
mann et al. 2018; Buczak and Guven 2015; Qiu
et al. 2016; Wuest et al. 2016), and initially identi-
fied the first dimension comprising the learning
paradigms, as defined in Sect. 2. After group-
ing the contributions according to their learning
paradigm, we introduced another sub-dimension
to describe the specific technique (e.g., classifi-
cation, clustering) employed in each contribution.
Subsequently, we deemed it necessary to iden-
tify the type of algorithm used, which comprises
the third sub-dimension of our concept matrix.
Further explanations were kept in text form, to
maintain comprehensibility and conciseness of
the concept matrix. Specifically, we have also
collected the data type that was used as input.
We distinguish between sensor data, process data,
network data, and simulation data among other
minor data types occurring in this analysis. Fi-
nally, to address the application potential in smart
factories, we added another dimension to illustrate
the reactivity and proactivity of ML applications
in CEP, which is discussed in Sect. 5.

Evaluation of Literature. The synthesis un-
covers that the learning paradigm supervised learn-
ing dominates in CEP (n=56). Most of the con-
tributions use classification (n=27) algorithms
followed by inductive logic programming (n=7),
probabilistic method (n=6), regression (n=5) and
supervised clustering (n=4). In recent years, ap-
proaches from deep learning (n=3+1) have also
been adopted. In addition, there are experiments
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Table 1: Search Term per Database

Database Search Term # 

Web of Science 
TS=(("Complex Event Processing" OR "Event -driven" OR "Event Processing" OR 

"Event-driven Architecture" OR "Event Stream*" OR "Real time Event*" OR "*Real 

time Event" OR "Complex Event") AND "Machine Learning")  
37 

EBSCOhost Business 
Source Premier & 
Complete 

("Complex Event Processing" OR "Event -driven" OR "Event Processing" OR "Event -

driven Architecture" OR "Event Stream*" OR "Real time Event*" OR "*Real time 

Event" OR "Complex Event") AND "Machine Learning"  
388 

ACM Digital Library 
("Complex Event Processing" OR "Event -driven" OR "Event Processing" OR "Event -

driven Architecture" OR "Event St ream*" OR "Real time Event*" OR "*Real time 

Event" OR "Complex Event") AND "Machine Learning"  
90 

Emerald Insight 
("Complex Event Processing" OR "Event -driven" OR "Event Processing" OR "Event -

driven Architecture" OR "Event Stream*" OR "Real time Event*" OR  "*Real time 

Event" OR "Complex Event") AND "Machine Learning"  
20 

AISeL 
("Complex Event Processing" OR "Event -driven" OR "Event Processing" OR "Event -

driven Architecture" OR "Event Stream*" OR "Real time Event*" OR "*Real time 

Event" OR "Complex Event") AND "Machine Learning"  
18 

IEEE Xplore 
(("Complex Event Processing" OR "Event -driven" OR "Event Processing" OR 

"Event-driven Architecture" OR "Event Stream*" OR "Real time Event*" OR "*Real 

time Event") AND "Machine Learning")  
56 

ScienceDirect 
tak("Complex Event Processing" OR "Event -driven" OR "Event Processing" OR 

"Event-driven Architecture" OR "Event Stream" OR "Real time Event" OR "Real time 

Event" OR "Complex Event") AND "Machine Learning"  
101 

combining techniques from supervised learning
(n=1+1) and using statistical estimators (n=1).

The learning paradigm unsupervised learning,
on the other hand, is used less (n=8). Clustering
is the dominant approach (n=6). We also found
one contribution using dimensionality reduction
and another using clustering; unsupervised classi-
fication.

More prevalent is the combination of machine
learning techniques across approaches (n=18),
which we denote as combined learning. Most
authors (n=12) use a combination of clustering
(unsupervised learning) and classification (super-
vised learning). Further approaches combining
two approaches from different approaches of ML
are clustering extended by deep learning (n=1),
clustering extended by a probabilistic method
(n=1), and using a regression layer (supervised
learning) for a deep reinforcement learning model
(reinforcement learning) (n=1). Further, we iden-
tified combined learning approaches employing
three kinds of techniques (for each n=1). These

are a mix of clustering, topic mining, and prob-
abilistic method; clustering, topic mining, and
probabilistic method; clustering, classification,
and collaboration filtering; and dimensionality
reduction, clustering, and classification.

