
Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 1

An Extended Concept of Delegation and its Implementation
within a Modeling and Programming Language Architecture

Tony Clarka, Ulrich Frank*,b, Jens Guldenc, Daniel Töpelb
a Aston University, Birmingham
b University Duisburg-Essen
c Utrecht University

Abstract. Object-oriented modeling languages provide various concepts to express abstractions, which
foster reuse and integrity. Among these concepts, generalization/specialization is of specific relevance.
However, in many cases where generalization/specialization seems to be a natural choice, its use is likely to
jeopardize a system’s integrity. Delegation has for long been known as an alternative that allows preventing
the accidental damage caused by the inproper use of specialization. Nevertheless, delegation is ignored by
most tools for object-oriented modeling as well as by many textbooks, which may be caused by the fact that
there is no unified conception of delegation, and that delegation is not supported by most object-oriented
programming languages. This paper aims at a revival of delegation. To that end, the need for delegation is
motivated by the analysis of counter-intuitive effects of specialization. Based on an extensive requirements
analysis, a new, extended conception of delegation is presented. It allows for using delegation between
classes on any (meta-) level and introduces the "delegation to class" pattern. Delegation in multi-level
environments enables an additional reduction of redundancy and, hence, promotes integrity. The paper also
presents design guidelines to foster the appropriate use of delegation. With respect to the implementation of
delegation with object-oriented programming languages, two alternative flavours of delegation are analyzed.
Finally, a prototypical implementation within a language engineering and execution environment does not
only demonstrate the use of delegation in a modeling tool, but also its seamless implementation, by featuring
a common representation of models and code at runtime.

Keywords. Delegation • Inheritance • Specialization • Subclassing • Object-oriented • Conceptual Modeling
• Software-Architecture

Communicated by Peter Fettke. Received 2021-03-08. Accepted on 2023-10-24.

1 Introduction

Reuse and adaptability of software systems are
enabled through abstraction. On the one hand, ab-
stracting invariant commonalities between system
components enables the reuse of these common
parts. On the other hand, abstracting away spe-
cific extensions or concretions allows for changing

* Corresponding author.
E-mail. ulrich.frank@uni-due.de

a system without creating side-effects on the in-
variant core, which includes fostering its reuse
by adapting it to specific contexts. Among those
concepts that foster abstraction, generalization and
specialization are of specific relevance in software
development. First, they correspond to abstraction
concepts in everyday language we are all familiar
with and should facilitate the design of systems
that clearly reflect a certain domain of discourse.
Second, they obviously address the need for reuse
(through generalization) and adaptability (through

http://dx.doi.org/10.18417/emisa.19.2
ulrich.frank@uni-due.de

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

2 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

specialization). Even though the potential benefits
of generalization/specialization are undisputed,
their use in software engineering has been accom-
panied by serious concerns. Some concerns reflect
a skeptic rating of software developers’ capabil-
ities to use inheritance properly. Focussing on
reuse, rather than on proper abstraction, that is, the
conflation of specialization and inheritance may
result in violating the Liskov substitution princi-
ple (Liskov and Wing 1994), which states that
instances of classes can always replace instances
of corresponding super-classes. In addition, there
are doubts that software developers can easily
identify specialization relationships that are in-
variant over time. As a consequence, inheritance
hierarchies would have to be restructured, which
implies substantial effort and risk. Other concerns
are directly related to the concept of inheritance.
Inheritance creates dependencies, which may jeop-
ardise the reuse of classes in general, and their
use in distributed environments in particular. Be-
sides, inheritance creates invariant relationships
that can hardly be changed after compilation, thus
compromising dynamic adaptability.

Several proposals have been made to address
the principal concerns with the concept of inheri-
tance. Among those, two related approaches are
of particular relevance. The concept of role was
introduced long ago in data modeling (Bachman
and Daya 1997) and in object-oriented software
construction (Kappel and Schrefl 1991; Pernici
1990). On the one hand, roles are supposed to over-
come conceptual limitations of classes or entity
types, that is, to enable system models that more
clearly correspond to the domain of discourse they
represent. On the other hand, roles aim at adding
flexibility to software by overcoming the static
nature of inheritance relationships.

Delegation, which is closely related to the use
of roles, has mainly been used in a more technical
sense than with a conceptual intention. It empha-
sizes the message passing between two objects.
An object A that represents another object B in a
certain context delegates messages it receives and
that are not part of its own interface, to object B.
Delegation in this sense was not only proposed as

a more powerful replacement of inheritance but
was also used as a foundational abstraction mech-
anism of so-called prototype-based or class-less
languages (Lieberman 1986). While the relation-
ship between a role and a role filler object can be
viewed as delegation, we shall see that not every
delegation depends on the role metaphor.

Even though there has been a plethora of work
on role-based software engineering and a consid-
erable amount of work on delegation, we believe
that a research gap remained for the following
reasons:

• There is a considerable amount of publications
on delegation. While the vast majority of these
originate in the field of programming languages,
there is a lack of studies on conceptual aspects
of delegation and hardly any contribution that
would account for both aspects. Fowler, for
example, advocates delegation as an instrument
to allow for selectively “inheriting” those oper-
ations of a class only that are actually needed,
instead of overloading a class with various in-
herited operations that are actually not needed.
(Fowler et al. 1999, p. 352). However, that
addresses a problem, which is caused by (mis-)
using inheritance for reuse purposes only.

• Related to the previous: peculiarities of in-
heritance have been a key motivation for the
introduction of delegation. Authors usually
point at harmful effects of inheritance but do
not analyze the peculiarities of the semantics
of object-oriented languages that cause these
effects.

• There is no unified view of delegation or roles.
In addition, the conceptual perspective and the
implementation-oriented perspective on delega-
tion, are not integrated, even though they are
two sides of the same coin.

• In early discussions of the concept, delegation
was sometimes distinguished from forwarding,
e. g., (Kegel and Steimann 2008). While the
distinction has substantial implications on the
implementation of delegation and its potential

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 3

effects, it has not yet be analyzed how relevant
it is from a conceptual perspective.

• Object-oriented programming languages hardly
support delegation, which very likely con-
tributed to the fact that there is only little use of
delegation in practice.

• There is a lack of clear criteria that guide the
proper use of delegation.

The paper is structured as follows Sect. 2
presents a critical review of inheritance that serves
as the background for a subsequent discussion of
questions concerning the conceptualization of del-
egation. It identifies the cause of counter-intuitive
effects of specialization relationships in object-
oriented models. This discussion will then be
used to analyze requirements for delegation which
leads to the concept of delegation proposed in this
paper. It emphasizes a conceptual viewpoint, but
accounts for programming languages, too. It also
accounts for a conceptual comparison of delega-
tion and forwarding. In addition, delegation will
be extended to allow for its use in multi-level mod-
eling. It enables delegation between classes on
any (meta) level as well as delegation across levels,
that is, “delegation to class”, which allows objects
to transparently access operations offered by their
class and, thus, the state of their class. Delegation
in multi-level environments enables an additional
reduction of redundancy and, hence, promotes
integrity. A set of modeling guidelines for using
delegation properly is developed in Sect. 3. Sect. 4
presents a language architecture that we propose
as being suitable for exploring different implemen-
tations of delegation. The language architecture
is implemented by the tool XModelerML, a multi-
level modeling and execution environment (for
a description of the recent implementation see
Frank et al. 2022). It is based on the language
engineering environment XModeler (Clark et al.
2008a,b and has been developed within the project
“Language Engineering for Multi-Level Modeling”
(https://le4mm.org/, Frank and Clark 2023). The
language technology provided by the XModeler

has been used to realise the two alternative imple-
mentations of the delegation presented in Sect. 5.
The approach is compared to existing work in
Sect. 6, before final reflections on conclusions and
future work in Sect. 7 complete the article.

Note that this paper may be perceived as un-
usual since it combines conceptual and methodical
considerations of delegation with detailed, rather
technical discussions of implementation aspects.
However, all these aspects need to be accounted
for, if one wants to enable the convenient and
efficient use of delegation. If delegation remained
a concept only without regard for its implementa-
tion, software development would hardly benefit
from it. This is the case, too, if no guidelines for
its proper use are provided. Those readers who
are not interested in technical details may skip
Sect. 5 and parts of Sect. 4 without the risk of
essentially diluting the entire picture.

2 Delegation: Motivation and
Conceptualization

Our work on the analysis and development of a
flexible language-based approach to delegation
is particularly motivated by problems caused by
specialization in object-oriented software devel-
opment. Note that the majority of publications on
delegation compare it against inheritance, where
inheritance is not specifically treated as a concep-
tual term, bur rather as an instrument that enables
reuse. A frequently used example is that of the
class Stack that inherits from the class Vector, cf.,
e. g. Fowler et al. (1999) and Kegel and Steimann
(2008). That leads, among other things, to the
problem that Stack does not only inherit useful
operations but also operations that do not make
sense for stacks, like “insertElement ..”. However,
this kind of inheritance is suspicious anyway, be-
cause it does not make sense from a conceptual
perspective, since a stack does not qualify as a
vector.

Different from inheritance, specialization
should not violate the substitutability constraint
(Liskov and Wing 1994), that is, wherever an
instance of a superclass is required, an instance

http://dx.doi.org/10.18417/emisa.19.2
https://le4mm.org/

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

4 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

of one of its subclasses can be used as a valid
replacement. In the following, we will use the
term “specialization” in those cases where the sub-
stitutability constraint should be satisfied. In cases
where this is not essential, we speak of “inheri-
tance”. This section presents a critical review of
specialization that will provide the background for
a first discussion of the notion of delegation. To
sharpen this notion, we will look at potential use
cases for delegation and corresponding require-
ments to finally present a comprehensive definition
of delegation from a conceptual perspective.

2.1 A Critical Review of Specialization
Generalization is a powerful abstraction. It pro-
motes integrity by capturing commonalities shared
by a set of classes and, thus, supports avoiding
conceptual redundancy. It also supports reuse
and adaptability through specialization, which al-
lows for monotonic extensions. Nevertheless, the
use of specialization in object-oriented systems
can cause problems for the unwary because of its
counter-intuitive semantics. To illustrate the prob-
lem, we look at a simple example of specialization
in natural language: a student is a person. In logic,
this proposition corresponds to

∀𝑥 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 (𝑥) =⇒ 𝑝𝑒𝑟𝑠𝑜𝑛(𝑥)

In other words: every statement that holds for
the general concept, must hold for the specialized
concept, too. That applies to specialization in
object-oriented systems, too, since a specialized
class inherits all properties from its superclass.
The example class diagram in Fig. 1 shows a
corresponding model. It might be part of an
object model that was designed for a software
system to manage human resources at a university.
Among other objects, the system should represent
students and employees. Like in logic, such a
conceptualization seems to be an obvious choice.
However, different from logic, it may produce
serious anomalies.

Sometimes, students turn into employees after
they obtain a degree, that is, after they stop being
students. There are also cases, where a student is

Figure 1: Intuitive use of inheritance

employed as a student assistant. In any case, a sys-
tem that implements the model in Fig. 1 would be
threatened by redundancy. Every instance of a sub-
class would have to redundantly represent the state
of the corresponding instance of the superclass
(see Fig. 2). This would be especially dangerous,
because without further measures an object of a
subclass would not know the corresponding object
of the superclass. If an instance of a subclass is
to be merged into an instance of another subclass,
e. g., when a student turns into an employee after
graduation, it gets even more dangerous. The rele-
vant state of the employee object has to be copied
either from the corresponding person object or the
corresponding student object. Subsequently, the
student object has to be deleted, which includes
accounting for and possibly redirecting references
to and from other objects.

At first sight, this effect of specialization is
confusing because it seems counter-intuitive. In
fact, it does not occur in logic or set theory. An
element that satisfies the constraints defined for the
concept Student, is an element of the set student
and of the set Person. If in addition, it satisfies
the constraints defined for the concept Employee,
it would become an element of the set Employee,
too. If the specific properties that characterize a
student are removed from an element, it will no
longer be part of the set Student, but remain in
the set Person.

The problem is caused by the specific concept
of class in object-oriented languages, where every
object is an instance of one and only one class.

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 5

firstName = "John"
lastName = "Doe"
dateOfBirth = 1987-10-14

p1: Person

ageInYears() : Integer
...()

firstName: String
lastName: String
dateOfBirth: Date

Person getMatricNo() : String
...()

matricNo: String
enrolled: Date

Student

matricNo = T3-82644
enrolled: 2017-1-5
firstName = "John"
lastName = "Doe"
dateOfBirth = 1987-10-14

s1: Student

getSocialSecNo() : String
...()

socialSecNo: String
hoursPerWeek: Integer
salary: Float

Employee
socialSecNo = "OP-58253X"
hoursPerWeek = 40
salary = 54.000
firstName = "John"
lastName = "Doe"
dateOfBirth = 1987-10-14

s1: Student

Figure 2: Specialization leading to redundancy

A class is defined intensionally through a set of
properties that is characteristic of all its possible
instances. A specialized class inherits these prop-
erties and extends them with additional ones. As
a consequence, an object of a specialized class
qualifies as a proper object in all cases where an
object of the corresponding superclass is required.
Therefore, it satisfies the substitutability constraint.
Nevertheless, it has an implication that does not fit
our natural conception of specialization. An ob-
ject of a specialized class is not an instance of the
superclass at the same time, which corresponds
to a seemingly bizarre statement like “a student
does not belong to the set of persons”, or, more
drastically, “a student is not a person”. This notion
of a class is comparable to a physical template that
is used to punch out objects of a certain shape; ap-
plying a further template to the object would result
in destroying its original shape. Hence, an object
that represents a student cannot represent a person
(an instance of the class Person) simultaneously.
Instead, the state of an object that represents a
student would have to redundantly replicate the
state of a person.

This is different in logic, where an object can be
subsumed under one to many classes reflecting an
extensional, set-oriented view of class, i. e., a class
is conceptualized as a set of objects that share the
same properties. Hence, if a class Student is sub-
ordinated under a class Person, every element of

Student becomes an element of Person simulta-
neously. As a consequence, an object representing
a student shares values representing properties
like firstname and lastname with an object that
represents a corresponding person. The notion
of class in natural language corresponds to the
one used in logic, which explains why the dan-
gerous effects of specialization in object-oriented
systems may be perceived as counter-intuitive.
Despite the extensive analysis of delegation, we
are not aware of any publication, except for Frank
(2000), that pointed at this essential cause of the
counter-intuitive effects of inheritance.

