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Abstract. This contribution addresses the quest for a framework for a comprehensive science of “informatics”
as a formal theory of discrete dynamic systems, in analogy to the model of natural sciences. A variety
of examples show that this endeavor is promising indeed, and that (detached) parts of it exist already.
In the long run, informatics may evolve as a self-contained science, more comprehensive than nowadays

“Computer Science”, by complementing its strong technological aspects with a consistent theoretical,
mathematical basis, on an equal footing with natural sciences.
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Introduction

Background

Computer Science is frequently told as a success
story, driven by Moore’s law: during the last six
decades; computation-, information- and commu-
nication technology became exponentially cheaper,
quicker and smaller (Brock 2006). Accordingly,
new application areas evolved. Systemic mal-
function of devices, failed projects, unmanageable
behavior of computer embedded systems, viola-
tion of privacy etc., are accepted as unavoidable
side effects and justified as the price to be paid for
the rapid evolution of the area.

Whether matters might – or should – have
evolved differently, is rarely discussed and hardly
suspected. The quest for alternatives to the factual
evolution of Computer Science is annoying in par-
ticular for young scientists, who eagerly learned
facts, and want to build on this presumed solid
and steadfast basis. They are squeezed in systems
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of promotion and reward, that don’t support fun-
damental questions on the nature of informatics.1

In this situation it appears nevertheless inter-
esting to pose some fundamental questions and
to discuss aspects that could unify the diverging
subdomains of Computer Science. As a basis for
a science of informatics, this may render future
developments quicker and better comprehensible.

Informatics as a science: historical
development
The emerging computing technology of the
1950ies covered essentially two problem domains:
numerical problems as they occur in classical
engineering sciences, and searching-and-sorting
problems in large data sets, as they occur in a
population census. The two programming lan-
guages FORTRAN and COBOL had been tailored
to those problems; the steps from a problem to an
algorithmic idea and to a program were usually
manageable. This changed in the 1960ies: in-
creasing computer power made problems solvable
that required more complex algorithmic ideas and
more elaborate programs. This rendered programs

1 By “Computer Science” we refer to the traditional approach,
whereas “informatics” denotes the to-be-developed science.
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increasingly error prone and incomprehensible,
and finally a “software crisis” had been identified
at a famous conference in Garmisch-Partenkirchen
(Naur and Randell 1969), to be tackled by the new
discipline of “software engineering”. This in turn
caused new programming languages (PL/1, Pas-
cal, Ada), new program paradigms (structured
programming, object orientation) and later on
new software architectures (components, service-
orientation, micro-services). Furthermore, soft-
ware design methodologies emerged, such as sys-
tematic refinement, software architectures, and
the specification of interfaces.

Looking back, it is obvious that the Garmisch-
Partenkirchen conference raised important ques-
tions and initiated constructive answers. However,
on the long way from a problem via an algorith-
mic idea up to a software, only the last step, i. e.
writing down programs, has been framed more
convenient by the concepts suggested there.

This way of thinking about “Computer Science”
as a science is visible at the memorial lecture
for famous Edsger W. Dijkstra in 2010, where
likewise famous computer scientist Tony Hoare
emphasizes four criteria for sciences in general,
and the issue of Computer Science in particular
(Hoare 2010):

• Description: Science describes properties and
behavior of systems; in Computer Science, such
a “description of properties and behavior can
serve as a specification, describing an appro-
priately precise interface between its purchaser
and its supplier.” Hoare suggests logic based de-
scription methods, with weakest preconditions
as an example.

• Analysis: The central items and their conceptual
relation of a science are detailed here. Central
items of Computer Science are programs. They
are analyzed with pre-/postconditions such as
Microsoft Contracts.

• Explanation: The behavior of systems is sub-
stantiated. For Computer Science, the seman-
tics of programming languages provides this
substantiation.

• Prediction: Good science can predict the evo-
lution of processes. In Computer Science, this
means to predict the behavior of programs, i. e.
to verify them.

Summing up, a program is conceived as a math-
ematical item; its decisive properties should be
formulated in a logical language, its semantics
should be formally captured, and its correctness
should be proved. These are scientific concepts,
indeed. In this spirit, also Gries (1981) conceives
the activity of programming as a scientific activity.