Reinforcement learning for CEP has not yet
been considered as an approach on its own. It
has been used in combination once and, thus,
appears to have the potential to be subject for
further research.

Further approaches, which could not be clas-
sified in our employed classification scheme, are
included as others (n=11). Examples can be at-
tributed to the domain of data mining (Bhandari
2012) or own developments such as Margara et al.
(2013) with their Windows Learner. Since all of
these other approaches represent unique devel-
opments, we found it necessary to exclude them
from the classification scheme to reduce category
proliferation. See Tab. 5 in the Appendix for
an overview of the approaches we categorized as
others.
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We also identified early approaches harness-
ing what is call incremental or online learning to
improve the analysis by applying new knowledge
not only in batches, but in a continuous fashion
(Agarwal et al. 2008; Katzouris et al. 2016; Pe-
tersen et al. 2016). Online learning focuses on
the automatic generation of the previously manu-
ally specified declarative CEP queries to achieve
improved event recognition and processing. In
contrast, traditional ML analyzes all available data
in batches irregularly or periodically.

Development over time. The research area is
comparably young with the earliest contribution
published in 2007 (Widder et al. 2007). Over
the following years, there has been an increase in
research interest with peaks in the past two years of
2017 (n=19) and 2018 (n=19). While we included
references from 2019 (n=4) in the categories, we
excluded them from the development over time
graph (cf. Fig. 8). This tendency illustrates the
timeliness and relevance of the topic as well as
the various possible applications of ML in CEP.

At the level of the learning paradigms, super-
vised learning was consistently of the highest
research interest. Initially, the focus was on clas-
sification approaches. After 2013, we identified
more diverse research efforts. Other approaches,
such as regression-based techniques, are increas-
ingly being considered. Nevertheless, classifica-
tion algorithms remain dominant throughout the
years. Unsupervised learning, on the other hand,
(so far) is underrepresented in research on CEP.
The first publication is from 2010. It follows a
dimensionality reduction-based approach. From
2013, clustering-based approaches are published
sporadically, with a maximum in 2015 and 2017
(with n=2 each). The combination of both ML
paradigms shows a stronger interest. After only
one publication in 2014 and 2015 each, there are
five contributions in 2016, seven in 2017, and
again five publications in 2018.

Conclusion. In CEP supervised learning is
used most frequently, which can be explained
by the reactive nature in relation to historical
event data. In contrast, unsupervised learning is
used typically in combined learning approaches.

The combination enables the exploitation of the
benefits of both paradigms. It is a fairly young
field of application and requires more research
to mature. Lastly, there is no substantial use and
assessment of reinforcement learning approaches
in CEP.

Summarizing, the historical analysis reveals
that the research efforts in integrating CEP and ML
are growing and evolving. They do not only focus
on applying a limited and distinct set of techniques.
Rather, there is a trend towards combining multiple
techniques to generate a tangible added value for
the real-time analysis of events.

5 Application Potential in Smart Factories
of the Industrial Internet of Things

5.1 Harnessing ML for CEP in Smart
Factories

From a business perspective, there are four targets
of interest in production plants: improvement in
cost, quality, time, and flexibility (Shepherd and
Günter 2010). Time is a source of competitive
advantage and can be considered as a key measure
of performance in manufacturing. The objective
of cost defines the reduction of monetary expenses.
Furthermore, it comprises the best possible alloca-
tion or combination of manufacturing resources.
Quality encompasses conformance of products to
predefined specifications, based on the production
process. Flexibility describes the ability to adapt
efficiently to new circumstances and requirements
of daily manufacturing operations, both in terms
of product variety and production volume (Neely
et al. 1995).

These targets are directly transferable to smart
factories (Kagermann et al. 2013), where cyber-
physical systems and related infrastructure enable
potential improvements in all four areas of interest
(Kagermann et al. 2013).