One might assume that experienced software
engineers are aware of the problem and know
measures to circumvent it. We hope so. However,
it seems that the counter-intuitive notion of class
in object-oriented systems does not only represent
a trap for novice programmers (Tempero et al.
2013). A random survey of 15 textbooks on object-
oriented software development revealed 10 books
with example uses of specialization that could
lead to the anomalies described above. In none of
those cases, the authors pointed to the potential
problem (Taylor 1990, p. 23, Coad and Yourdon
1991, p. 46, Rumbaugh 1991, p. 62, Embley et al.
1992, p. 100, Yourdon 1994, p. 242, Ayesh 2002,
p. 21, Ambler 2004, p. 39, Ambler 2005, p. 66,
Balzert 2011, p. 120, Rau 2016, p. 105).

Against this background, it may seem sensible
to modify the semantics of class in object-oriented

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

6 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

languages, for example by allowing objects to have
multiple disjoint classes. Whilst this might be an
interesting research theme, virtually all practical
object-oriented software engineering tools are
based on the notion of a single, or in the case
of inheritance, homogeneous, type system since
there is a close correspondence between the type
of a data element and its representation in memory.

2.2 Use Cases: Facets of Delegation
Delegation has been discussed for more than two
decades. While it seems that there are no objec-
tions against the claim “Delegation is a power-
ful programming tool.” (Szyperski et al. 2002,
p. 138), there is no unified notion of delegation.
In the area of programming languages, delega-
tion is often restricted to dynamic aspects, that
is, passing messages received by an object to an-
other object (Kegel and Steimann 2008; Szyperski
et al. 2002). Some authors introduce delegation
as a core abstraction of programming languages.
This is especially the case for prototype-based
or classless languages, where delegation serves
as a substitute for inheritance. However, while
Lieberman (1986) regards delegation to be more
powerful than inheritance, Stein comes to the
conclusion that “delegation is inheritance” (Stein
1987) (we look closer at the subtleties of these
conceptualizations in Sect. 3.1 and 6.2). A further
stream of research with a more conceptual focus
makes use of the term “role” to denote a rela-
tionship between objects that allows for a higher
degree of flexibility than inheritance (e. g. Bach-
man and Daya 1997, Steimann 2000b, Halpin
1995).

We suggest using the term delegation for both a
conceptual view of a relationship between objects
and a more technical view of the dynamic aspects
of this relationship. Both views have in common
that delegation denotes a directed relationship
between an object (the “delegatee”) and a context-
specific extension or representative (the “delega-
tor”) of that object. The corresponding classes
are referred to as “delegatee class” and “delegator
class”, respectively. Furthermore, different from
inheritance, delegation fosters flexibility, that is,

a delegator object can be removed or replaced
during runtime. At the core of the technical view
on delegation is the idea that the delegator object
dispatches messages to a corresponding delegatee
object if a message it receives is not implemented
or not included in its own interface. In the ideal
case, the message dispatch is transparent to the
object that sends a message to a delegator object.
Fig. 3 illustrates this idea. The circle marks the
class that represents the delegator. As a conse-
quence, the delegator object “inherits” not only
the interface but also the state of a corresponding
delegatee object. Note, that at this point we do
neither account for the question of whether the del-
egator object has the same identity as the delegatee
object (Szyperski et al. 2002, p. 110, Bettini et al.
2003), nor for the kind of programming language,
that is, whether it is based on dynamic or static
typing. We will consider both aspects later.

Before we get back to implementation issues,
we will first develop an elaborate conceptual view
of delegation. A conceptual view requires cre-
ating a correspondence between delegation and
relationships we use in natural language. Only
then, it is possible to appropriately use delega-
tion for the representation of a certain domain of
discourse, because delegation is not a common
relationship in natural language, nor do the terms
“delegatee” or “delegator” clearly indicate what
kind of objects they might represent. For this
purpose, we will look at a few selected use cases
of the delegation mechanism to analyse how they
could be conceptualized and whether they should
be included in the conceptual view of delegation.

Roles: The prevalent approach to conceptualiz-
ing delegation relationships is the introduction of
roles. The concept of role is popular in natural lan-
guage. An actor can play different roles at a time
and may change the roles played during his / her
lifetime. Accordingly, one object in a delegation
relationship would represent a role, the other one
the role filler, e. g., an actor. Role is a conceptual
refinement of the delegator, role-filler a conceptual
refinement of delegatee. A delegation association
would then connect a class that represents role
fillers and a class that represents corresponding

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 7

getFirstName()

„John"

getFirstName()

firstName = "John"
lastName = "Doe"
dateOfBirth = 1987-10-14

p1: Person

„John"

1

3

2

4

getFirstName() : String
...()

firstName: String
lastName: String
dateOfBirth: Date

Person

getMatricNo() : String
...()

matricNo: String
enrolled: Date
credits: Integer

Student

matricNo = T3-82644
enrolled: 2017-1-5
credits: 18

s1: Student

Delegation

DelegatorDelegatee

Figure 3: Illustration of dynamic aspects of delegation

roles. The delegatee and delegator in Fig. 3 are
good examples of role and role-filler. Roles are of
outstanding relevance for the conceptualization of
delegation. There are many cases where the use
of roles allows for avoiding the negative effects of
specialization. At the same time, using roles as a
conceptualization seems natural, that is a directly
convincing choice.

Projection or “selective” delegation: Usually,
delegation implies that every method call, a del-
egator object cannot respond to with one of its
own operations, is delegated to the correspond-
ing delegatee object. This abstraction has two
advantages. First, the delegation of method calls
does not have to be defined explicitly for all op-
erations of a delegatee object. Second, related to
the first, modifying the interfaces of the delega-
tee object’s class does not require corresponding
adaptations of the delegator class. However, there
may be cases where only explicitly selected op-
erations of the delegatee class should be subject
of delegating corresponding messages to a dele-
gator object. Fowler recommends this approach
to refactor applications of inheritance that lead to
inheriting operations that do not fit the semantics
of the inheriting class. For illustration purposes,
he uses the already mentioned example of the
classes Stack and Vector. Hence, the object of

Vector would fulfill the only purpose of serving
as a partial projection of the object of Stack. In
addition, this kind of selective delegation seems
to promote flexibility: “I can delegate to many
different classes for different reasons.” (Fowler
et al. 1999, p. 399)

It can make sense to explicitly delegate certain
method calls for refactoring purposes to heal the
potential damage caused by inheritance. Similarly,
there may be reasons to forward method calls to
objects of different classes. However, this kind
of “hard wired” delegation should be done with
extreme care. This is mainly for the reason that
there is no clear conceptual relationship between
the delegator and the delegatee. It corresponds
to applying inheritance only for the purpose of
reusing certain operations and is reduced to the
notion of explicitly forwarding selected messages
in a static sender-receiver relationship. Abstrac-
tions provided by the conceptual understanding of
delegation elaborated in this article are not taken
advantage of.

Polymorphic Delegation: There are cases
where a delegator class may be associated with
more than one delegatee class. For example, the
delegatee class Interpreter could be associated
with a delegator class Person if a human is acting
as a language interpreter, or with a delegator class

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

8 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

Translator in case a software system is used. A
further example would be customers of a firm that
can either be consumers or organizations. In both
cases, delegation would be an especially useful
choice, if not only the delegator object assigned to
a delegatee could change during the lifetime of a
program, but also the class of the delegator object.
Also, in both cases, the role metaphor is the proper
choice for the conceptualization of the relation-
ship: interpreter can be regarded as a role that is
filled by a person or a software system. Similarly,
customer can be seen as a role of a consumer (per-
son) or of an organization. However, replacing
the class of a role filler during the runtime of a
program will cause a problem, if the interfaces
of both classes are different. Therefore, multiple
delegatee classes with a delegation association
need to have a common set of methods. The ex-
ample in Fig. 4 illustrates that the commonalities
between two delegatee classes, each of which may
make perfect sense, do not have to come natural.
Therefore, the benefits of polymorphic delegation
have to be compared to the drawbacks created
by all too artificially constructed commonalities.
Polymorphic delegation corresponds to polymor-
phism through inheritance and directly reflects the
idea of “inclusion polymorphism”: “In inclusion
polymorphism an object can be viewed as belong-
ing to many different classes which need not be
disjoint, i. e., there may be inclusion of classes.”
(Cardelli and Wegner 1985, p. 5) While this kind
of inclusion in a strict sense is not possible in
object-oriented systems, delegation at least allows
getting close to it, because a delegator object has
access to its delegatee object’s state. Steimann
emphasizes a different view on polymorphism
through delegation: “An instance is polymorphic
if it can play different roles ...” (Steimann 2000b,
p. 103). In that sense, delegation is polymorphic
per se.

Delegation Chain: A delegator object may
serve as a delegatee object for a further delegator
object. The example in Fig. 5 shows a delegation
chain that consists conceptually of (hybrid) dele-
gators and delegatees. Delegation chains are also
suited for the representation of configurations that

include variants on different levels of composition.
For example, a PC as a core product is offered in
two variants, one with a hard disk drive, the other
one with a solid state drive. Further variants of the
PC could consists of variants of these two drive
types. While delegation chains are suited to in-
crease a system’s flexibility, their design demands
for a thorough analysis of possible future changes
of requirements (see guidelines in Sect. 3.2).

2.2.1 Delegation versus Forwarding
Authors that discuss issues related to the imple-
mentation of delegation, often emphasize that del-
egation should not be confused with forwarding,
e. g. Fowler et al. (1999) and Kegel and Steimann
(2008). The distinction relates to a subtle issue,
that is, the question whether self (or any other
corresponding keyword) within an operation that
is executed by a delegatee object as a consequence
of a message delegated (or forwarded) to it by
one of its delegator objects should refer to the
delegatee object or to the delegator object. It is
not obvious how to judge this proposed difference
between delegation and forwarding from a concep-
tual perspective. The examples shown in Fig. 6
demonstrate the effects that may be caused by the
two different implementations. If the delegator
object receives a message like age() that is not in-
cluded in its interface, it will delegate (or forward)
it to the delegatee object it is linked to. Assume
that, for some reason, the implementation of age()
in the class Person refers to a further operation in
the delegatee object, e. g., ageInYears(). In this
case, it would be appropriate, if self represented
the delegatee object. If the interfaces of both
classes include the same signature, e. g.getID(),
and, for some reason, an operation executed by a
delegatee object would refer to getID() via self,
that would likely produce an inconsistent result,
because it would use the id of a person, where
the id of the delegator object would be required.
To cope with this case, Kegel and Steimann sug-
gest what they call “reverse delegation” (Kegel
and Steimann 2008, p. 434). The delegatee object

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 9

Figure 4: Illustration of polymorphic delegation

cost()
getName()
getPayRate()
setName()
setPayRate()

Person

name : String
payRate : Integer

getPayRate()
getSubject()
setSubject()

Lecturer

subject : String
payRate : Integer

getPayRate()

Dean

payRate : Integer

Figure 5: Example of a delegation chain

would then “explicitly dispatch” to the correspond-
ing delegator object. That would also be satisfac-
tory for a case, where a message sent to self by
an operation executed by a delegatee object could
not be handled by the corresponding delegator
object, as it is the case with ageInYears() in the
example. In that case, the delegator object would
dispatch the message back to the delegatee object.
Apart from the challenge to decide when to call the
method provided by the delegatee object itself and
when to dispatch it back to the delegator object,
there is a further issue that makes the impleme-
nation even more demanding. It relates to the
example of the method printAsString(), which
is offered by both the delegator and the delegatee
object. If the implementation of the operation in
the class Student calls the respective operation in
the corresponding delegator object, as indicated in
Fig. 6, the operation would not terminate. Similar
issues arise in multiple inheritance where name
resolution can become ambiguous. Languages

resolve such cases either by clearly defining one,
perhaps arbitrary, implementation choice, or by
providing language features so that the modeller
or programmer is required to explicitly link the
definiens with the definiendum. Our approach
adopts the former whilst leaving room for future
extensions in terms of the latter, so that, for ex-
ample, we must be careful to interpret self in
terms of a default non-delegating object otherwise
self.printAsString() would cause infinite
regress.

Apparently, the implementation of delegation
with self in the delegatee object referring to the
delegator object is challenging. However, that
does not have to be a serious problem. From a
conceptual perspective, delegation and forward-
ing are equivalent as long as one precondition is
satisfied. Every operation in a delegator class that
refers to operations via self must not do that in
case the respective signature is offered both by the
delegator and the delegatee class. While this may

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

10 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

getFirstName() : String
printAsString() : String
ageInYears() : Integer
getID() : String
age() : Integer
...()

id: String
firstName: String
lastName: String
dateOfBirth: Date

Person

getID() : String
printAsString() : String
...()

id: String
enrolled: Date
credits: Integer

Student

DelegatorDelegatee

age(): Integer {
...
self.ageInYears()
…
}

getID(): String {
...
return id
…
}

printAsString(): String {
...
return
self.delegatee.printAsString() +
self.printAsString()
…
}

Figure 6: Illustrating the effect of self representing either the delegator or the delegatee object

seem as a critical precondition, our long standing
experience with using delegation does not include
a single case where self within an operation of
a delegatee object would have had to refer to the
delegator object. We will look at the implemen-
tation of both, forwarding and delegation in later
sections (5.1, 5.2).

2.2.2 Multi-Level Delegation
Different from traditional approaches to concep-
tual modeling that are based on MOF-like lan-
guage architectures, multi-level modeling (Atkin-
son and Kühne 2001, 2008; Frank 2014; Neumayr
et al. 2009) allows for an arbitrary number of
classification levels. Every class, no matter on
what level it is, is an object at the same time,
which means it may have a state and can execute
operations. The additional abstraction enabled by
multi-level language architectures allows avoiding
conceptual redundancy, and, thus, promote reuse
and integrity. The analysis of multi-level models

indicates that delegation serves as a useful abstrac-
tion to enable transparent dispatch of messages
between classes and between an objects and their
classes (Frank 2018).

Variants: There is no unified definition of a
variant. However, there seem to be two key char-
acteristics. First, a variant may extend a virtual
or real core artefact by additional properties. For
example, a variant of a scanner may come with
an additional document feeder. Second, it may
change or replace properties of the core, e. g., a
variant has a different weight. Apart from the
variations, a variant does not only share its prop-
erties, but also specific property values with the
core. Fig. 7 shows how delegation can be used to
represent the relationship between a variant and a
core artefact. The specification of a class that rep-
resents a variant would have to include only those
properties of the variant that are supplementary
or that have a different value. The benefit of dele-
gation is obvious: if the technical specification of
the core is modified such that certain properties

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 11

are characterized by new values, the variants do
not have to be updated. Note that it is conceivable
for a core artefact to be virtual only. If Scanner
is used to represent commonalities of a family of
scanner types, but does not represent a type of its
own, there will be no real object corresponding to
its instance.