This contribution

In 14 sections we formulate some thoughts for a
comprehensive science of informatics as a formal
scientific theory of discrete dynamic systems. The
subject of this science is intended much broader
than the above outlined traditional “Computer
Science”, as suggested by Dijkstra, Hoare, Gries,
Knuth and others. Nevertheless, the new, broader
theory should be conceptualized as a formal the-
ory; not as classical Computer Science extended
by informal aspects of social sciences. Examples
include formal concepts of information processing
and algorithmic behavior that are not intended to
be implemented, as they occur in business infor-
matics, in embedded systems, and generally in
the nowadays much discussed “internet of every-
thing”.

We will pose questions and explain some mu-
tually related concepts. Some of them are not
fundamentally new, but have frequently been stud-
ied in isolation. Properly combined, they support
the claim to contribute to a new science of infor-
matics.

However, we don’t present a fully-fledged sci-
ence of informatics. Obviously, a number of
additional ideas, concepts and insight is still miss-
ing. We just want to show that it is worth searching
for a fundamental science of informatics, and to
stimulate discussion.
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1 Successful construction of scientific
models

Good scientific theory is formulated in terms of
models. A model is a system of notions and
relations among them, intended to better under-
stand reality. “Reality” is either given as natural
phenomena, or – as in the case of informatics –
constructed by man. Particularly impressive is
the example of physics: For centuries, physicists
searched a unifying model for all branches of
physics, setting up an impressive body of scien-
tific theory. Particularly impressive is the deep
harmony between physics and mathematics (Livio
2009) with very abstract, yet exceedingly useful
scientific concepts and models. A typical example
is the notion of energy. This notion allows to
mutually relate and quantitatively fix quite dif-
ferent phenomena that, for example, occur when
a car is accelerated and crashed into a wall: In
this process, an amount of energy is involved. It
is initially contained in petrol, then in accelera-
tion, and finally in reshaping metal. The notion
of “energy” is useful because it provides a quan-
tifying invariance for dynamic processes. This
kind of invariants, usually denoted as “laws of
nature”, are the scaffold of science. In recent
years, systems biology likewise is searching for
such notions and invariants to better understand
metabolic processes.

Informatics should learn from physics and other
sciences how to establish a comprehensive theo-
retical framework for all of its aspects. Already
in 1962, John McCarthy encouraged research into
a mathematics-based “Science of Computation”,
evolving its central items and properties out of a
few postulates (McCarthy 1962).

2 Models in informatics
As modeling is the center of scientific theory
building: what are the models of informatics? Just
as many (natural) sciences, informatics is about
dynamic systems, however with a fundamental
difference: Physics describes behavior usually in
continuous terms, with functions over the real
numbers. This allows to construct differential

equations, integrals, etc. In contrast, informatics
describes behavior in discrete steps. This allows to
describe entirely different properties, and requires
different analysis techniques.

Models in informatics are used for various dif-
ferent purposes:

• to describe domain-specific facts, for example
a companies’ structure of the book keeping and
the accounting department (the “correctness”
of this kind of descriptions remains inevitably
informal);

• to describe algorithmic behavior, for example
how to apply for a claim settlement with an
insurance company;

• to describe a software’s effect, either in terms
of properties or of its operational behavior.

A model is a symbolic description. It may be
executable on the symbolic level, in which case
its behavior can be simulated on a computer. But
it also may conceptually describe the behavior
of a system in a concrete domain, that is not
intended to be implemented. With a really useful
science of informatics it will be worthwhile to
discuss correctness on the model level and then to
systematically derive correct software.

Seamless integration of computing technology
with its technical or organizational environment
is inevitable for many computer integrating sys-
tems; not the least the internet of things: such
systems are manageable only with formal mod-
els that include computing technology as well as
its environment. This includes organizational or
technical components that are not intended to be
implemented.

Various modeling techniques support this view,
in particular the UML (Booch et al. 2005) and –
primarily for business informatics – BPMN (Ob-
ject Management Group 2011). These techniques
suggest various graphical means to express partic-
ular, subtle, domain specific aspects. Both these
techniques (and some more, e. g. Harel’s state-
charts) are widely applied, in deed. But they offer
only rare specific means to prove properties of the
modeled systems. Even if systems are modeled
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by means of those techniques before implementa-
tion, correctness is usually studied (tested) on the
software level.