Based on the analysis and synthesis of the
identified literature, we identify both reactive and
proactive application potential for smart factories
to achieve these targets. In the following, we
discuss the distribution of the approaches in the
different learning approaches. Subsequently, we
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Table 2: Integration of CEP and ML in the Context of Smart Factories
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illustrate both, reactive and proactive approaches,
using exemplary use cases. In sum, this section
sheds light on RQ2: What potential can be derived
from combining CEP and ML for smart factories
in the IIoT?.

5.2 Reactive and Proactive Real-time
Data Analytics in Smart Factories

As visualized in Tab. 2, research efforts are gener-
ally balanced between the two paradigms. How-
ever, specific learning approaches and techniques
show trends. Slightly more contributions classi-
fied as supervised learning are reactive, specifi-
cally regression is predominantly proactive. Un-
supervised learning, on the other hand, is reactive
without exception, which may indicate an unsuit-
ability for proactive approaches using CEP. Contri-
butions combining the two approaches are mostly
proactive. Lastly, we also identified contributions,
which we could not place in our classification
scheme, as they represent unique cases or do not
mention classifiable ML techniques. Further de-
tails are available in Tab. 5 in the Appendix.

Reactive. CEP is declarative by nature. A
domain expert must define rules and patterns in
advance, which involves a high amount of man-
ual work, in-depth domain knowledge, and high
technical expertise (Akbar et al. 2015a; Turchin
et al. 2009). In our literature review, we found,
that by harnessing ML, these tasks are at least
partially automatable. Specifically, reactive mea-
sures improve CEP by enabling a higher degree
of descriptive and diagnostic analytical power.

In complex environments, not all event occur-
rences, which feed low-level event data into the
CEP system, are known in advance and, thus, un-
ambiguously processable by manually specified
rules. Naturally, unspecified events will occur and
cannot be taken into consideration. Against this
backdrop, research on ML proposes to circumvent
these downsides of CEP. Depending on the analy-
tical task, ML technique can automatically learn
from the data and derive correlations, anomalies,
or patterns in the event stream. Later, the gener-
ated knowledge can be fed into the CEP system
as new rules or patterns to identify novel future

events. Researchers coined this automated rule
or pattern learning (Lee and Jung 2017; Margara
et al. 2013; Metz et al. 2012; Petersen et al. 2017).

In the following, we present the approach pro-
posed by Metz et al. (2012), to illustrate a reactive
application of ML in CEP. As depicted in Fig.
9, the approach is positioned in the manufactur-
ing domain. Production resources on the shop
floor generate low-level event data (e.g., about
process, quality, performance), which is collected
by a data collection engine. Subsequently, the
data is aggregated with data from enterprise ap-
plications (e.g., product data), which results in
enriched complex events. Next, the CEP engine
analyzes the incoming event streams and matches
it with predefined patterns. If a critical situation
occurs, employees are notified. Up until this step,
traditional CEP operations take place. However,
there are instances in which novel situations occur
that would also require a reaction from employees
on the shop floor. In this case, the CEP system
initiates a process in a so-called rule induction
manager, which improves the rule base and refines
defined event patterns automatically. First, data
is transferred from the process database, which
is restricted to a sample size consisting of related
data (e.g., timespan, specific machine or product).
Second, a suitable algorithm is selected, based on
predefined selection and parameterization criteria
(e.g., rule accuracy, rule coverage). Third, rules
are generated by the selected algorithm. Finally,
the rules are added to the rule store to supplement
the existing rule base and can now be identified if
the pattern occurs.

Proactive. By default, future events are not
considered in CEP (Christ et al. 2016). However,
the perceived value of a CEP system would in-
crease through predictive analytics by enabling
proactive reactions to events (Schwegmann et al.
2013). By extending the system with adequate
ML techniques, forecasting and predictive power
are achievable in CEP.