Polymorphic delegation can be applied to vari-
ants, too. If, for example, the same document
feeder type is used to form variants of various
scanner types, one variant class could be associ-
ated with various core product classes.

Delegation to Class: The variant and the core
product in the example in Fig. 7 actually represent
product types. Therefore, it may be required to
instantiate them into objects that represent partic-
ular physical devices, each of which may carry a
unique serial number. In the traditional paradigm
which allows for objects on M0 only, this kind
of instantiation/classification could not be repre-
sented without some kind of overloading. By
contrast, multi-level modelling and programming
((Atkinson and Kühne 2001; Clark et al. 2014;
Frank 2014)) allows for an arbitrary number of
classification levels, where every class is an object
at the same time. In other words: classes may have
a state. This does not only add flexibility, but it
also contributes to integrity, because it allows for
reducing redundancy. If, for example, all instances
of a class need to have the same value of a certain
property (for example, all printers of a certain
model have the same sales prices), this value can
be stored with the class, instead of storing it with
every single instance. In that case, any particular
exemplar (e. g., every particular printer) is charac-
terized by this value. Therefore, it makes sense
to hand over the message that requests this value,
directly to the object representing the exemplar.

As the example in Fig. 8 shows, delegation
would enable the object to properly respond to
such a request without storing the corresponding
value redundantly. To that end, the message would
have to be delegated to the object’s class. If the
method is not included in the interface of the
class, it could be further delegated. The model in
Fig. 8 was created with the multi-level modelling

language FMML𝑥 (Frank 2014). Other multi-
level modelling languages such as (Atkinson and
Gerbig 2016; Neumayr et al. 2014) allow for
similar representations.

Like projection, delegation to class lacks the
flexibility that is regarded as an important aspect
of delegation, since it represents an instantiation
relationship that is invariant through the lifetime
of an object. However, unlike projection, there is
a conceptual relationship between delegator and
delegatee that makes sense. It is very common
to represent values that apply to all instances of
a class with the class itself. Examples comprise
technical specifications, biological taxonomies,
and many others. Furthermore, it is conceivable
that new properties and corresponding values are
added to a class during the lifetime of its instances.
However, even though delegation to class can be
useful, it comes with serious challenges. Not every
class includes representations of common values
shared by its instances. If an object that serves
as a delegator in a delegation relationship with an
object on the same classification level receives a
message that is not in its protocol, it needs to be
decided whether the message should be dispatched
first to its class or to the other delegatee. Apart
from that, delegation to class does not allow for
polymorphic delegation, because an object has
one, and only one class. Delegation hierarchies are
conceivable in a multi-level language architecture.
Take, for example, a conceptual hierarchy like
species, genus, family, order, etc. Each concept
that is assigned to one of these hierarchies may
define values that are representative for all its
elements.

The above examples give an overview of how
delegation might be conceptualized. They also
indicate how to assess the different kinds of con-
ceptualization with respect to their contribution
to flexibility, their conceptual validity and their
suitability for polymorphic delegation as well as
delegation chains. Tab. 1 summarizes this inter-
mediate result.

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

12 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

getName() : String
...()

name: String
interface: String
weight: Float
resHorizontal: Integer
resVertical: Integer
timePerPage: Integer

Scanner

getName(): String()
...()

name: String
weight: Float
pagesPerMin: Integer
maxStack: Integer

FeederScanner

weight = 3.5
pagesPerMin = 14
maxStack = 40

SC-500-F10: FeederScanner

Core Product Variant

getWeight()

3.5

getInterface()
„USB 2.0"

getInterface()

interface = "USB 2.0"
weight = 3.2
resHorizontal = 4800
resVertical = 9600
timePerPage = 4

SC-500: Scanner

„USB 2.0"
1

2

3

2

4

1

Figure 7: Use of delegation to represent variants

Levels Delegatee Delegator Flexibility Validity Polymorphic Chains

single-level Role Filler Role high convincing ✓ ✓

Projected
Class

Class high inappropriate × ✓

multi-level Core Artefact Variant high convincing ✓ ✓

Instance Class low reasonable × ✓

Table 1: Conceptual flavors of delegation and their preliminary assessment

2.3 Analysis of Requirements
The examples need to be analyzed in more detail
in order to develop more elaborate requirements.
The following list includes the requirements we
identified and their relation to the above use cases.
Static requirements toward language elements for
defining delegation and the way they can be ap-
plied are marked as “SR”. “MR” refers to apply-
ing delegation in multi-level language environ-
ments. Dynamic requirements, which refer to
the expected behavior related to delegation, are
marked as “DR”. A further category, which relates
to corresponding modelling and software devel-
opment tools, is marked as “TR”. Some of the
requirements reflect extensions we made to previ-
ous conceptions of delegation. They are marked
with “extension”. Those requirements that relate

to optional features are marked with “optional”.
Note that requirements are not always expressed
in an intentional form, but also as assertions. It
is not possible to guarantee the completeness of
requirements. To ensure that they cover a wide
range of relevant aspects, we compare them to
corresponding features of role-based modelling
approaches that were identified by Steimann in the
most comprehensive literature study on this topic
(Steimann 2000b). In the following we refer to
classes that specify delegators as delegator classes,
to corresponding objects as delegator objects or
delegators. Classes that represent delegatee are
referred to as delegatee classes and their instances
as delegatee object or delegatee respectively.

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 13

getPagesPerMin() : Integer
getWeight() : Float
getResolution() : Integer

pagesPerMin: Integer
weight: Float
resolution: Integer

Printer

getWeight()

3.5
4

1

getW
eigh

t()
serialNo = PF412R

PF412R: SC-500-F10

2

3
.5

3

Properties
characteristic for all

instances of instances

Float

getPagesPerMin() : Integer
getWeight()
getResolution() : Integer

serialNo: String
pagesPerMin = 14
weight = 3.5
resolution = 600

SC-500-F10

-> 3.5
-> 600

^Printer^

^PeripheralDevice^

^SC-500-F10^

Name of (meta) class

M2

M1

M0

Attribute value

Returned valuegetPagesPerMin-> 60

Figure 8: Delegation to class

2.3.1 Static requirements
SR1 A delegatee class is associated to one to many

delegator classes. Rationale: This property
is at the core of the abstraction enabled by
delegation. If no further constraints apply, this
property implies that a delegatee object can
be linked to more than one delegator object
simultaneously (corresponds to feature #3 in
Steimann (2000b)).

SR2 A delegatee object can be linked to more
than one delegator object of the same class
simultaneously. Rationale: In many cases the
number of delegator objects of the same class
is restricted to one. However, there are cases
where a delegatee is linked to more than one
delegator object of the same class. A person
may be employed at different organizations at
the same time. Variants linked to a core artefact
may all be of the same class (corresponds to
feature #4 in Steimann (2000b))

SR3 (optional) It should be possible to associate
a delegator class with more than one delega-
tee classes. Rationale: The ability to abstract
the class of possible delegatee objects away
is suited to clearly increase the flexibility of
a system, since it would allow for replacing
a delegatee object with another delegatee ob-
ject of a different class at runtime. However,
allowing for such a modification without any
restrictions creates a substantial risk. If the new
delegatee object’s interface is different from
the one of the replaced object, messages that
worked previously would fail. Such a side-
effect is hardly acceptable. Therefore, it should
be possible to associate more than one dele-
gatee class only, if the delegatee classes share
an abstract superclass that defines a common
interface (polymorphic delegation, see Fig. 4).
This feature is mentioned in #7 in Steimann
(2000b).

SR4 Delegatee and delegator are objects with
an own identity, that is, they do not share the
same identity. Rationale: This requirement is
different from most concepts of roles found in
literature, where delegators are regarded as part
of the delegatee object (Steimann 2000b, p. 87).
There are various reasons why we decided for
this requirement. The first one is of ontological
nature. The existence of an object that serves
as a delegatee is independent of the delegators
linked to it. At the same time, a particular
delegator object may have an existence of its
own, too. For example, there is only one role
of a dean in a university department and it is
filled with different persons over time. The
lack of existential dependency becomes even
clearer with the additional conceptualization of
delegation we introduced above: a variant of a
product does not stop to exist, if the core prod-
uct is removed. However, there are delegation
relationships, where a delegator object is exis-
tentially dependent on its delegatee object, e. g.,
an object representing a student. Therefore,
this ontological argument is only partially valid.

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

14 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

The second reason is ontological, too. If dele-
gatee and delegator share the same identity, the
delegatee would include the delegator’s proper-
ties as essential own properties. For example, a
person would essentially include the properties
of a student - and not the other way around.
Steimann tries to overcome this problem by
regarding a role’s class as a generalization of
the corresponding role filler’s class. Hence, a
class Student would be superclass of the class
Person. While this construction would solve
the problem formally, it that does not corre-
spond to the common understanding. Steimann
points out that all potential roles an object may
play are part of its semantics. But even, if
one agrees with this construction, regarding a
delegator class as a generalization of the cor-
responding delegatee’s class is not convincing,
because one can hardly claim that, e. g., person
adds further properties to student. Steimann
himself speaks of a “paradoxical situation that,
from the extensional point of view, roles are
supertypes statically, while dynamically they
are subtypes” (Steimann 2000b, p. 90). The
third reason is both a conceptual and a technical
one. There are cases, where only a delegator
and its properties are required. For example,
for some kinds of analysis, university adminis-
tration is interested in students only regardless
of the persons behind. In other words: it makes
sense to abstract the delegatee away and regard
the delegator as an object with an identity of
its own. That recommends (not: implies) rep-
resenting delegators as objects with an address
outside the namespace of the delegatee object.

SR5 A delegator object must not be linked to
more than one delegatee object at the same
time. Rationale: There are cases, where it
would increase flexibility, if there was a choice
of delegatee objects at runtime. If, for example,
a delegator object of the class Interpreter re-
ceived the request to translate a text, it could
dispatch the request either to a human or a
machine, depending on the type of text. A fur-
ther example would be scheduling: a customer

requests a sales assistant (represented as dele-
gator) and the corresponding object is linked
dynamically to an available agent. Nevertheless,
we decide against multiple delegatee objects,
because it would require the specification of
dispatch knowledge with delegator classes or
the introduction of additional dispatchers. In
both cases, the delegation of messages would
get substantially more complicated. Instead, it
seems preferable to perform the dispatch before
sending a message to a delegator object. While
this feature is not explicitly accounted for in
Steimann (2000b), it seems that there is no con-
cept of delegation or roles that would allow for
multiple delegatees.

SR6 A delegator class may define properties (at-
tributes, methods, associations) that already
exist in a delegatee class it is associated with.
Rationale: If the definition of properties with
the same name does not happen by accident, it is
a useful approach to override properties defined
with a delegatee class and also to replace values
specified in a delegatee object. Therefore, it
should be allowed to use properties with the
same name in associated delegator and dele-
gatee classes (corresponds to #11 in Steimann
(2000b)).

SR7 (optional) The convenient and safe defini-
tion of disjoint constraints on delegators should
be supported. Rationale: As a default, delega-
tors are overlapping, because this is an essen-
tial feature to overcome anomalies caused by
specialization in object-oriented systems. For
example, a person may fill simultaneously roles
like student or programmer. However, there
may be cases where it is important to express
constraints that prohibit certain delegators from
being taken simultaneously, e. g., professor and
student. (see also SR8)

SR8 (extension) The specific semantics of vari-
ants should be supported. Rationale: If a
delegator class is conceptualized as a variant,
the delegation relationship implies the follow-
ing constraint: The delegator classes need to

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 15

satisfy the disjoint constraint, since it makes no
sense that an artifact serves as two variants of
the same core artifact. In addition, it may be
required that all variants of a core artifact are
of the same kind. Many variant objects of the
same kind may be linked to a core artifact object
(see also SR2). Variants are not accounted for
in the review in Steimann (2000b).

SR9 An object that serves as a delegatee in one
delegation relationship may serve as a delega-
tor in another delegation relationship. Ratio-
nale: Delegation hierarchies can be useful (see
example in Fig. 5) and do not cause any spe-
cific problems (corresponds to #8 in Steimann
(2000b)).

SR10 Cyclic delegations must not be permitted.
In other words: by no means may a delega-
tor object act as a (transitive) delegator of it-
self. Rationale: Apart from the fact that cycles
would not make sense, they would jeopardize
system integrity, because they may produce
non-terminating message calls (not mentioned
in Steimann (2000b)).

SR11 (not essential) Delegation should allow for
virtual delegatee objects. Rationale: Delega-
tion can be useful in cases where a delegatee
objects does not represent any real domain ob-
ject. In these cases, the delegatee object serves
only the purpose to define values of certain
properties for all its delegator objects. For ex-
ample, the document types in an organization
could be modelled as delegators of a virtual del-
egatee object of the class Document that defines
values of properties such as footer or header
(not mentioned in Steimann (2000b)).

2.3.2 Multi-level requirements
MR1 (extension) Delegation should also be avail-

able as an association between (meta-) classes
on any classification level. Rationale: If del-
egation is used in a multi-level language, it
should be modelled where it conceptually be-
longs. Hence, it should be possible to define
delegation associations between classes on a

meta-level (M2 or above). Note that this does
not include associations between classes on dif-
ferent levels. As already pointed out, variants
(see Fig. 7) are a good example. They are lo-
cated on level M1 (or above), and not on M0.
As a consequence, the corresponding delega-
tion associates classes on a meta-level (M2 or
above) (not accounted for in Steimann 2000b).

MR2 (extension) It should be possible to define
delegation as a specific relationship between a
class and its instances. Rationale: Classes may
serve to represent values that are common to
all their instances. Every instance should be
able to access those values. These values could
be accessed through methods offered by a class
and the delegation of corresponding messages
from the instances of that class (see example in
Fig. 8). In those cases where the highest level
of classification is M1, delegation to class offers
only modest advantages over sending a message
explicitly to a class – either by referring to the
class like to any object or by using a special
construct like static as in Java: an instance
does not have to know about the methods in the
class, which implies that changing the interface
of a class would not require changing instance
methods in that class. However, with a growing
number of classification levels, delegation is
getting more and more useful. If a certain value
of a specific property is specified on a higher
level of classification, it requires an intensive
effort for objects on M0 to find the relevant
level. An example would be a class Carnivore
on M4 that defines for all instances that they
feed on meat. An object that represents a
particular animal, e. g., a fox, would not have to
know the entire hierarchy, but simply dispatch
a message like feedsOnMeat to its class, which
would forward the message to its class, etc.,
until a class/object answers the message (not
accounted for in Steimann (2000b)).