Modeling is a central issue of formal methods
such as, besides many others, ALLOY, B, Focus,
Live Sequence Charts, RAISE, TLA, VDM and Z.
The main concern of these methods is a systematic
way to construct correct software (Bjørner and
Havelund 2019). These methods, however, insist
in implementability, at the price of convenience
and adequacy of modeling the reality. This prob-
lem is, to some extent only, tempered by domain
specific methods (Bjørner 2018). General mod-
eling methods with their focus on the realm to
be modeled, include ASM (Gurevich 2000) and
Petri nets (Reisig 2013). This focus supports, for
example, business informatics: there, behavior of
components are modeled, that are not intended to
be implemented (Bichler et al. 2016). The term
“conceptual modeling” refers to models, mainly for
business applications, including components that
are formally described, but not necessarily imple-
mented. A typical example is the “Open Models
initiative” (Karagiannis et al. 2016). The quote
“Computer Science is no more about computers
than astronomy is about telescopes”, attributed to
E.W. Dijkstra, may apply here.

The idea of system models that focus applica-
tion areas more than implementation, is rarely
addressed. A typical example of this narrow view
is the Dagstuhl seminar on the history of software
engineering in 1996 (Brennecke and Keil-Slawik
1996).

From a scientific perspective, in the long run,
modeling techniques with adequate more expres-
sivity for application domains, combined with
strong analysis techniques, are urgently needed.
They may look quite different from what is avail-
able now.

3 Trustworthy models

In a general, systematic buildup of modeling prin-
ciples, it should be possible to find a – formal
– modeling technique that allows to describe a

system trustworthy, comprehensible, and unam-
biguously. For a given instance we usually have an
intuitively clear understanding of what an appro-
priate description of a system is about: It contains
all aspects that the modeler considers relevant,
and it does not enforce aspects that the modeler
wants to ignore. More concretely formulated,
a trustworthy model 𝑀 of a discrete system 𝑆

describes

• each elementary item of 𝑆 as an elementary
item of 𝑀 ,

• each elementary operation of 𝑆 as an elementary
operation of 𝑀 ,

• each composed item of 𝑆 as a composed item
of 𝑀 ,

• each composed operation of 𝑆 as a composed
operation of 𝑀 ,

• each – local – state of 𝑆 as a state of 𝑀 ,
• each – local – step of 𝑆 as a step of 𝑀 .

Summing up: elementary and composed items
and operations, as well as states and steps of 𝑆 and
𝑀 should correspond bijectively. Intuitive and
formally represented behavior should conform as
tightly as possible.

This rises the quest for a modeling technique
that would meet these requirements, at least for a
large and interesting class of systems. Obviously,
such items, operations, states and steps do not fit
into the classical scheme of computability theory.
This has been observed and discussed many times,
beginning perhaps with Donald Knuth’s funda-
mental The Art of Computer Programming (Knuth
1973), where the notion of computational methods
(nowadays: transition systems) is suggested as a
general framework for the notion of algorithms. A
computational method consists of a set 𝑆 of states
and a next-state function 𝐹 on 𝑆, where “𝐹 might
involve operations that mortal man can’t always
perform.” (Knuth 1973, p. 9). Knuth denotes
a computational method effective, in case 𝐹 is a
computable function. Robin Milner in his EATCS
award lecture (Milner 2005) declared: “. . . we
should have achieved a mathematical model of
computation, perhaps highly abstract in contrast
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with the concrete nature of paper and register ma-
chines, but such that programming languages are
merely executable fragments of the theory . . . ”.
It remains open, which kind of non-executable
fragments Milner has in mind.

The classical framework of computation with
variables and operations over strings of symbols,
as well as programs with sequences of assignment
statements, alternatives, and conditional loops has
frequently been generalized to cover freely cho-
sen mathematical objects and operations, as in
Tucker and Zucker (2000) and Dershowitz (2012).
Shepherdson (1995) devises a similar idea, based
on Turing Machines. In a slightly different style,
and from a purely logical perspective, Gurevich
(2000) suggests Abstract State Machines as pro-
grams over a signature (a sorted alphabet). The
user of this formalism may freely chose his signa-
ture as well as its interpretation (a structure), and
systematically manipulate the structure by help of
terms generated from the signature.

Summing up, a good model employs symbols
that in the modeled realm are interpreted as items
or operations. This fundamentally differs from
programming: A programming language fixes the
interpretation of the employed symbols.