To demonstrate proactiveness in CEP, we
present the scenario of Christ et al. (2016) who pro-
pose a generic architecture to integrate predictive
analytics within a CEP system (cf. 9). Therefore,
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Figure 9: Scenario for Reactive ML and CEP (Metz et al. 2012)

the formerly reactive system is advanced by a ML-
based proactive component with an evaluation
and learning loop. This requires three connec-
tions between the predictive analytics component
and the CEP engine: First, (a) (complex) events
from the global event source are transferred to
the predictive analytics component, serving as
a basis for training and prediction of the predic-
tive analytics model. The input is extended by
a (b) prediction trigger to initiate the calculation
of event predictions. Further, the predictive an-
alytics component (c) calculates a Conditional
Event Occurrence Density Estimation (CEODE)
as output. This probability density function is fed
back into the CEP engine as another incoming
event. Inside the CEP system itself, despite the
higher power, CEODE does not work for all types
of events. Thus, predictive EPAs do not replace
the existing reactive EPAs. Both are (d) loosely
coupled with one another and complement each
other. While the reactive EPAs are implemented in
the traditional way, the dedicated predictive EPAs

require special (e) proactive event processing rules.
This creates higher-quality predefined (complex)
events when certain patterns occur. Further, if
a certain probability threshold is exceeded a (f)
proactive action is triggered. After triggering,
the predictive analytics component calculates (h)
predictions on basis of the likelihood of event
occurrences and transfers the CEODE function
back into the event stream, which acts as a novel
event source to which the predictive EPA listens.
The (c) calculated CEODE functions are passed
as events themselves. Closing the loop, the his-
torical event data stream is used in the predictive
analytics component for (g) learning, to (re)train
the predictive analytics model.

5.3 Synthesis of Potential Solutions Using
CEP and ML

In the following, we highlight further exemplary
application scenarios of combining CEP and ML,
specifically in smart factories. The section is
structured according to reactive and proactive
potentials as identified previously (cf. Tab. 2).

http://dx.doi.org/10.18417/emisa.15.1


Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 1 (2020). DOI:10.18417/emisa.15.1
Machine Learning and Complex Event Processing 15
Structured Literature Review

Predictive Analytics
Component

Event Source

Event processing
Network

Predictive EPA

EPA

Reactive
Pattern

Reactive
Pattern

Reactive
Pattern

EPA

Reactive Pattern

Proactive
Pattern

CEODE
Trigger

Prediction
HandlingEPA

Event Handling

Real-time
reactive actions

Proactive
actions

Learning

Prediction

(Complex)
Events

Prediction
trigger

Predicted (complex)
events as CEODE

d

f

g

h

a

c

b
e

Figure 10: Scenario for Proactive ML and CEP (Christ et al. 2016)

Reactive measures. Reactive measures of CEP
integrated with ML should enable more efficient
processes concerning the management of faults in
manufacturing. The objective is to create trans-
parency and uncover information regarding fault
localization and subsequent correction. When
first implementing CEP, typically not all possible
manufacturing incidents are known. Thus, a con-
tinued development of patterns for recognition is
essential. Ideally, previously unknown event pat-
terns can be detected automatically and included
for future processing (Petersen et al. 2017; Widder
et al. 2007).

As described above, Metz et al. (2012) offers a
specific application for smart factories. Produc-
tion data in combination with process data is used
to train an ML algorithm to classify new rules
via decision trees, which are subsequently used in
CEP. Further approaches use camera systems and
image processing sensors for smart manufacturing
(Christ et al. 2016). These also provide valuable
information for smart factories to achieve more
precise pattern recognition and adaptation. For
example, Barsocchi et al. (2018) employs deep
learning (specifically a convolutional neural net-
work) to automatically learn rules of device use
and access control in smart environments. Abdal-
lah et al. (2018) also use deep learning to learn and

adapt security and surveillance policies automati-
cally based on camera footage (e.g., unauthorized
intrusion).

Furthermore, sensor networks are used in com-
bination with classification algorithms (Shahad
et al. 2016). Anomalous behavior is detected by
analyzing events from pressure, vibration, temper-
ature, and proximity sensors (Gungor and Hancke
2009). Approaches from other research areas also
show the potential for problem solving. Some of
the authors rely on video surveillance records to
learn activity or event patterns (Katzouris et al.
2015; Skarlatidis et al. 2015). Typically, this is
achieved with inductive logic programming. In
contrast, Skarlatidis et al. (2015) employ a Markov
model. The application takes place outside smart
factories though but is potentially transferable.