MR3 (extension) Delegation to class must not be
modelled as delegation association. Rationale:
Delegation to class is restricted to applying the

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

16 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

dynamic aspects of delegation to an “instance
of” relationship. It is not a regular delegation
relationship. This is for two reasons. First, there
is no other conceptual relation than instance to
class. Second, it would violate the constraints
that an object must not be associated to more
than one delegatee at the same time (SR2). This,
however, would be possible, if an object served
as a regular delegator of some delegatee object
and at the same time as a “delegator” of its
class. As a consequence, there should be other
concepts in place that allow to decide whether
forwarding a message to an object’s class is
an option at all (not accounted for in Steimann
(2000b)).

2.3.3 Dynamic requirements
DR1 Message forwarding must be transparent,

i. e., a message sent to a delegator object is pro-
cessed equally by delegation as it would have
been processed directly by the receiving object.
Any change made to the delegatee interface will
immediately be accessible to the delegator. Ra-
tionale: Even though this requirement creates
a substantial implementation challenge, it is
essential for the convenient and consistent use
of delegation (not explicitly accounted for in
Steimann 2000b, but addressed in #13). Trans-
parent delegation is demanded for in Frank 2000
and is essential for prototype-based languages
Lieberman 1986.

DR2 If a delegatee class and a superclass of a
delegator class happen to have a method with
the same signature and no other policy was de-
fined, the inherited method should be selected.
Rationale: Inherited properties can be seen as
characteristic, invariant properties of a class.
In that sense, they are not different from the
methods defined in the class itself. Therefore,
this rule corresponds directly to the basic rule
that delegation takes place only, if a requested
method is not included in the interface of an
object. Note, however, that this rationale is not
compulsory. Therefore, it should be possible to

define other policies. This aspect is only indi-
rectly accounted for in Steimann 2000b: there
is no priority recommended because role types
are considered as subtypes from a dynamic
perspective.

DR3 If the state of a class does not include data
that is representative for its instances, delegation
to class is pointless und should be prevented.
Rationale: If a class does not include any oper-
ation that could be applied to all of its instances,
the attempt to delegate a message to this class
will be a waste of resources.

DR4 If a delegator object receives a message, it
cannot respond to, it should at first delegate it
to its delegator object. If the delegator object
cannot handle the message either, it should
be dispatched to the delegator object’s class.
Rationale: There is no convincing justification
for this policy in a particular case. It is merely
based on the assumption that it will be the better
choice on average because delegation to class
is likely to work in fewer cases.

DR5 Delegatees assigned to delegators may
change over time to reflect different behaviour
of objects during their life cycle. Rationale:
This requirement follows directly from SR.3.

Note that the list of dynamic requirements does
not cover the decision between forwarding and
delegation (see 2.2.1). From a conceptual per-
spective, we do not see a clear advantage of any
of the two alternatives. Both qualify as an ap-
propriate implementation of the conceptual idea
of delegation. Both have specific advantages and
shortcomings. Therefore, it is important that users
of a modeling tool are informed about possible
pitfalls of the specific implementation.

2.3.4 Tooling requirements
TR1 If an object is manually instantiated from

a delegator class during modelling, the user
should be supported with selecting or creating a
suitable delegatee object. Rationale: Different
from specialization, delegation relationships

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 17

have to be established during runtime. This
will often happen on a user’s request. Without
support, the instantiation of delegator objects
would not only stress users, it would also jeop-
ardize system integrity.

TR2 There should be a mechanism to retrieve the
list of all methods available with a delegator
class. In addition, it should be possible to re-
trieve those methods only that become available
through delegation. Rationale: This is relevant
to know for understanding the behavior of ob-
jects instantiated from a delegator class. Being
able to distinguish between different origins
of available methods is also vital for effective
debugging support in systems that use delega-
tion. With respect to delegation to class, this
requirement implies that an object should be
able to provide a list of those methods of its
class that give access to values representative
for all instances.

Even though we have used various forms of
delegation for almost two decades, we are not sure
whether further requirements will emerge in the
future. Therefore, we suggest a further “meta”
requirement: an implementation of delegation
should allow for adding further constraints.

2.4 An Extended Concept of Delegation
To specify static aspects of delegation that satisfy
the above requirements, we will use a simpli-
fied meta model of an object-oriented modelling
and programming language. XCore (Clark et al.
2008a), see Fig. 11, features a recursive architec-
ture and enables multiple levels of classification.
Therefore, it is also suited to cover the use of
delegation in multi-level environments. At the
same time, it can be applied to languages that
are restricted to classes on M1. The central class
Class is, by default, located on M2. However, it
may also represent classes on any level above M3.
Therefore, its level is contingent. To apply the
meta-model to languages that do not support mul-
tiple levels, Class can be assumed to be located
on M2 only. Delegation is modelled as a kind

of association (attribute type of Association).
The conceptualization as role / role filler or vari-
ant / core artifact is defined through the attribute
role of End.

The attribute isRepresentative outlines
how to cope with delegation to class. If
isRepresentative is true, messages sent to an in-
stance of the corresponding class, can be delegated
to that class.

3 Application of Delegation
The above use cases demonstrate that delegation
is suited to overcome problems with inheritance
and specialization caused by the specific notion
of class in object-oriented systems. However, its
successful use requires appropriate design deci-
sions. In particular, there is need for criteria that
support the identification of associations that qual-
ify as delegation. That includes the distinction
of delegation and specialization. There is only
little support for the adequate use of delegation in
the literature. Gamma et al. (1994) characterize
delegation as powerful but avoid providing any
criterion for choosing between delegation and in-
heritance: “Delegation is a good design choice
only when it simplifies more than it complicates.
It isn’t easy to give rules that tell you exactly when
to use delegation, because how effective it will be
depends on the context and how much experience
you have with it.” (Gamma et al. 1994, p. 32).
While the conceptualization of delegation asso-
ciations with roles/role fillers, and variant/core
artifacts respectively serves as a useful orienta-
tion, it is not sufficient. To provide more effective
support, we will first take a closer look at the
meaning of role and variant. Subsequently, we
present pragmatic guidelines to support design
decisions related to delegation.

3.1 Roles and Variants
There are numerous definitions of the term “vari-
ant”. In general, a variant represents a modifi-
cation of some kind of core artifact, which itself
may be a variant. With respect to its use within
a delegation association, we propose the follow-
ing definition. An object representing a variant

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

18 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

depends on another object that represents a core
artifact. The variant object has the same properties
and property values as the object that represents
the core artifact. It may override values defined for
the core artifact object. The definition of the role
is more demanding. Guarino et al. (1994) aims at
developing an ontologically founded concept of
role that allows distinguishing roles from other ob-
jects. He regards roles as concepts. With respect
to the terminology we used so far, “role” should be
replaced by “role type”. For the definition of this
concept, Guarino et al.. introduce two different
kinds of concepts. A concept 𝛼 is founded (on
another concept 𝛽), if every instance of 𝛼 must be
related to an instance of 𝛽, without being a part
of the instance of 𝛽 (Guarino et al. 1994, p. 5).
A concept 𝛼 is semantically rigid, if its instances
have to be of 𝛼 during their entire lifetime, other-
wise they would lose their identity. Person would
be an example of a semantically rigid concept,
while Child would not. “A concept 𝛼 is called a
role if it is founded but not semantically rigid ...”
(Guarino et al. 1994, p. 6). This conception of
role is definitely useful to identify role candidates.
However, its application is not trivial, and in part,
misleading. The definition of semantically rigid
objects is in so far misleading as in object-oriented
systems an object that represents a role has a dif-
ferent identity than the corresponding role filler
object.

To develop more pragmatic criteria to support
the identification of roles, we will look at the rela-
tionship between delegation and specialization or
inheritance respectively. This is required anyhow,
because various authors use this relationship to de-
scribe roles or delegation, and the corresponding
proposals are not consistent. Lieberman (1986)
regards delegation to be more powerful than inher-
itance, while Stein comes to the conclusion that
“delegation is inheritance” (Stein 1987). Never-
theless, she suggests choosing between the two
“depending on the needs of the application” (Stein
1987, p. 144). However, she does not provide any
hint on when delegation should be preferred over
inheritance. The logician Sowa does not speak
of delegation. But he proposes a definition of

roles that is based on specialization: “role types
[...] are subtypes of natural types”, “TEACHER
is a subtype of PERSON in the role of teaching”
(Sowa 1988, p. 120). Such a conceptualization
is confusing for various reasons. It seems to be
in conflict with the counter-intuitive effects of
specialization we discussed in Sect. 2.1, and it
leaves us with the question, of whether there is a
formal difference between delegation and special-
ization. Furthermore, it is in obvious contrast to
Steimann’s view on role types as a generalization
of entity types. Nevertheless, we shall see that
regarding roles as subtypes leads to useful crite-
ria to conceptualize roles – and to discriminate
delegation against specialization.

To analyze the relationship between delegation
and specialization we do not use the specific no-
tion of specialization in object-oriented systems.
Instead, we refer to the concept of specialization
in SQL. This is for two reasons. First, it corre-
sponds more clearly to the notion of specialization
in logic and natural language than that in object-
oriented systems. Second, its semantics can be
systematically variegated. Therefore, it enables
a more differentiated comparison of delegation
and specialization. In SQL, the semantics of spe-
cialization can be variegated by “completeness”
and “disjointness” constraints. A completeness
constraint serves to define whether specialization
is total or partial. It is total if the generalized
entity type must not have any instances of its own.
In the case of partial specialization, the general-
ized entity type may have instances of its own. A
disjointness constraint allows us to define whether
specialized entity types may overlap or not. Fig. 9
illustrates partial specialization where the special-
ized entity types are overlapping. It is clearly
different from specialization in object-oriented
systems, because an entity may belong to more
than one type simultaneously. In particular, every
entity of a subtype is an entity of its supertype,
and an entity of subtype a may be an entity of
subtype b, too.

The four different kinds of specialization in SQL
provide a solid and easy orientation for supporting

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 19

Person

Student Programmer

Figure 9: Partial specialization, overlapping

the decision between delegation and specializa-
tion in object-oriented systems. Tab. 2 depicts the
default recommendations for each of the four dif-
ferent kinds of specialization. Whenever a partial
specialization is identified, the subclass qualifies
as a role class or, in other words, delegation is
preferable over specialization. It seems to reflect
the conceptualization of Guarino et al. (1994).
However, it is easier and more clearly to identify.

Total specialization corresponds to the special-
ization of abstract classes in object-oriented sys-
tems. Therefore, it is not suited for delegation,
because delegation depends on a delegatee ob-
ject, that is, an instance of the superclass would
be mandatory. However, in the case of overlap-
ping specialized classes, specialization in object-
oriented systems would not be satisfactory, be-
cause that would imply that there were objects
that are instances of all overlapping specialized
classes – which is not possible in object-oriented
languages. Multiple inheritance would not be
satisfactory either. If, for example, one would
create the subclass StudentProgrammer from the
classes Student and Programmer, the instances of
that class would not be instances of the two su-
perclasses, which is likely to produce redundancy
and compromise integrity (see introduction).

We can summarize that delegation shares com-
monalities with specialization. However, at the
same time it is different, in contradiction to the
conclusion of Stein (1987). Also, different from
the claim made by Lieberman (1986), delegation

is not more expressive than specialization. This as-
sertion can easily be proven informally: as we have
seen, the case of an abstract superclass (or total
specialization respectively) cannot be equivalently
represented with delegation.

3.2 Guidelines
The following guidelines are based on the above
conceptualization of roles and variants. The first
group of guidelines relates to an early phase of
domain analysis. These guidelines raise awareness
for delegation and help with the identification of
possible candidates for delegation.

G1 Do not get confused by the ambiguity of is
a. Ask yourself whether a relationship between
two concepts could also be called represents or
acts as respectively. If this is the case, you have
found a delegation candidate.

G2 Delegation is closely related to the common
sense concept of a role. Notions such as task,
job, serves as, works as, etc. may indicate a
relationship between a role filler and a role.
Therefore you should look for corresponding
terms within available descriptions of a domain.

G3 Whenever you encounter the existence of dif-
ferent views on an object or different contexts
an object may be assigned to, it is a good idea
to check whether these views or contexts can
be related to the roles or responsibilities of the
object in a natural way. In this case, delegation
might be a useful option.

G4 Some real-world entities are likely candidates
for becoming role filler objects: persons, organi-
zations, and versatile machines. Assigning the
objects of a preliminary object model to such
categories may help with identifying delegation
associations.

G5 If a product or some other artifact represents
a variation of another, more general artifact, it
might represent a variant. In that case, it should
be checked whether it falls under the specific
concept of variant presented above.

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

20 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

Kind of specialization in
SQL

Recommended use

partial, overlapping delegation
partial, disjoint delegation
total, overlapping ?
total, disjoint specialization

Table 2: Different kinds of specialization in SQL

G6 If specialization seems to be a natural choice,
go through the criteria in Tab. 2 and check if it is
applicable. In cases where partial specialization
appears useful at first sight, delegation is likely
to be a better choice.

G7 If all instances of a class are characterized by
the same value for certain properties, it might
be a good idea to store this value with the
class and apply delegation to the class to enable
transparent access to this value.

The second group of guidelines aims at the
design phase. They serve to check the preliminary
results of the domain analysis and support final
design decisions.

G8 In those cases, where the above criteria rec-
ommend the use of delegation, check whether
the prospective delegator objects may change
during the lifetime of the corresponding delega-
tee object. If that is definitely not the case and
the implementation language you use does not
provide support for delegation, specialization
is a pragmatic, but valid option.

G9 If a pragmatic use of specialization is not an
option and the implementation language does
not support delegation, look for appropriate
design patterns that enable to mimic delegation.
Never use specialization only for the reason that
delegation is not available, because you would
risk unpleasant effects (redundancy, threat to
integrity).

G10 If an object qualifies as a variant of some
core artifact, check whether variant and core

artifact should be modelled as classes. In that
case, delegation should be ideally specified on a
meta-class level (see fig 7). If that is not an op-
tion, classes could be represented as objects on
M0, which would, however, imply introducing
an artificial instantiation relationship between
these objects and other objects that represent
their “instances”.

Delegation and specialization can be combined.
This is the case if a delegator class qualifies as a
possible subclass or a delegatee class qualifies as
a possible superclass. In the example in Fig. 10,
Professor is specialized from Employee. This
could make sense, if in a corresponding system,
every represented professor must be an employee
at the same time, and can never become an em-
ployee of a different kind or just an employee (G8).
Even though delegation would be a valid option,
too, specialization has the advantage of enforcing
the constraint that every professor has to be an
employee already at compile time.