4 Invariants in informatics

As outlined in Sec. 1, invariance is a pillar of
scientific theories. This solicits the quest for no-
tions of invariance in informatics. The best known
such notion is certainly Hoare’s invariant calculus
(Hoare 1969) with the concept of loop invariants
for classical programs. According to Furia et al.
(2012), loop invariance is one of the fundamental
ideas of software design. This may be true if
the notion of correctness of software design is
bound to its very end, i. e. the coding in a classical
programming language. A science of informatics
should however focus the correctness of models.
In fact, many modeling techniques employ par-
ticular versions of invariants: for example, Tel
(2000) suggests special invariants for distributed
processes, distributed algorithms, and communi-
cation protocols. The invariant calculus for Petri

nets is exceedingly expressive (because Petri net
transitions are reversible) (Reisig 2013).

Each such invariant declares a relationship
among the variables of the model that holds in
each reachable state. Those notions stick close to
the items of the given model. As shown by the
example of the notion of energy in Sec. 1, physics
knows much deeper, less obvious but neverthe-
less (or therefore) useful invariants. Informatics
should strive at comparatively deep invariants.
Such invariants might make precise what remains
invariant in the case of

• a bank client, withdrawing cash at a cash ma-
chine;

• a life insurance, transferring a client’s policy to
a new hardware;

• a car insurance, regulating a damage;
• a computing center, simulating tomorrow’s

weather;
• an operating system, executing garbage collec-

tion;
• a compiler, translating a program;
• a travel agent, booking a journey.

There are presently no modeling techniques with
such invariants. Nevertheless, it is useful to sys-
tematically search such techniques that, compared
to so far existing concepts, evolve much more
abstract and less obvious, yet useful notions of
invariants.

5 A fundamental notion of “information”

The above example of the notion of “energy”
shows that invariance can be based on a very
abstract, yet intuitively conceivable notion. Are
there similar such notions for informatics? In the
sequel I try to outline a notion of “information”,
with the central invariant of information preser-
vation in local steps: in a given state, a system
contains a distinguished amount of “information”.
As long as the system does not communicate with
its environment, this information can be converted
in different ways; it can be newly combined; some-
thing can be derived (computed) from it; parts of
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it can be made inaccessible, etc. But the amount
of information as a whole remains invariant. A
computation, i. e. a sequence of steps, then models
a strictly organized flow of information.

A constructive definition of such a notion of
information is not in sight. Nevertheless, such a
notion would be quite useful; for example to con-
struct invariants according to Sec. 4. With such a
notion it might be possible to formulate precisely
what changes and what remains when documents
are copied, deleted, or combined. Protection of
data and privacy as well as related notions might
gain a much more precise meaning.

A further interesting aspect of such a notion
are information preserving operations: Such an
operation, 𝑓 , retains all information when applied
to an argument a. Hence, a can be re-computed
from the result 𝑓 (𝑎). Examples of such opera-
tions include the negation if propositional logic,
and the positive square root of positive real num-
bers. Reversible functions occur frequently in the
context of electric circuits (Vitányi 2005). The
consequent application of reversible computing
may decisively boost IT security: An attacker can
retrospectively be identified.

It might become realistic to define particular
notions of “information” in terms of operations
that are feasible or acceptable in specific contexts.

6 Interactive components

Classical theoretical Computer Science abstracts
information-technological processes in terms of
functions over symbol chains. With deep results
on complexity theory and relations between logic
and automata theory, this framework has been
established as theoretical basis of Computer Sci-
ence. In this context, Turing machines are the
best-known model. A Turing machine, including
a store and a processor, can be conceived as an
adequate abstraction of computing technology of
the 1960ies. A multiprocessor architecture, using
more than one processor to increase computing
speed, may more or less adequately be abstracted
to an architecture with a single processor. In fact,

a system consisting of many cooperating compo-
nents where communication is the central issue,
may be simulated on a single processor. This,
however, would spoil the purport of the system.

Systems consisting of many cooperating com-
ponents have been suggested in the 1980ies; for
instance the Actor formalism of Agha and Hewitt
(see Agha (1986)). Similar ideas are the basis of
languages such as LINDA (Carriero et al. 1994)
and the Chemical Abstract Machine (CHAM)
(Berry and Boudol 1990). In this Metaphor, active
elements are conceived as a kind of molecules,
that are “swimming” in a – metaphorical – chemi-
cal solution that react with each other whenever
two of them meet. A further example is Broy’s
FOCUS formalism (Broy and Stølen 2001) with
components that realize stream processing func-
tions. Finally, also Petri nets (Reisig 2013) belong
to this kind of modeling techniques: consider each
transition as an elementary active unit. These and
many other similar modeling techniques and pro-
gramming primitives rise the question for a theory
that is a proper basis and abstraction for such sys-
tems; in analogy to the computable functions, that
are a proper abstraction for any kind of sequential
input/output algorithms.