Other authors use accelerometer-based event
streams to detect motion patterns of people au-
tomatically (Mehdiyev et al. 2016; Preuveneers
et al. 2016). For example, Mehdiyev et al. (2016)
use the Fuzzy Unordered Rule Induction Algo-
rithm (FURIA) for classification. Preuveneers
et al. (2016) use a combination of clustering and
classification based on naive Bayes and an unspec-
ified clustering approach. In production-specific
scenarios, this offers the possibility of monitoring
and controlling industrial robot arms (Neto et al.
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2009). A manual implementation of the motion
profiles as events in a CEP system would require a
great deal of time and technical expertise yielding
a cost increase.

Further possible application scenarios for ML
and CEP, relate to increasing the sustainability
and energy efficiency of smart manufacturing op-
erations. Ta-Shma et al. (2018), for example,
employ an unsupervised k-means clustering ap-
proach for energy management of smart devices
interconnected through the Internet of Things.

Another application domain is network security.
The use of cyber-physical systems opens up new
cyber-attack areas that can potentially result in
operational disruption or production downtime
(Mitchell and Chen 2014). To prevent resulting
delays and costs (Bhandari 2012; Turchin et al.
2009), applications rely on CEP-based intrusion
detection systems, which are extended by ML
components. Turchin et al. (2009) use discrete
Kalman filters, whereas Bhandari (2012) use a
combination of Markov logic and data mining ap-
proaches. In both cases, the dynamic and adaptive
adaptation of the attack patterns is possible with-
out the need for manual intervention and recurring,
time-consuming refinement.

The measures outlined above will primarily
eliminate manual monitoring activities and the
implementation of declarative rules in the CEP
system. This results in improved reactivity in
production facilities and saves time and cost.

Proactive measures. In the following, we
outline proactive scenarios and measures of inte-
grating ML and CEP in smart manufacturing.

Christ et al. (2016) propose an integration of
ML and CEP based on conditional density esti-
mation, which receives event data from camera
systems and sensors. The production operations
are evaluated in real-time for abnormal changes
and compared with probabilities of occurrence.
The corresponding analytical task is also the cen-
tral theme of the ACM DEBS 2017 Grand Chal-
lenge (Rivetti et al. 2017). Here, events are to be
grouped based on discrete states (e.g., tempera-
ture or pressure of the production machine), for
preprocessing, employing a clustering algorithm.

Subsequently, a Markov model was trained in
real-time to compute the probability of occurring
anomalies. For all solutions, state transitions be-
tween the clusters were used. Finally, the system
notifies an employee when the probability exceeds
a predefined threshold value.

Mousheimish et al. (2017) employ a shapelet-
based technique and combine automatic rule-
learning with predictive analytics. Engel and
Etzion (2011) propose a proactive architectural
standard in industrial environments. By combin-
ing Bayesian networks with decision tree classifi-
cation, the system tackles scheduled maintenance
processes without considering the condition of
the machine. The system supports spare parts
management by indicating the actual demand of
parts depending on the remaining useful lifetime
of the machine. Subsequently, the maintenance
intervals can be optimized.

Further applications are situated in logistics,
such as material handling at the production site,
by monitoring conveyor belts (Beamon 1999) as
well as external material movements such as road
traffic (Akbar et al. 2015b, 2018; Y. Wang et al.
2018). In the latter, event data is continuously
recorded and transmitted via sensors, camera sys-
tems, or induction loops and is used to predict
traffic congestion among other examples. Akbar
et al. (2015) rely on Adaptive Moving Window
Regression (AMWR) to ensure continuous learn-
ing of the CEP system. Y. Wang et al. (2018)
use Bayesian nets to predict probabilistic complex
events. The ACM DEBS 2018 Grand Challenge
was also situated in the logistics domain. More
specifically the goal was to predict arrival ports
and destination times of shipping vessels. These
insights are transferable to a smart factory set-
ting to optimize just in time and just-in-sequence
operations. The contestants employed various
ML techniques to tackle the challenge. Nguyen
et al. (2018), for example, combine random forests
with a recurrent neural network in a supervised
fashion for prediction. Kammoun et al. (2018),
on the other hand, apply dimensionality reduc-
tion, clustering, and an artificial neural network
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for classification, which constitutes a combined
learning approach.