4 Language Architecture for Delegation
The concept of delegation can be realized in a
number of different ways all of which satisfy some
or all of the requirements discussed in Sect. 2.3.
Implementations are likely to differ with respect
to object arrangements, class organization, inte-
gration with inheritance, and message-passing
mechanisms. Our aim is to provide a language
framework for delegation within which the dif-
ferent approaches can be constructed, analyzed
and compared. We have used the XModeler
platform (Clark et al. 2008a; Clark and Willans
2012) as a basis for delegation analysis because it

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 21

yearsOfAge() : Integer
firstName() : String
lastName() : String

firstName: String
lastName: String
dateOfBirth: Date

Person

socialSecNo: String
hoursPerWeek: Integer
salary: Float

Employee

appointed: Date
fieldOfResearch: String

Professor

inOfficeSince: Date

Dean

Figure 10: Combined use of delegation and specialization

has been designed as an extensible language engi-
neering environment that offers visual modeling
capabilities together with a comprehensive (meta-
)programming language. In particular, the key
structural and dynamic features of standard object-
oriented class-based languages can be modified
and extended within XModeler.

Our delegation architecture and the examples of
its use in this article have been implemented in the
XOCL language in XModeler. XOCL combines
features from the Object Constraint Language
(OCL), with an action language and features from
functional programming. The semantics of XOCL
is extensible because it is based on a meta-object
protocol (MOP), and the syntax of XOCL is ex-
tensible through the use of syntax classes. Both
the MOP and syntax classes have been used in
our implementation of the proposed delegation
architecture; therefore, whilst it is not essential
to understanding our contribution, we include the
code as an aid for readers who are interested in
the implementation details.

This section describes the essential language
features of XModeler, to create a foundation for
the later explanation of different implementation
options for delegation. Sect. 4.1 defines the kernel
of XModeler in terms of a collection of self-
describing classes called XCore and in terms of
its extensible operational semantics. XModeler
provides a programming language called XOCL
that can be extended with new language features
as described in Sect. 4.2. The extensible features
of XModeler will be used in the following
section to build two different implementations of
delegation.

4.1 Language Architecture and
XModeler

XModeler is a meta-modelling environment that
supports language engineering and executable
modelling. It runs on a virtual machine (VM)
that supports simple data types and associated
operations. A kernel model called XCore and
a kernel language called XOCL are defined in
terms of the services offered by the VM. All other
aspects of XModeler are defined in terms of
XCore and XOCL.

XModeler runs on a small VM that is imple-
mented in Java; the VM manipulates data struc-
tures that are defined in Fig. 20 in the appendix.
The XOCL language is defined in Fig. 21 in the
appendix and compiles (using a compiler written
in XOCL) to VM instructions that run in terms
of the data structures defined in Fig. 20. A small
collection of kernel operations are made avail-
able in XOCL to manipulate the VM data which
is otherwise hidden from the user. Functions
contain machine instructions, globals (closed in
values), dynamics (imported name-spaces), the
self-object, arbitrary properties, a type signature,
and super-functions.

The semantics of XOCL is made extensible by
defining the operational rules in terms of messages
sent to a set of pre-defined classes called XCore.
The operational rules are defined by the interpreter
shown in Fig. 23 in the appendix and key XCore
classes are shown in Fig. 11. The figure uses
standard notation for classes expressed as boxes
with each a compartment for the name of the
class, its properties, and its operations. In XCore
there is no semantic difference between properties
and directed edges between classes, except that

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

22 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

Class
isAbstract:Boolean

allA�ributes():*A�ributes
getInstanceSlot(object,name)
hasInstanceSlot(object,name)
init()
new():Object
setInstanceSlot(object,name,value)

Package

0..*

1..1

classes

0..*

1..1
packagestype:[Default,Delega�on]

Associa�on
associa�ons

0..* 1..1

Constraint: self.type=Delega�on
 implies self.ends[0].role = Delegator
 and self.ends[1].role = Delegatee

role:[Default,Delegator,Delegatee]
navigable:boolean
isRepresenta�ve:boolean

End

2..2

1..1

ends

A�ribute

min:int
max:int
upperLimit:boolean

Mul�plicity
0..*

1..1
mul�plicity

a�ributes

0..* 1..1

Slot
value:Element

type

0..* 1..1

get(name:String):Element
hasSlot(name:String):boolean
init(args)
set(Name:String,value:Element)

Object

0..*

1..1

slots

Classifier
default:Element
isFinal:Boolean

init():Classifier
new():Element
new(*args):Element

name:String
NamedElement

TypedElement type

0..* 1..1
opera�ons

0..*

1..1 invoke(targets,args:*Element)
invoke(targets,args:*Element,supers:*Opera�on)

Opera�on

arity:Integer
target:Element
env:*Element

InterpretedOpera�on

eval(target,env,imports)

Performable
body

1..1

1..1

init(args:*Element)
init()
of():Classifier

Element

Figure 11: XCore classes and selected properties

the latter can be decorated with multiplicity at
the source and the end. The type of properties
and operation arguments may be omitted when
it is the default type Element. A prefix * on an
operation argument means that the supplied value
is expected to be a collection.

XCore distinguishes between elements and ob-
jects, and correspondingly classifiers and classes.
An element (such as the integer 1) does not have a
state whereas an object (such as the point (10,20)
has state represented using slots.

An XCore meta-class inherits from the distin-
guished class Class and therefore inherits the
operation new that allows its instances to create
new objects. Meta-classes are indicated with a
highlighted name box in the diagram, showing the
name of the meta-class printed in white on a black
background.

Consider a sequence of integers, its classifier is
Seq(Integer). The classifier of Seq(Integer) is
Seq, whose classifier is Classifier whose class
is Class. The class of Class is itself.

Operational extensibility is achieved in Fig. 23
through the definition of App, Send, Get, and Set,
each of which rely on sending messages whose
basic definitions are associated with the classes in
Fig. 11.

XCore classes provide a meta-model for an
object-oriented language. In Fig. 11, structural
features of classes are represented by attributes,
unidirectional associations and bidirectional as-
sociations. Behavioral features are represented
by operations that can be compiled or interpreted.
All data in XCore must be represented using the
VM types defined in Fig. 20 in the appendix, in-
cluding classes and meta-classes, therefore the

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 23

definitions shown in Fig. 11 must be bootstrapped
using kernel-level operations. A representative
part of the bootstrap is shown in Fig. 22 in the
appendix. Once bootstrapped, XCore serves as
a dynamic type system for XOCL. Classes are
created by sending Class a new message and are
populated by creating instances of Attribute and
Operation.

XCore provides a meta-object protocol (MOP)
that is used to make instance representation and
behaviour extensible. Figures 12, 13 and 14 show
the XCore operations that are required to support
the evaluation mechanism for XOCL. In each
case a definition is of the form C::n(args) exp
where C is the class that owns the operation named
n. For example the definition of Object::get
checks whether the meta-class of the receiving
object is Class in which case the kernel operation
Kernel_getSlotValue is used to directly access
the VM object representation; otherwise, the class
of the object is sent a message getInstanceSlot
allowing different types of class to define different
access strategies. Sending messages is defined by
Element::send which either finds an operation
via allOperations or sends a noOperationFound
message which can be redefined for different types
of objects.

4.2 Syntax Classes
XCore implements a textual language architecture
which associates syntax classes with grammars.
A syntax class named C defines a new language
construct of the form @C ..., where the text de-
noted by the ellipses is processed by C.grammar.
Fig. 15 shows the basic features of syntax classes:
a grammar is associated with rules that parse text
and synthesize performable elements via actions.
The XCore parser reads program text and returns
a performable element that is subsequently com-
piled. When the parser encounters @C ... it
hands control over to C.grammar and expects
a performable element that is inserted into the
parser’s output. A grammar may inherit from
multiple parent grammars in which case they in-
clude the parent rules. An XCore class of type
Sugar extends the abstract syntax of XCore and

Element ::of() = Kernel_of(self)
Element ::init() = self

Element ::send(name ,args) =
// If the meta -class of the target
element is

// Classifier , then we can use the
default mechanism

// to lookup and invoke an operation ...
i f of().of() = Classifier
then

l e t ops = of().allOperations ().select(
fun (o)

o.matches(name ,args.size()))
i n i f ops = []

then self.noOperationFound(message ,
args)

e l s e ops.head.invoke(self ,args ,ops)
e l s e
// Otherwise use the definition of
sendInstance
// provided by the class of the target
...
of().sendInstance(self ,message ,args)

Element :: noOperationFound(message ,args) =
// The default handler for undefined
messages.

// This can be redefined by any class ...
throw Exceptions :: NotFound(self ,message ,
args)

Object ::get(name) =
// If the meta -class of the target of
the field

// reference is Class , then we can use
the default

// mechanism ...
i f of().of() = Class
then Kernel_getSlotValue(self ,name)
e l s e
// Otherwise use the definition of
getInstanceSlot
// provided by the class of the target
...
of().getInstanceSlot(self ,name)

Object :: hasSlot(name) =
i f of().of() = Class
then Kernel_hasSlot(self ,name)
e l s e of().hasInstanceSlot(self ,name)

Object ::set(name ,value) =
i f of().of() = Class
then Kernel_setSlotValue(self ,name ,value
)

e l s e of().setInstanceSlot(self ,name ,
value)

Figure 12: XCore MOP (Part 1 of 3)

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

24 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

Object ::init(args) =
// The constructors of a class are used
to

// initialise a new instance. Choose a
constructor

// based on the number of supplied
initialisation args ...

l e t C = of().allConstructors ()
cnstrs = C.select(fun (c) c.names.

size()=args.size())
i n i f cnstrs = [] then self

e l s e cnstrs.head.invoke(self ,args);
self.init()

// The following are examples of sequence
operations

// and are provided so that the
definitions are self -

// contained ...

Seq(Element):: select(predicate) =
i f self = [] then self
e l s e i f predicate(head())

then Seq{head | tail.select(
predicate)}

e l s e tail.select(predicate)

Seq(Element)::size() =
i f self = [] then 0 e l s e 1 + tail.size()

Operation :: invoke(target ,args) =
// Operation invocation is a kernel -
level

// activity ...
Kernel_invoke(self ,target ,args ,supers)

// The following two operations show how
class -level

// properties are inherited ...
Classifier :: allOperations () = operations +
rmdups ([o | p <- parents ,o <- p.
allOperations ()])

Class :: allConstructors () = constructors +
rmdups ([c | p <- parents ,c <- p.
allConstructors ()])

Class :: allAttributes () =
attributes +
rmdups ([a | p <- parents ,a <- p.
allAttributes ()])

Figure 13: XCore MOP (Part 2 of 3)

// ************ Start of the Default MOP

Classifier :: sendInstance(element ,name ,args
) =

// This is the default mechanism that is
used to deliver

// messages. It can be redefined in meta
-classes in

// order to define new meta -object
protocols ...

l e t ops = element.of().allOperations ()
op = n u l l

i n w h i l e ops <> [] and op = n u l l do
op := ops.head;o
i f no t (op.matches(name ,args.size())

)
then op := n u l l ;
ops := ops.tail

end;
i f op <> n u l l
then op.setSupers(ops);

op.invoke(element ,args)
e l s e element.noOperationFound(name ,
args)

Class:: getInstanceSlot(object ,name) =
Kernel_getSlotValue(object ,name)

Class:: hasInstanceSlot(object ,name) =
Kernel_hasSlot(object ,name)

Class:: setInstanceSlot(object ,name ,value)
=

Kernel_setSlotValue(object ,name ,value)

Class::new() =
l e t A = allAttributes ()

mkSlot(a) =
l e t n = a.name

v = a.type.default
i n Kernel_mkSlot(n,v)

slots = [mkSlot(a) | a <- A]
i n Kernel_mkObj(self ,slots).init()

Class::new(args) = new().init(args)

// ************ End of the Default MOP

// Given all the definitions above ,
objects can be

// created , accessed , updated and sent
messages. Since

// all the operations are attached to meta
-classes ,

// they can be redefined to define new
MOPs.

Figure 14: XCore MOP (Part 3 of 3)

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 25

Figure 15: Syntax classes

must supply a desugar operation that returns a
performable element that is known to the compiler.
This mechanism makes XOCL easily extensible,
for example if we want to add a new language
construct that supports state machines, we can
define a declarative model for state machines that
is created via a syntax-class Machine whose gram-
mar parses a new language construct, for example
@Machine S1 -t1→ S2 end. The grammar syn-
thesizes an instance of the state-machine model
that is translated via its desugar() operation into
basic XOCL, for example an operation that is sup-
plied with a transition name and returns the next
state as defined by the machine so that:

m :=
@Machine
S1: t1 → S2;
S2: t2 → S3

end;
m("t1") => S2
m("t2") => S3

5 Implementation of Delegation

The previous section has described the extensi-
ble object-oriented language framework XMod-
eler. This section examines how delegation can
be implemented in XModeler using two differ-
ent approaches. The first implementation option

discussed in Sect. 5.1 delegates messages by ex-
tending the error handling mechanism of XCore.
The second approach in Sect. 5.2 implements del-
egation by redefining the XCore message handling
with an extended meta-object protocol for dele-
gation. Both approaches have their benefits and
drawbacks and can be used as the basis of further
study.

5.1 Implementing Delegation by Handling
Message Failures

Given a standard object-oriented message-
handling mechanism, we may choose to provide
delegation by waiting until something goes wrong
with regular message dispatching and then using
the language’s exception-handling mechanisms
to implement the semantics of delegation. This
approach turns out to be easy to realize in cases
where the appropriate level of operational control
is exposed by the underlying programming lan-
guage. XOCL is one of the languages that allow
intercepting the message passing process by means
of exception handlers. Exception handlers consist
of code that gets executed in response to abnormal
conditions that occur during the execution of the
regular method code.

Fig. 16 shows a schematic sketch of how a
delegation mechanism can be realized based on
exception handling capabilities. The situation
distinguishes between one side of the program

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

26 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

execution which is under control of a program-
ming language interpreter or compiler, and one
side which is controlled by programs written in
the respective programming language. These are
labeled “Execution” and “Language” in the figure,
respectively. Any machine executable implemen-
tation of a programming language generally can be
decomposed into these two components, no matter
whether the language is interpreted at runtime, or
a compiler generates the execution behavior at
build time. When during the execution of a pro-
gram an operation is invoked from the language
side, a dispatching mechanism embedded in the
execution side takes over and passes the control
focus to that invoked operation. Some languages
provide a fixed implementation of the dispatcher
mechanism that always requires a unique object
reference and an unambiguously referenced oper-
ation to be invoked. More flexibility is provided
by languages that allow to intercept the behavior
of the dispatching mechanism.