In a series of contributions (among them Weg-
ner 1997 and Wegner and Eberbach 2004), Weg-
ner generalizes Turing machines for this purpose.
Cockshott and Michaelson (2007) challenges the
correctness of Wegner’s arguments.

My point here is not the limitations of capabili-
ties of computers, but a quest for system modeling:
Which techniques are adequate to model and an-
alyze systems that proceed in discrete steps and
interact with their environment?

7 Independent steps

The concept of discrete steps is based on states:
A step starts at a state and ends at a state. The
classical framework of system descriptions as-
sumes global states: Each step updates a global
state. A single behavior, a run, is then a sequence
𝑠0 − 𝑡1 − 𝑠1 − 𝑡2 − 𝑠2 . . . of states 𝑠𝑖 and steps
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Figure 1: Cartesian product 𝐴 | 𝐵 of two components 𝐴 and 𝐵

𝑠𝑖−1 − 𝑡𝑖 − 𝑠𝑖 (𝑖 = 1,2,. . . ). The state space of a sys-
tem 𝐶, composed from components 𝐶1, . . . , 𝐶𝑛,
is usually constructed as the Cartesian product
𝑆1 × . . . × 𝑆𝑛 of the state spaces 𝑆𝑘 of the compo-
nents 𝐶𝑘 . Each step occurrence of a component
𝐶𝑘 thus implies many step occurrences of the com-
posed system 𝐶: independent steps in different
components are interleaved, i. e. represented in
arbitrary order, thus yielding a non deterministic
system model.

Fig. 1 shows a small example: 𝐴 and 𝐵 are
two independent components with three (resp.
two) states. The steps of each component form a
cycle. Each of the two components has exactly one
infinite behavior (run). The composition 𝐴 | 𝐵 of
𝐴 and 𝐵 is a component with six states. In three of
them, two steps start, yielding an infinite number
of infinite runs. This perception of “behavior”
is intuitively plausible, and is employed in many
analysis techniques. In particular, it is the base of
model checking composed systems.

However, this perception comes with disadvan-
tages: In the above example, the two steps starting
in a state of 𝐴 | 𝐵 look like alternatives; but in
fact, they occur independently. The aspect of alter-
native refers to an alternative temporal sequence
as measured on clocks outside 𝐴 | 𝐵. Lamport
(1978) discusses details of this kind of assump-
tions on temporal orders of events; to do so he
requires clocks with perfect precision. This kind
of assumptions can be avoided, taking advantage
of the observation that independent steps start and

stop in disjoint local states. As a consequence,
independence of steps is identifiable, and can be
covered by representing the two steps without any
order. A single run then is no longer a sequence of
steps with global states, but a partial order of steps
with local states. Order then no longer represents
progress of time, but the (causal) “before-after”
relation. With this perception, the system 𝐴 | 𝐵
of Fig. 1 has only one (infinite) run, joining the
order of 𝐴 and 𝐵. More illustrating may be the
behavior of 𝐴 | 𝐵 with the additional requirement
that 𝐵 never executed more local steps than 𝐴.
This results in just one run, as shown in Fig. 2.
Petri nets support this proposal with the concept
of “distributed runs” (Reisig 2013).

 a

d

b c a b

e d e d

...

...

Figure 2: Distributed run of 𝐴 | 𝐵, with the require-
ment that 𝐵 never has executed more local steps than
𝐴

Lamport’s example of an hour-clock, moving
to the next state each full hour, illustrates a further
disadvantage of the perception of a single run of a
system as a sequence of steps: One would expect
that an hour-and-minute-clock is an hour-clock
as well. An hour-and-minute-clock, however,
executes not one, but 60 steps each hour! Hence,
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it is not suitable as an hour clock! To overcome this
problem, Lamport (2002) suggests a “stuttering”
logic that conceptually equates a single step with
“any number of steps”.

Both examples show poor consequences of
perceiving a single run as a sequence of global
steps, whenever systems are composed or refined.
It is apparently useful to take independent events,
i. e. local causes and local effects, seriously and
to distinguish them from nondeterminism. This
applies in particular to big systems, because they
are usually composed or refined from smaller
systems. Küster-Filipe (2000) suggests a specific
logic for such systems.