The approaches described above show that
proactivity primarily leads to the optimization
of the flexibility of manufacturing, maintenance,
and goods flow. Predictive power in smart fac-
tories also results in cost reduction by enabling
proactive maintenance processes.

6 Discussion and Research Agenda

Our study shows that the use of ML has vast
and diverse potential for real-time data analy-
tics based on CEP. Dayarathna and Perera (2018)
confirm this and describe the use of ML as a signi-
ficant advancement in real-time event processing.
However, despite the importance of the research
domain for the IIoT, a thorough synthesis of the
various techniques and their combinations has not
been undertaken so far.

Based on our literature review, we identified
that supervised learning techniques are dominant
in CEP so far. Recently, there has been a growing
research interest in combining supervised learning
and unsupervised learning approaches. Reaping
the benefits of both approaches carries significant
potential for implementing adaptable and proac-
tive systems. Reinforcement learning and other
alternatives, on the other hand, have hardly been
investigated to this point. Future research could
start here to investigate the effectiveness of reward-
based approaches for CEP as reinforcement learn-
ing is applied effectively already in multi-agent
systems. Since event processing agents are re-
garded conceptually as autonomous EPA of a
more comprehensive EPN, it makes sense to in-
vestigate the effectiveness of this approach for
real-time data analytics in the IIoT as well.

In a second synthesis, we explored application
potentials of ML in CEP for smart factories in the
IIoT. We identified both (1) reactive and (2) proac-
tive approaches, which help to achieve economic
target objectives. We found that combining ML
with CEP mainly addresses the reduction of time
and costs (i.e., in terms of automation). Previous

research was targeted primarily at reactive mea-
sures, although in the last two years in particular,
we identified more research efforts in proactivity.

As identified in our synthesis, supervised learn-
ing is mainly employed for reactive measures in
smart factories. Here particularly SVM and artifi-
cial neural networks (as classification techniques)
are used. Unsupervised learning, on the other
hand, is underrepresented, but initial research has
been carried out in the domain of CEP. However,
it is only applied in reactive applications, which
may suggest a lack of suitability for proactive ap-
plications. Combined learning is predominantly
proactive. In particular, a combination of k-means
and Markov models seems to be promising. Lastly,
in supervised learning probabilistic models and
regression are employed mainly in proactive con-
tributions.

Based to the exploration and discussion of our
literature review, we can derive the following
issues and future potential regarding the use of
ML in CEP. Following our research method, these
issues and potential correspond to a developing
research agenda (RA) as proposed by vom Brocke
et al. (2009):

RA1: Further optimization and adaptation
of ML techniques to the dynamic nature of
event-driven real-time data analytics. Despite
the expanding integration of CEP and ML to
address real-time data analytics problems in smart
factories, there is a lack of further possibilities and
of practical evaluation to prove their suitability.
An example is the use of regression approaches
from the area of supervised learning for reactive
measures that has not yet been evaluated (cf. Tab.
2).

RA2: Integration of both reactive and proac-
tive applications in a single CEP system to reap
the benefits of both and harness synergies. So
far, there is no effort to combine ML approaches
from the reactive and the proactive domain. All
previous publications are either focusing on reac-
tive or proactive systems (cf. Tab. 2). However,
developments in recent years show that there are
already combinations of different ML techniques,
but so far no approach combines both reactive
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and proactive approaches. Future research could
address this gap, that is by automated rule learning
with the prediction of future events. Mousheimish
et al. (2017) propose a first step in this direction
by first learning predictive rules or patterns.