The dispatcher raises exceptions in cases when
an unexpected situation occurs during operation
dispatching, e. g., when an operation is not avail-
able on the given object reference. Fig. 16 ex-
emplifies this situation with a noOperationFound
exception, which is raised internally on the lan-
guage execution side in case an operation cannot
be found, and causes program control to be passed
over to the language side for handling this excep-
tional case. By default, a typical object-oriented
language treats the case of an unavailable oper-
ation as a severe fault and reacts with an error
message and program termination. This behavior
of “Default Exception Handlers”, as labeled in the
figure, is part of the language execution side. It can
be overwritten by user-defined exception handlers
that behave differently and react to the exception
in a controlled way. The delegation semantics can
be implemented in this way by passing the control
flow to an operation of an object that is different
from the originally targeted one.

If an exception of type noOperationFound is in-
corporated in the set of exception types explicated
by the execution mechanism, then raising such an

exception propagates the information about a miss-
ing operation into the realm of user-controllable
program execution. An implementation of del-
egation can then determine whether the object
executing the operation is linked to an object that
serves as a delegatee, and in that case forward the
invokation to the delegatee object. The following
code excerpt exemplifies this mode of operation:

c o n t e x t Element
@Operation
noOperationFound(message:String ,args:
Seq(Element))
// If the receiver doesn 't understand
the message ,
// it propagates it to its delegatee.
i f delegatee = n u l l
then throw Exceptions :: NoOperation(self
,message ,args)

e l s e delegatee.send(message ,args)
end

end

Intercepting the message dispatching context at
this late point in time, after a missing operation has
already been detected, comes with the advantage
of not requiring the language execution mecha-
nism to take care of how the delegation behavior
is specified. Instead, the execution core only sig-
nals the lack of an operation by conveying this to
the level of program-controllable behaviour via
an exception. While the language defines some
canonical default behaviour for cases in which
exceptions are raised, simply by replacing the
handler code for these types of exceptions, all ac-
tions that characterize the semantics of delegation
can now be defined using regular programming
language constructs of XOCL, and can be pro-
vided by a behavior extension specified through
an exception handler.

A potential disadvantage potentially associated
with this approach is the lack of contextual infor-
mation about the state of the execution engine by
the time the exception, i. e., the lack of an opera-
tion on an object was detected. Such information,
e. g., the instance reference to the calling object
that initiated the method invocation, can especially
be valuable when propagating the message call
through a hierarchy of delegatee objects. Also for

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 27

debugging purposes, it would be desirable to have
access to this information. However, this is not an
inherent consequence of this implementation. It
can be avoided by implementing delegation as a
bidirectional association.

Another potential disadvantage of the approach
is that the default message-handling mechanism
provided by the language must be completed be-
fore the delegation mechanism can take over. This
means that there is no way of circumventing in-
heritance: if inheritance finds an operation, then
delegation is overridden. That is, however, not
a problem as long as messages should at first be
dispatched to the superclass anyway.

Keywords like self within operations that are
executed by a delegatee object upon a message
dispatched from a delegator object refer to the
delegatee object, not to the delegator object. While
this makes a difference in extremely few cases
only, it is important to know to avoid inconsistent
behaviour (cf. the discussion of delegation versus
forwarding in 2.2.1).

A similar approach can be used to allow del-
egation to access data slots of a delegatee. Like
message handling, a noSlotFound exception is
raised when a slot is not available in a target ob-
ject, and the associated operation can be redefined.
Like intercepting the message handling, the key
advantage is that this approach is simple, and the
disadvantage is that the mechanism must wait until
all standard slot access is complete, meaning that
it cannot override inheritance and may not have
access to the appropriate contextual information.

5.2 Implementing Delegation by a
Meta-Object Protocol

A key disadvantage of the approach described in
the previous Sect. is that delegation must wait
until all existing message passing and slot access
mechanisms have been completed. This prevents
delegation from being able to override inheritance,
for example. Any delegation mechanism that
requires more fine-grained control over language
execution must find a way of replacing existing
operational features.

Most standard languages do not support such
replacement or overriding since their operational
features are fixed in terms of an interpreter or
a compiler. XOCL provides access to its key
operational features in terms of a meta-object
protocol (MOP) (Kiczales et al. 1991) whereby
classes and associated operations that implement
basic features of the language are available to
the developer and can be replaced or extended
systematically. Where a MOP is defined for a
particular purpose, such as database access, it is
often referred to as a domain-specific MOP, e. g.,
a database-MOP.

Fig. 17 shows a schematic sketch of how a
delegation mechanism can be realized based on a
MOP. The user program contains an operation call,
a slot access, and a slot-update: an object protocol
(OP) with respect to a receiver object. Without
the use of a MOP, an underlying OO language
engine will implement an OP in a fixed way that
cannot be modified or extended by the user. An
MOP replaces a fixed OP with three dispatchers
each of which uses the type of the receiver as the
target of normal operation calls: sendInstance,
getInstanceSlot, setInstanceSlot. Since
the receiver of these operations is the type of
the original receiver, the MOP is defined at the
meta-level. A standard MOP, defined by Class,
implements the original OP. The user is now free to
implement any number of new MOPs, for example
in class Role to implement delegation.

Compare the MOP-based approach shown in
Fig. 17 with that shown in Fig. 16 that uses message
failure to perform delegation. A key advantage of
the former is that it handles message delivery and
slot access using an interface that is provided to
extend the language semantics, whereas the latter
uses an interface that is intended to handle errors.
In that sense, the ability to override slot access in
order to provide delegation is a result of the par-
ticular implementation of error handling, which
cannot be relied upon. It would be reasonable to
change the universal error handling mechanism
to interrupt the current flow of control, in which
case the control would not return to the original
dispatch.

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

28 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

Execution
Method
Dispatcher

Exception
Dispatcher

Language

Default Exception Handlers

...

divisionByZero
nullPointer
noOperationFound

...
noSlotFound

onDivisionByZero()
onNullPointer()
onOperationNotFound()

...
onSlotNotFound()

User Program Language Extensions

onOperationNotFound()
{
 roleFiller
 .delegatedOp()
}

aMethod() {
 // invoke:
 role.delegatedOp()
 ...
}

class ARoleFiller {
 delegatedOp() {
 ...
 // impl
 }
}

dispatch

fail

Figure 16: Delegation handled via message failure

Execution

Language

...

User Program Language Extensions

aMethod() {
 // invoke:
 role.delegatedOp()
 // slot access:
 role.delegatedSlot;
 // slot update:
 role.delegatedSlot:= v
}

class ARoleFiller {
 delegatedOp() {
 ...
 // impl
 }

 delegatedSlot=
}

fail

MOP Role

 receiver:=roleFiller

 sendInstance()

 setInstanceSlot()

 getInstanceSlot()

Default MOP

MOP Class

 sendInstance()

 setInstanceSlot()

 getInstanceSlot()

Method Dispatcher

Slot Access Dispatcher

Slot Update Dispatcher

Figure 17: Delegation handled via meta object protocol

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 29

A MOP does not rely on such implementation
concerns since it is guaranteed to return to the
original dispatch request (unless the user imple-
ments a handler to do otherwise). Furthermore,
a logical definition of delegation would naturally
be defined in terms of message passing and slot
access semantics, not in terms of error handling.
A MOP is a language mechanism that allows the
key semantic features of a language to be extended
and therefore is arguably the right choice to define
delegation. This is demonstrated by the imple-
mentation described in the following sub-Sec.s
where we extend the notion of delegation with the
idea of redelegation along a delegation-chain in
much the same way as super is used in Java to
continue along an inheritance-chain.

A MOP provides a mechanism to specify the op-
erational semantics of the . operator that accesses
and updates slots. This is achieved by defining
an operation in the meta-class of an object (the
class of its class) that defines how the . operator
should be handled. Operationally, this satisfies
the requirements of delegation which needs to
redirect slot requests from one object to another.

The particular delegation MOP used in this
article provides unrestricted slot access, how-
ever, access could be restricted by extending the
definition of attributes to include access proto-
cols that are satisfied by the implementations of
setInstanceSlot and getInstanceSlot. Such
access protocols would be different from those
that affect inheritance and thereby limit access to
slots in subclasses.

As described in Sec. 4.1, XModeler provides
an MOP as defined by the meta-class Class. The
following sub-Sec.s define a delegation-MOP us-
ing the features of XModeler, starting with a
motivating example.

5.2.1 Delegation chain example
Consider the delegation-based model in Fig. 5.

A person has a name and a pay-rate. The cost
of a person, based on the notion of a minimum
wage, is their pay-rate multiplied by the duration
of time over which they work. At some point in
their life, a person may become a lecturer and

c o n t e x t Root
@Class Person
@Attribute name : String

end
@Attribute payRate : Integer

end
@Constructor(name ,payRate) !

end
@Operation getName ():String name

end
@Operation setName(n:String) name := n

end
@Operation getPayRate ():Integer
payRate end
@Operation setPayRate(n:Integer)
payRate := n end
@Operation cost(dur:Integer)
getPayRate () * dur end

end

@Class Lecturer m e t a c l a s s Delegator
@Attribute subject : String

end
@Attribute payRate : Integer

end
@Slot Delegator :: delegatesTo = Person

end
@Constructor(delegatee ,subject ,payRate
) ! end
@Operation getSubject () subject

end
@Operation setSubject(n:String)
subject := n end
@DelegatorOp getPayRate () payRate +
redelegate ()/10 end

end

@Class Dean m e t a c l a s s Delegator
@Attribute payRate : Integer

end
@Slot Delegator :: delegatesTo =
Lecturer end
@Constructor(delegatee ,payRate) !

end
@DelegatorOp getPayRate () payRate +
redelegate ()/10 end

end

Figure 18: Motivating example (XOCL)

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

30 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

their pay-rate changes during the time that they
hold an academic post. In addition, a lecturer may
become a faculty dean. This may occur for a fixed
duration of, say, 3 years, during which time their
pay-rate is further increased.

The XOCL implementation in Fig. 18 shows
that a person is defined in a standard way and
produces a class with attributes, accessors, up-
daters and a constructor. The operations defined
for Person all reference slots and operations with
respect to self, which under conventional circum-
stances will be an instance of Person or one of its
subclasses.

The role Lecturer defines two attributes:
subject and payRate. The delegatee for any
Lecturermust be an instance of Person such that
the slot named payRate in the Lecturer shadows
the slot named payRate in the Person. The opera-
tion named getPayRate is defined in Lecturer to
return the lecturer’s pay-rate augmented with one-
tenth of the standard person-rate. The operation
is defined using the special syntax DelegatorOp
which means that there is a special value called
redelegate that can be used to re-delegate the
message.

The role Dean uses a Lecturer as a delegatee
and uses a local definition of payRate. A dean
may therefore have a pay-rate of 3, and a delegatee
which is a lecturer with a pay-rate of 2, and a
delegatee which is a person with a pay-rate of 1.

Sending a message cost(10) to a dean pro-
ceeds as follows. The role Dean does not define
or inherit an operation named cost so the mes-
sage is delegated to the corresponding instance
of Lecturer. Since Lecturer does not implement
the operation, the message is delegated to the
instance of Person where the operation is found.
The body of Person::cost multiplies the dura-
tion (=10) by the result of sending self a message
getPayRate. At this point, although we are in
the class Person, the value of self is an instance
of Dean which was the target of the original mes-
sage. Dean defines getPayRate as a role-operation
that adds the local value of payRate (=3) to the
result of re-delegating the message to the lec-
turer. Since Lecturer defines an operation named

getPayRate, it handles the message, and since
the message was re-delegated, the value of self
in Lecturer::getPayRate is the corresponding
instance of Lecturer leading to the local value of
payRate (=2) being added to the result of further
re-delegating the message. Finally, the message
is handled in Person where the value of 1 is re-
turned. The complete calculation results in a value
of 32.1.

5.2.2 Redelegation
Inheritance and delegation are similar with respect
to message passing in that both cause operations
to be combined in two different dimensions. Inher-
itance can be viewed as combining all inherited
operations with the same name so that the oper-
ation from the most specific sub-class is called
first and can refer to operations from super-classes.
Similarly, delegation can be viewed as combining
all the operations with the same name that are
linked by delegating classes. Inheritance always
interprets self as the original target of a message
even if an operation is defined in a superclass
of the receiver’s class. Operation lookup always
finds the most specific definition in terms of the
inheritance relationship but allows the next most
specific definition to be referenced via super. Del-
egation should interpret self in the same way, but
needs to provide a different keyword to allow ac-
cess to the next most specific definition along the
delegation relationship: redelegate.

We aim for both inheritance and delegation
to co-exist. Since they overlap in some aspects
(self, message lookup), but differ in others (slot
storage, lookup continuation), we must choose
which relationship should dominate. According
to DR2 there are pragmatic reasons why giving
priority to inheritance is a useful convention to
handle this case.

5.2.3 Operation lookup
The first step in supporting the delegation-MOP is
to modify all XModeler objects to have an addi-
tional slot called delegatee that can be used for
the delegation link. Whilst this could be done dy-
namically in a standard XModeler environment,

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 31

it is easier to modify the bootstrap as follows:

mkClass(Object ,[],[
mkAtt(" delegatee",Element ,Element ,false)
])

As noted above, inheritance dominates
delegation. Message passing involves operation
lookup based on the name of the operation
and its arity. The following operation findOp
uses allOperations to calculate all the oper-
ations inherited by a class, and the operation
delegatesArity to return the number of argu-
ments. findOp is supplied with the name of the
operation, its arity, the target object, and the
function cont which is used to continue the
delegation lookup chain if necessary:

c o n t e x t Classifier
@Operation findOp(name ,arity ,target ,cont
)
// A message lookup operator that is
used
// as part of the new MOP. Notice that
'cont '
// is used to continue the lookup ...
@Find(op ,allOperations ())

when op.name = name and op.
delegatesArity () = arity

do
cont(op ,target ,@Operation ()
self.error(" cannot delegate

further .") end)
e l s e
cont(n u l l ,target ,@Operation ()
self.error(" cannot delegate

further .") end)
end

end

Suppose that we want to find and invoke
an operation named n of arity 2 in a class
C and supply arguments vs. If an operation
exists then the value of self in that operation
should be the object o. Once found, we wish
to invoke the operation. Assuming that the
operation always exists, this is achieved as follows:

C.findOp(n,2,o,
@Operation(op,target ,redelegate) op.
invoke(target ,vs) end)

Note that we ignore the value redelegate since it
is not expected by a conventional operation (this
will be used in a DelegatorOp as shown below).
Note also, that the supplied value of target will
be the same as the supplied object o; this will not
necessarily be the case where delegation occurs
as shown below.