In a more general perspective, here we suggest
to take concurrency as a fundamental phenomenon
of the real world, to be respected and represented
in models. Abramsky (2006) contributes valu-
able insight into this question. This contrasts the
view of concurrency as an implementation issue,
assuming “sequential thinking” as the basis of
Computer Science, as pleaded in Rajsbaum and
Raynal (2019).

8 Limited expressivity of assignment
statements

Not only programming languages, but also mod-
elling languages describe steps by help of assign-
ment statements. This is adequate, or at least
acceptable, in many cases. But it also leads to less
convincing models. An example is the “pebble
game” that Dijkstra describes in a video of an
ambitious series of videos of Stanford University
(Dijkstra 1990): assume an urn, containing finitely
many black and white pebbles. A step removes
two pebbles 𝑎 and 𝑏 out of the urn and returns a
pebble, 𝑐, according to the following rule: 𝑐 is
white in case 𝑎 and 𝑏 are colored differently; 𝑐
is black, otherwise (in case of two white pebbles,
one of them is colored black). In a sequence of
such steps, all pebbles disappear until only one
remains.

Fig. 3 shows Dijkstra’s model: a nondetermin-
istic program with arithmetic operations on four
integer variables. Fig. 4 models the game as a

Figure 3: Dijkstra’s representation (Dijkstra 1990) of
the Pebble game

Petri net: PEBBLE is a constant symbol, to be
initialized by a (multi)set of for sets of black and
white pebbles. Each Transition shows a step, with
two pebbles removed and one pebble returned.
Arc inscriptions show the color of the involved
pebbles. This model represents removal and re-
turn of pebbles straightly. It avoids Dijkstra’s
detour of counting and computing the number of
involved pebbles. By help of an invariant, Dijkstra
shows that the remaining pebble is white if and
only if the initial white pebbles are odd-numbered.
A corresponding invariant exists likewise for Petri
nets (Reisig 2013).

Figure 4: Petri net representation of the pebble game

Variables and assignment statements are also
less favorable to model distributed systems such
as communication protocols, etc. An example
is the TLA model of an asynchronous interface
as in Lamport (2002). Ultimately, a scheduler is
assumed, regulating access of many components
to the variables they share. The components
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are distributedly implementable only under far
reaching assumptions.

A proper science of informatics will eventually
describe system steps not only by help of assign-
ment statements, but also by a variety of other,
possibly more abstract concepts. Petri nets are an
example: The semantics of a step, i. e. a transi-
tion, is given by the updates of the marking of the
places in its local vicinity. Broy (1998) suggests
a different approach refraining from assignment
statements.

9 The metaphor of the living organism

New systems can be constructed by refining and
composing given systems. Are there further
methods to systematically construct new systems
from given ones? The few proposals include the
metaphor of a “3D printer”, as well as the “living
organism” metaphor (Dershowitz and Falkovich
2014). According to this metaphor, a set of “living
cells” may create autonomous “creatures” with
fundamentally new properties. More generally,
this rises the question for the principal limits of
such constructs, in analogy to the limits of com-
putability (viz. symbol manipulation) in classical
computation.

10 Correctness, and verification

Scientific theories live from models that bring
about interesting consequences. A model is bene-
ficial only it yields interesting, non-trivial insights.
The purely descriptive character of UML, BPMN,
ASM and other modeling techniques without spe-
cific analysis techniques considerably limits their
usage. A really good model of a system is trustwor-
thy (cf. Sec. 3) and can be analyzed, in particular
by help of non-trivial invariants (cf. Sec. 4).

Many properties of systems are reducible to
properties of single states and runs. Temporal
logic has reached a dominant position to describe
such properties, with model checking and abstract
interpretation as efficient analysis techniques. The
abstract distinction of liveness- and safety prop-
erties (Alpern and Schneider 1985) is very useful

in this context. Nevertheless, a science of infor-
matics should offer means to represent and to
prove much deeper properties too, possibly based
on non-trivial invariants (Sec. 4) and a specific
notion of information flow (Sec. 5).