RA3: Dynamic adaptation of the CEP sys-
tems knowledge base to (external) circum-
stances and changes fueled by online learning
approaches. In our synthesis, we also identified
first approaches harnessing online learning (Kat-
zouris et al. 2016; Petersen et al. 2016), where data
becomes available in sequential order and is used
to update the best predictor for future data at each
step (Agarwal et al. 2008). Due to CEP’s real-time
focus, employing ML in an online fashion could
potentially achieve further synergies such as more
flexible EPA but will necessitate further research
efforts.

RA4: Application of reinforcement learning
to reap prescriptive power for CEP systems.
The analytical approaches we identified are of
descriptive, diagnostic, or predictive nature. Pre-
scriptive analytics builds on top of this. It expands
the other levels by recommending concrete mea-
sures or alternative courses of action to choose the
best action alternative (Delen and Zolbanin 2018).
Thus, it could be of great value for CEP systems.
Traditionally this is performed by optimization
techniques. But recently, researchers have been
applying reinforcement learning for prescriptive
problems (Qu et al. 2016; X. Wang et al. 2016).
Compared to other learning paradigms, reinforce-
ment learning is exploratory and thus, explicitly
generates new knowledge (Ishii et al. 2002). In
contrast, supervised and unsupervised learning,
are partly exploitative. They analyze already ex-
isting knowledge to derive insights or transfer
it to new data inputs. Therefore, reinforcement
learning is increasingly being used for prescriptive
purposes (Shroff et al. 2014).

7 Conclusion and Outlook

Several applications of integrating ML for the
continuous real-time analysis of events in CEP are

currently being examined in research and prac-
tice. In the area of smart factories as a key ap-
plication field of event processing in the IIoT,
first implementations are employed in reactive
as well as proactive scenarios. Examples range
from information-supported repair due to machine
faults or warnings about a low remaining useful
lifetime of machinery parts. The integration of
CEP and ML is also regarded as promising con-
cerning big data analytics (Flouris et al. 2017), in
particular regarding high velocity date. Further,
we can observe a trend towards probabilistic or
uncertain event models. In contrast to determinis-
tic event models, in these models not all attributes
are known or accurate (Flouris et al. 2017). How-
ever, first approaches using Bayesian and Markov
networks have only been applied with moderate
success (Alevizos et al. 2017).

As pointed out in our research agenda, future
work could start here and lead to further improve-
ments through new approaches such as online
learning (Petersen et al. 2016) and the combina-
tion of reactive and proactive approaches. The
integration of CEP with reinforcement learning
is also promising. As presented in the smart fac-
tory scenarios, machine uptime and the associated
maintenance processes can be optimized as well.

Finally, using prescriptive analytics, the ma-
chine should not be regarded as an individual com-
ponent. The IIoT-based cyber-physical system,
which it is embedded in, should be considered as a
whole for the best business decision in a corporate
context (G. Wang et al. 2016).
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Table 3: Concept Matrix for Supervised Learning
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Table 4: Concept Matrix for Unsupervised and Combined Learning
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Table 5: Publications of Category Others Excluded from Concept Matrices

Description Publication(s)

Contribution partly uses own developments which learn from events:
Windows Learner; Event/ Attributes Learner; Constraints Learner;
Aggregates Learner; Parameters Learner; Sequences Learner; Negations
Learner

(Margara et al. 2013; Margara et al. 2014)

Contribution uses different algortihms, partly belonging to the research field
of Data Mining: Markov Logic; Association Rule Mining; Sequence Mining;
Frequent Itemset Mining

(Bhandari 2012)

Contribution uses Supervised ML for predictions, but does not specify the
algorithm chosen.

(Tóth et al. 2010)

Framework for the application of Supervised ML in CEP (area of IoT), with
no naming of specific algorithm used.

(Soto et al. 2016)

Contribution ueses semi-Supervised ML to also learn from unknown data,
with a method based on Graph Cut Minimization.

(Michelioudakis et al. 2018)

Contribution(s) use(es) Supervised ML algortihms based on Frequent
Sequence Mining, which automatically learn pattern of interest.

(Gay et al. 2015; George et al. 2016)
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