5.2.4 Delegator definition
The meta-class Delegator defines a new class-
level slot called delegatesTo:

c o n t e x t Root
@Class Delegator e x t e n d s Class
@Attribute delegatesTo : Class end

end

Note that the type of delegatesTo is Class which
means that the delegation relationships can be
transitive (since Delegator is a subclass of Class
). The value of the delegatee slot is required
to be an instance of the delegatesTo class in
any instance of a role. This constraint spans two
type-levels and is implemented by a mixin called
DelegatorChecker:

c o n t e x t Root
@Class DelegatorChecker
@Constraint checkDelegator
delegatee.isKindOf(self.of().

delegatesTo)
end

end

This is added as a parent when a Delegator is
initialised:

c o n t e x t Delegator
@Operation init()

l e t o = super ()
i n self.addParent(DelegatorChecker);
o

end
end

5.2.5 The Delegates meta-object protocol
The delegation-relationship affects how message
passing, slot-access, and slot-update are per-
formed in instances of roles. The correspond-
ing meta-object protocol (MOP) implements this
behavior in terms of a standard three-operation

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

32 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

interface in a meta-class MC. If C is an in-
stance of MC then the MOP defined by MC de-
fines how instances of C handle messages and
slots. The operations are sendInstance for mes-
sage passing, getInstanceSlot for slot access,
and setSlotInstance for slot update. This Sec.
defines the MOP for Delegator.

Message passing in roles is defined as follows:

c o n t e x t Delegator
@Operation sendInstance(target ,message ,
args)
// A new MOP for Delegator that uses '
findOp ' to
// override the default inheritance -
based lookup
// mechanism to use delegation
relatinships ...
self.findOp(message ,args.size(),target
,
@Operation(op ,target ,redelegate)

i f op <> n u l l
then

i f op.hasProperty (" redelegates ")
then op.invoke(target ,args.

prepend(redelegate))
e l s e op.invoke(target ,args)
end

e l s e super(target ,message ,args)
end

end)
end

Delegator::sendInstance uses findOp to get the
operation. If one exists then it is invoked otherwise
super is used to continue the operation lookup.
Where an operation exists, it is checked to see if it
has been tagged with redelegates. In that case,
it must have been defined using the DelegatorOp
syntax construct (see next Sect. 5.2.6) and is

expecting a special operation called redelegate
as the first argument. The re-delegation argument
will continue the delegation lookup as described
below.

In order to support operation lookup for roles,
the operation findOp is redefined as follows:

c o n t e x t Delegator
@Operation findOp(name ,arity ,tgt ,cont)
super(name ,arity ,tgt ,@Operation(op,tgt
,ignore)

i f op <> n u l l

then
cont(op,tgt ,
@Operation ()
delegatesTo.findOp(name ,arity ,

tgt ,cont)
end)

e l s e delegatesTo.findOp(name ,arity ,
tgt ,cont)

end
end)

end

The operation Delegator::findOp uses super to
allow the normal rules of inheritance to find the
operation. If this fails then the operation is selected
by sending a findOpmessage to the delegatesTo
class. In doing so, the value of target (eventually
supplied as the value of self when an operation
is invoked) is maintained. If an operation is found
then it is supplied to the cont operation along with
an operation used as the value of redelegate. The
re-delegate operation continues the delegation by
sending the delegatesTo class a findOpmessage,
but note that the target is changed to target.
delegatee so that the value of self used in any
operation invoked by the re-delegation is localized.

Slot access in roles is defined as follows:

c o n t e x t Delegator
@Operation getInstanceSlot(target ,name)
// If the slot exists in the object
then just
// return the value ...
i f hasInstanceSlot(target ,name)
then super(target ,name)
e l s e
// The object delegated to may have

the slot ...
target.delegatesTo.get(name)

end
end

Delegator::getInstanceSlot uses the method
hasInstanceSlot to check whether the object has
local storage for the slot that has been requested.
If so then super is used to access the slot in the
normal way. Otherwise, the protocol delegates
the access to the delegatee. The MOP for slot
access is transitive providing that delegatees are
instances of Delegator.

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 33

Slot update is defined in a similar way:

c o n t e x t Delegator
@Operation setInstanceSlot(target ,name ,
value)
i f hasInstanceSlot(target ,name)
then super(target ,name ,value)
e l s e target.delegatee.set(name ,value)
end

end

5.2.6 Delegator operations
Delegator operations are tagged so that they can be
supplied with an additional first argument called
delegates. This is achieved in XModeler using
a new syntax construct called DelegatorOp. New
constructs are defined by syntax classes whose
grammar is responsible for processing the new
syntax and synthesizing a performable XOCL ob-
ject (see Sect. 4.2). The syntax class DelegatorOp
is defined below:

c o n t e x t Root
@Class DelegatorOp e x t e n d s Sugar
// The following a syntax properties
of a
// delegator operation ...
@Attribute name : String
end
@Attribute args : Seq(OCL:: Pattern)
end
@Attribute body : Performable
end
@Attribute type : Performable
end
@Constructor(name ,args ,body ,type) !
end
// The following grammar defines
translation
// rules from text into an instance of
the
// DelegatorOp class ...
@Grammar e x t e n d s OCL::OCL.grammar
DelegatorOp ::=
n = Name '('
as = DelegatorArgs ')'
t = DelegatorOptType e=Exp 'end '
{ DelegatorOp(n,as,t,e) }

DelegatorArgs ::=
n = DelegatorArg
ns = (',' DelegatorArg)*
{ [Varp(" delegates "),n] + ns }

DelegatorArgs ::=
{ [Varp(" delegates ")] }.

DelegatorArg ::=
n = Name
{ Varp(n) }.

DelegatorOptType ::=
':' Exp

| { [| Element |] }.
end
// A class that extends Sugar must
define a
// desugar () operation that translates
into
// existing syntax classes ...
@Operation desugar ()

l e t op = Operation(name ,args ,body ,
type)

i n [| <op >. setProperty (" delegates",
true) |]

end
end

end

The DelegatorOp grammar processes text of a
delegator-operation and produces a DelegatorOp
instance. Since DelegatorOp is defined as a

subclass of Sugar, the XModeler language pro-
cessor transforms a delegator-operation into exe-
cutable code by calling desugar. The definition
of desugar given above returns an expression
that constructs the required operation and adds a
property to it.

Having defined the delegator-operation syntax
construct we conclude with the definition of
delegatesArity that must check whether the
property exists on an operation in order to ignore
the additional pseudo argument:

c o n t e x t Operation
@Operation delegatesArity ():Integer

i f self.hasProperty (" delegates ")
then self.arity() - 1
e l s e self.arity()
end

end

5.2.7 Preventing cyclic delegation
To prevent cycles in delegation (SR.10), a con-
straint is put on Class. This constraint also checks
for cyclic inheritance.

c o n t e x t Class
@Constraint NoCyclicInheritance
@Letrec hasParent(child: Class):
Boolean =
child.parents→ includes(self)

o r e l s e

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

34 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

child.parents→ exists(p | hasParent(
p)) o r e l s e
child.delegatesTo = self

o r e l s e
((not child.delegatesTo = n u l l)

andthen
hasParent(child.delegatesTo))

i n
no t hasParent(self)

end
fail self.toString () + " has circular
inheritance"

end

5.3 Comparison of the Implementation
Alternatives

Delegation is an important modelling approach
that is orthogonal to related approaches involving
inheritance and specialization. As such, we have
proposed that delegation should be supported us-
ing a dedicated language feature with associated
semantics that clearly defines how structure and
behavior are affected by the delegation relationship
between two classes. This article has proposed
operational semantics for delegation and offered
two alternatives: Sect. 5.1 uses a message failure
mechanism to dynamically re-target messages and
Sect. 5.2 uses a meta-object protocol (MOP) to
define an interface that handles references to both
structure and behavior.

Redirecting messages using a failure mecha-
nism has a number of limitations. It waits until
all other lookup mechanisms have been exhausted
and lead to an error being signalled. Since the
error signalling mechanism is implemented in
terms of a message, the handler can be redefined.
However, there is little control over what has hap-
pened before the error is signalled and therefore
it is not possible to allow delegation to take pri-
ority over other mechanisms such as inheritance.
Furthermore, defining the operational semantics
of delegation through error handling means that it
is not possible to merge inheritance-based lookup
with delegation-based lookup. The benefit of an
error-based operational semantics for delegation
is that it is easy to implement: an error message
handler is redefined in those cases that a class
supports delegation.

A MOP-based implementation of delegation
requires an interface of operations to be defined
that influences how state and operation references
are performed. This approach is more flexible
since, unlike the error-handling version described
above, it is performed at the start of the lookup
process and can take into account all the available
information including delegation and inheritance
relationships. A MOP typically exposes a col-
lection of meta-operations that can be used to
systematically influence the operational semantics
of the underlying language. Although this will
vary from language to language, it is likely to be
more expressive than an error-based approach and
is demonstrated in this article by showing how an
MOP can be used to handle state and structure ref-
erences. An obvious area for further investigation
is how to use an MOP to combine multiple types
of relationships (delegation and inheritance, for
example).

Any modification to the lookup mechanism of
a language will influence the efficiency of execu-
tion to some extent if we assume the presence of
dynamic typing. An error-based approach must
exhaust all possible ways of satisfying the lookup
request before raising an error and thereby pro-
viding an opportunity for the new type of lookup
(in this case delegation) to take control. A MOP-
based approach is likely to be more efficient since
it can circumvent all default lookup mechanisms
at the expense of an extra test at the point of the
lookup request to determine which MOP to use.
In general, such a test should incur a very small
overhead.

In the case of statically typed languages, perfor-
mance is favoured by the error-handling mecha-
nism. This is because the type system can verify
the correctness of a reference and insert the appro-
priate code to call the error handler.

It is not clear whether a MOP-based approach
can be integrated with static typing in order to
influence its efficiency since much of the power
of a MOP relies on runtime tests. However, some
work can be achieved statically which relies on
a type system being aware of meta-types and
the MOP operations so that slot reference via

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 35

'.' is type-checked with respect to the meta-
type of the object and can statically insert the
appropriate lookup code. Some research that aims
to integrate MOPs with static typing systems has
been conducted by Clark (2016).

In summary, as Tab. 3 shows, there is a trade-off
between the two extreme approaches demonstrated
in this article. The error-based approach is much
less flexible than the MOP-based approach and
should be used where it is known that additional
flexibility is not required. Efficiency concerns
should also be taken into account, especially in
dynamically typed languages, where the MOP-
based approach is likely to have an advantage.

5.4 Tool Support for Delegation
When it comes to the usage of delegation at run-
time, it is important to keep in mind that a new
delegator instance will only be completely initial-
ized after a corresponding delegatee instance has
been assigned to its delegatee slot. In interac-
tive environments, with human users creating role
instances via graphical user interfaces (GUIs), it
is thus required to provide interactive support to
select or create the appropriate delegatee for newly
instantiated delegators. In the XModelerML, inter-
active support for this is achieved by modifying
the instantiation mechanism. If a new instance of
a delegator class is created, the modified new()
method checks at first, whether instances of the
corresponding delegatee class exist. If that is
the case, the user is offered a selection list from
which one of these instances can be selected to act
as delegatee for the new instance. The selected
object is then assigned to the instance variable
delegatee within the previously created delega-
tor object. If there is no available instance of the
required delegatee class in the system, a dialog
is shown that informs the user that an instance
of the delegatee class is required. The user can
then decide whether to roll back the instantiation,
or whether a new instance of the delegatee class
should be created, which would then be linked to
the delegator object.

Fig. 19 shows the diagram editor of the
XModelerML. The screenshot shows a multi-level

diagram containing classes and objects on levels
M1 and M0. Following a part of the example
in Fig. 5, two classes have been created. One of
them, Employee, delegates to the other, Person.
Three objects of Person have also been created.
When the user now creates a new Employee object,
delegation demands that an object of Person is
supplied to ensure that the new Employee object
has a target to delegate to. This is handled via the
displayed selection dialog in the above-described
way.

6 Related Work
The concept of delegation is discussed with mul-
tiple facets in the existing body of scientific lit-
erature. Several approaches examine the notion
of delegation exclusively on a conceptual level
and in the context of conceptual modeling (Chu
and Zhang 1997; Gamma et al. 1994; Lieberman
1986; Steimann 2000a,b; Stein 1987).

An additional perspective is taken in when del-
egation is understood as a tool for software mod-
eling and system construction (Jäkel 2017; Kühn
et al. 2014; Leuthäuser and Aßmann 2015; Riehle
2000), which is also the primary perspective from
which our work looks on delegation.

Delegation and roles also appear as constructs in
programming languages. Several different options
for realizing their formal semantics are explored
with the help of programming language imple-
mentations (Dony et al. 1998; Prototype-Based
Programming 2001; Stefik and Bobrow 1986;
Zivkovic and Karagiannis 2016).

A number of representatives from each of the
aforementioned categories are discussed in the
upcoming sub-Sect.s.

One should be aware that, as the term “dele-
gation” is used in a wide variety of works, there
is no unified understanding of it. This holds true
also for the notion of the relationship between
delegation and the use of roles. Some approaches
regard delegation and the use of roles as inherently
connected to each other, like also our approach
does. For others, delegation is a kind of relation-
ship between objects and their classes, which does
not require to talk about the notion of roles.

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

36 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

Table 3: Comparison of the implementation alternatives

Implementation Message Failure (see Sect. 5.1) Meta-Object Protocol (see Sect. 5.2)
Ease of
modification

+O high, regular programming con-
structs are used

-O low, internal language execution
mechanism is modified

Flexibility -O low, conditions under which a mes-
sage failure is thrown cannot be con-
trolled

+O high, fine-grained control over pri-
orities among inheritance, delegation,
re-definitions

Performance -O low, exception handling mechanism
adds overhead

+O high, integrates with existing method
lookup mechanism without additional
overhead

Figure 19: Dialog shown on instantiation of a role

6.1 Conceptualizations of Roles and
Delegation

Early conceptualisations of delegation have been
proposed in Lieberman (1986). In that work,
essential philosophical distinctions are made be-
tween a knowledge representation approach based
on classes, and one based on prototypes that can
make use of delegation. The term “delegation”
appears to first have been introduced in that work

as a concept for software architecture specifica-
tion. However, delegation is solely discussed as
a design element for class-less, prototype-based
languages.