A user of a large system requires a modified
notion of “correctness”: He is usually not inter-
ested in the correctness of the entire system (many
big systems are – at extreme situations – not cor-
rect anyway). His only interest is the system’s
correct functioning for his specific use case. Ad-
ditionally, he would love a plausible, intelligible,
convincing argument why he can trust the result.
Classical verification misses both requirements: a
flawed system may be useful in some cases, and
the hint at a formally verified property, formulated
in terms of temporal logic, does not necessarily
support trust in the intended outcome of a single
application. First ideas to overcome this include
certifying algorithms (McConnell et al. 2011) and
runtime verification (Bartocci et al. 2018). A com-
prehensive science of informatics must include
this flexible kind of correctness.

11 Time, causality, observation, etc.

For computer controlled real time systems, e. g.
airbag control, classical real time models are ade-
quate. Many modeling techniques utilize a naive
notion of time, as if actual time was available in any
degree of precision and without additional effort.
Lamport (1978) wakens this view to some extent,
without withdrawing it entirely. Some modeling
techniques such as ESTEL, ESTEREL and state-
charts employ the hypothesis of “infinitely quick”
digital systems, because such systems work much
quicker than the systems in their environment, e. g.
their human users.

In fact, the notion of temporal “before – after”
is frequently specified, where a “cause – effect”
relationship was more adequate. The relationship
of (discrete) time, causality and observation is
fundamental for models in informatics, but not
fully understood. A challenging example is a
formal model for Stein’s apple sort algorithm
(Stein 2006): apples role down a sloped plank with
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increasingly larger holes. Each apple passes the
first hole with a diameter greater than the apple’s
diameter. With 𝑛 such holes, this algorithm sorts
the apples into 𝑛 size classes.

12 Refinement and composition
Large systems are in general refined from more
abstract specifications, or composed from smaller
systems. There is a multitude of general meth-
ods, principles and formalisms (such as Back and
Wright (1998)) to systematically refine a system
from a specification. A fundamental principle for
logical specifications is refinement-implication:
the specification of the refined system implies the
specification of the given system. Correspond-
ing methods, principles and formalisms for the
composition of logical specifications have been
suggested for the language Z (Spivey 1989), Lam-
port’s TLA (Lamport 2002) and Broy’s stream-
based FOCUS (Broy and Stølen 2001), together
with the far-reaching idea of perceiving compo-
sition as logical conjunction. On an operational
level, Reisig (2019) suggests a very general com-
position operator that is associative and does not
require any assumptions about the inner of the
involved components. All these methods, princi-
ples, and formalisms address the right questions.
But none of them prevails.

13 Computability
For quite a while, the theory of computable func-
tions has been conceived as the fundament of a
science of informatics. All attempts to refute
the Church/Turing thesis failed. However, this
thesis has frequently been stretched beyond recog-
nition. In fact, it just describes the limitations of
systematically manipulating symbols sequences.
Informatics, and particularly a comprehensive sci-
ence of informatics, includes more fundamental
aspects, to be covered by formal means. A science
of informatics must include the interpretation of
symbols in the real world. All this has clearly
been addressed in Cleland (1993). Further inter-
esting aspects of this topic are discussed in van
Leeuwen and Wiedermann (2012), van Leeuwen

and Wiedermann (2013), Shepherdson (1995) and
Dershowitz (2012).

In a comprehensive science of informatics, the
computable functions certainly will play a crucial
role – besides some other concepts. This likewise
applies to formal logic.

14 Informatics as an engineering
discipline

Each typical engineering disciplines such as elec-
trical engineering or chemical process engineer-
ing, is based on a science (such as physics and
chemistry). Engineering makes scientific insight
useful for man’s interest. Software, however, is no
such science. Software is the result of activities
in the framework of software engineering. So,
what is the scientific base of software engineering?
One may try with “algorithms”; however, “algo-
rithms” is usually perceived in a far too narrow
sense. Most adequate would be a comprehensive
science of informatics, as a basis for several en-
gineering disciplines, one of which is “software
engineering”.

Conclusion

This text is intended to solicit interest in the aim of
a comprehensive science of informatics. Physics
is a paradigm for such a theory. I outlined a
series of ideas for formal concepts that span far
beyond computer technology and programming,
reach far and should nevertheless start out with a
nucleus of basics, thus contributing to a science of
informatics. This text provides some suggestions
as how a theory might be started. There exists
already a lot of insight that would belong to this
theory. But a comprehensive view remains to be
developed.

The envisaged theories would not render so-
far principles of informatics obsolete; they rather
should be better and mutually related, together
with forthcoming engineering concepts of infor-
matics.
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