A fundamental difference in how roles are un-
derstood can be noticed with regard to the question
whether roles are considered to be independent
entities of their own kind, i. e., whether they have
their own identity, or whether roles are understood
as to be taken in by objects, i. e., they represent

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 37

modes of operation that objects can have. An un-
derstanding of roles as first-class concepts in their
own right is suggested by Chu and Zhang (1997),
which argues for incorporating the language el-
ements “role” and “association” into the set of
object oriented system design metaphors, together
with classes, attributes, and references. This ap-
proach is contrary to our conceptualisation, which
uses the delegation relationship as additional lan-
guage element to constitute the use of classes as
role classes and / or role filler classes. The rela-
tionship between roles and their “players”, which
is how role fillers are called in Chu and Zhang
(1997), is not discussed in-depth in that work,
because the examination primarily focuses on the
use of roles as participants in associations. Also,
realization options for implementing delegation
in programming languages are not mentioned.

6.2 Roles and Delegation in Conceptual
Modeling

A proposal for conceptualising delegation as part
of object-oriented languages is given in Frank
(2000). That work explains the semantics of
delegation according to our approach, using fun-
damental terms such as “role” and “role filler”. It
can thus be regarded as one foundational prede-
cessor of this article. Sketches for implementing
delegation both as part of a modeling language, as
well as in the programming language Smalltalk,
are included as well.

A special focus on delegation is taken in when
understanding it primarily as a mechanism for
encapsulation and reuse. This brings delegation
close to the notion of inheritance and leads to the
question how both compare to each other. Ac-
cordingly, Selic et al. (1994), Stein (1987), and
Strahringer (1998) and others examine the specific
relationship between delegation and inheritance,
and come to the conclusion that delegation is
semantically overlapping with inheritance and al-
lows to reflect all features offered by inheritance as
well. As our analyses have shown, this view does
not account for the complete picture, because with
respect to expressing common characteristics of a
group of objects, abstract classes offer additional

expressiveness and allow polymorphic constructs
which cannot fully be reflected by delegation (see
Sect.s 2.2 and 3.1).

Cook (1989, 1992) and Cook et al. (nodate)
also examine options for achieving reusability of
behavior definitions, and state that “Inheritance
Is Not Subtyping” (Cook et al. nodate). Most
programming languages, the type-safe ones in par-
ticular, define inheritance in a way that it satisfies
subtyping. While the motivation of subtyping
is to ensure substitutability among classes, the
definition of inheritance in Cook et al. (nodate)
is a concept which supports the reuse of imple-
mented functionality. The latter definition broadly
matches our definition of delegation. The use of
one concept to satisfy both motivations, as many
programming languages do, likely leads to incon-
sistencies, mostly around co- or contravariance
issues. Consider natural and rational numbers for
instance. With a focus on substitutability the nat-
ural numbers can be used where rational numbers
are demanded, so the natural numbers were a sub-
class of rational numbers. With a focus on code
reusability, the operations of the natural numbers
are reused by the rational numbers, so the rationals
were the subclass.

Riehle (2000) has a different view on delegation.
That work examines ways to construct system
behavior out of independently defined parts, and
regards delegation as an alternative mechanism
to inheritance for composing system behavior out
of separately defined elements. In contrast to our
approach, a class can be explicitly defined as being
able to fill a role. Whereas in our approach a class
is not aware of its delegatee qualities, comparable
to a superclass not being aware of its subclasses.
In our approach a delegator is like a conventional
class, but requires a delegatee. This allows the
delegatee to temporarily act as the delegator, which
would not be possible with inheritance where
such changes over time are not possible. The
approach of Riehle (2000), on the contrary, has an
inverted direction of dependency. There, a class
can be composed of roles without possibilities for
any temporal variation. This approach therefore
clearly misses out on requirement DR 5. Instead,

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

38 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

the motivation is to use inheritance to add the
description of properties to classes, and roles to
add the description of behavior.

In Steimann (2000a,b), the idea of objects play-
ing roles is promoted in the context of a general ex-
amination on object collaboration, polymorphism,
and substitutability. Those elaborations accord-
ingly conceptualize roles as individual entities.
An extensive contribution about the conceptual-
ization, application and implementation of roles is
provided by Steimann (2000a), where a synthesis
of diverse role conceptualizations that are present
throughout the related literature is suggested. An
essential standpoint of this work is that roles nec-
essarily represent an orthogonal modeling concept
with a meta-type of its own, and that “an undif-
ferentiated combination of roles and natural types
in one substitution hierarchy almost necessarily
leads to a certain randomness of design, and to
confusion of the viewer” (translated from German)
(Steimann 2000a, p. 79). As part of its elaboration,
Steimann (2000a) identifies a set of characteristics
that describe the notion of roles represented by
that work. Among them are, e. g., “A role comes
with its own properties and behavior”, “An ob-
ject may play different roles simultaneously”, and
“Roles can play Roles” (Jäkel 2017). The notions
expressed with these characteristics widely resem-
ble the understanding of roles as it is present in
our work.

An additional aspect is added to the understand-
ing of roles by Kühn et al. (2014). That approach
understands roles as concepts that come into exis-
tence not only when being played by objects, but
additionally by being embedded into a context that
provides structure and gives meaning to the role.
Without this context, called “compartment” in
Kühn et al. (2014), the role remains meaningless.
An example is the context of a “university”, which
is constitutive for the roles of “professors” and
“students”. These roles require to be located in the
context of “university”, in order to be reasonably
played by acting entities.

In our approach, we do not regard it as neces-
sary to consider the context explicitly, because a

sensible definition of a role will necessarily im-
ply domain relations to contextual elements, in
order to define the role’s purpose in the domain
of discourse.

6.3 Roles and Delegation in Software
Modeling

Szyperski et al. (2002) also studies differences and
commonalities among delegation and inheritance,
with a strong focus on the consequences that arise
for the implementation of object behavior. The
work differentiates between interface inheritance,
which allows for substitutability of superclasses
by subclasses, and implementation inheritance,
which allows to reuse behavior definitions of su-
perclasses by objects that instantiate a subclass.
Like other representatives of scientific work on
delegation, Szyperski et al. (2002) comes to the
conclusion that “object composition shares several
of the often quoted advantages of implementation
inheritance” (Szyperski et al. 2002, p. 133). To fur-
ther differentiate between implementation inheri-
tance and message forwarding, dynamic aspects of
object composition are investigated in detail. Es-
pecially the fact that implementation inheritance
jeopardizes the predictability of program control
flow when objects invoke methods of their own
class that have been overwritten by subclasses is
considered a serious problem. On the one hand,
it is typical for the implementation of object be-
havior that methods that belong to the same class
invoke each other, which allows to decompose ob-
ject behavior in a structural way to make it better
understandable. On the other hand, the resulting
network of self-reflexive, re-entrant method in-
vocations becomes incontrollably complex when
individual methods are overwritten by subclass
definitions, which even may branch back into the
original “super”-implementation of methods in or-
der to compose their new behavior. Unforeseeable
recursions can be the result of this. As Szyper-
ski et al. (2002) concludes, this danger emerges
from the availability of a “common self” when
implementation inheritance is used. In contrast
to this, composed objects that invoke each other

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 39

without implementation inheritance avoid the dan-
ger of uncontrollable recursion. As a conclusion,
the work summarizes that “[t]he combination of
object composition and forwarding comes fairly
close to what is achieved by implementation in-
heritance. However, it does not get so close that
it also has the disadvantages of implementation
inheritance” (Szyperski et al. 2002, p. 134). This
notion of “object composition and forwarding” re-
sembles what most representatives of the scientific
literature, as well as this article, call delegation.
Delegation in the sense of Szyperski et al. (2002)
extends this idea of message forwarding by intro-
ducing an option for using a “common self” in
combination with message forwarding, however,
not without mentioning that this can make “object
composition as problematical as implementation
inheritance” (Szyperski et al. 2002, p. 135).

Jäkel (2017) applies the concept of roles to
database modeling and data management. During
the discussion of foundations, the work points out
that, according to Kühn et al. (2014), there are
three perspectives from which role conceptualiza-
tions can be categorized. These are the relational
perspective (“different entities interact with each
other or are connected by using roles”), the struc-
tural and behavioral perspective (attributes and
methods can flexibly be assigned to entities during
runtime), and the context-dependent perspective
(“roles are utilized to describe context dependent
features of entities”) (Jäkel 2017, p. 14). Each
combination of perspectives is discussed on the
background of existing approaches that represent
this combination. Our approach covers all three
perspectives. Taking also the compositional per-
spective of Riehle (2000) into account, the set
of four perspectives spans a conceptual frame-
work by which the conceptualizations of roles and
delegation of each publication can be categorized.

Another option to incorporate roles into exe-
cutable software is to offer integrated modeling
and implementation perspectives onto roles and
delegation relationships that are inherently con-
sistent with each other. The XModelerML(see
Sect. 4.1) allows to represent alternative views
onto the same internal representations of roles

and delegation relationship declarations. Thus it
allows to specify roles in models, which are at
the same time internally represented as executable
program constructs, without the need for explicit
code generation from the model. This inherently
prevents inconsistencies between the specification
of roles and their implementation through the
shared representation.

Consistency between the declaration of roles
and delegation relationships in a conceptual model,
and their realizations as part of a running software-
system, is an important prerequisite to apply the
concepts of roles and delegation to software devel-
opment. If roles and delegation relationships are
specified using a conceptual modeling language
with suitable tool support, there are two basic op-
tions for deriving corresponding implementations.
One option is to make use of a shared repre-
sentation of the model and internally executable
language elements, as in XModelerML(see above).
Another way is to apply code generation tech-
niques that generate implementation code, poten-
tially for multiple target programming languages.
In the case of using code generation, the correct
implementation of declared roles and delegations
depends on the correctness of the according code
generation templates. Kühn (2017) provides a
modeling language for conceptualizing roles, to-
gether with a corresponding modeling tool. For
making the created models executable, the model-
ing tool encompasses a number of code generators.
One code generator is especially worth mention-
ing as it generates source in SCROLL (SCala
ROLes Language) (Leuthäuser 2015; Leuthäuser
and Aßmann 2015) (see 6.4.1).

6.4 Roles and Delegation in Programming
Languages

While prevalent programming languages usually
do not support delegation, research has produced
various programming languages that offer con-
cepts such as roles or delegation.

6.4.1 Role-based programming languages
Role-based programming languages provide lan-
guage constructs as first-class citizens for declar-
ing roles and their use in object-oriented programs.

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

40 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

SCROLL (Leuthäuser 2015; Leuthäuser and
Aßmann 2015) is implemented in Scala (Odersky
et al. 2016) and provides dedicated support for
roles. Despite being a statically typed language,
Scala allows for dynamic message dispatching.
SCROLL utilizes this for implementing a message
dispatching similar to our conception of delegation.
In SCROLL an object may have roles, which
can be activated during runtime. While a role
is active, the object’s behaviour changes, like
a person changes his / her style of talking once
stepping on a stage. E. g., when a Person object
is asked to talk(), the runtime engine recognises
the person being in the compartment (Kühn et al.
2014) Stage and invokes the talk() operation of the
Actor role. However, in contrast to our approach,
there is no separate Actor object with its own
identity in that approach. When using delegation
in the way proposed by our work, both delegator
and delegatee have their own identity.

JAWIRO (Java with Roles) (Selçuk and Erdoğan
2004, 2006) is an extension to the Java language.
It shares some requirements with our approach,
amongst others that delegatees can be delegators
themselves in another relation (SR9), and that the
relationships between delegators and delegatees
may change during their lifetime (DR5). JAWIRO
strongly focuses on implementation and on run-
time efficiency, whereas our approach focuses on
a clean conceptual representation to reconstruct
natural language domains. To support JAWIRO’s
focus on efficiency, much of the role related im-
plementation needs to be added manually each
time the concept is used, whereas our approach
simplifies the implementation by having delega-
tion built in as a base concept of the programming
language.

Another Java-based language which operates
with the notion of roles is Object Teams (Her-
rmann 2003). In Object Teams, roles appear
solely as means for modularization, without any
delegation involved. In the center of the approach
lies the extension of the notion of a package to the
notion of a team. While packages in Java provide
merely a grouping of classes that affects the visibil-
ity of internal class members among the classes in

the same package, the semantics of teams allows
for a more powerful control over members in the
team, and it provides an abstraction over the idea of
a collaboration among objects, by allowing teams
to have their own states and behavior. Objects
in teams are defined by roles which are classes
defined inside the team. Roles can be attached to
regular classes using the playedBy keyword. The
semantics of a role being attached to a class is that
it modifies selected aspects of the class’s behavior,
using mechanisms known from aspect-oriented
programming (see Sect. 6.4.4). In this sense, roles
in Object Teams can be understood as bundles
of modifications to class behavior which each are
defined as aspects of the modified class. Roles are
collections of aspect-oriented modifications that
influence the behavior of role instances in a team.
This notion of roles is significantly different from
most other approaches that use the same term,
including ours. At first, this is because the notion
of roles is not interrelated to a conceptualizaiton
of delegation at all. Secondly, attaching roles to
classes is performed on the type-level and happens
at build time, which prevents the notion of a role
from dynamically reflecting aspects of an object’s
lifecycle.

A role-based extension to Java is also provided
by PowerJava (Baldoni et al. 2006). As in Ob-
ject Teams, PowerJava understands roles as
constituting parts of a surrounding context, this
time called “institution”. Also, the language exten-
sion mechanism that is provided for role support
exclusively operates on the type-level by extending
the original Java semantics with a sort of poly-
morphic method dispatcher that can branch into
different implementations of a method depending
on the type with which an object is used (Baldoni
et al. 2006). Like Object Teams, PowerJava
thus exclusively uses roles as structural declaration
elements. In PowerJava, the focus primarily
lies on providing more fine-grained declaration
elements for an object-oriented type system, while
in Object Teams, the abstraction of a collab-
oration is at the forefront of the intentions be-
hind the language. A few commonalities with
our approach are found on the implementation

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 41

level when it comes to role-dependent method dis-
patching. Conceptually, the previously discussed
approaches widely differ from our approach, as
well as from any approach which incorporates a
notion of role-lifecycles and dynamic assignment
of roles, and regards roles as conceptual elements
to constitute an overall notion of delegation.

6.4.2 Prototype-based languages
Delegation principles are not only considered in
combination with role-based approaches, but are
also used as a foundational abstraction mecha-
nism of prototype-based languages (Lieberman
1986). Such languages provide an object-oriented
view on systems without relying on the notion of
classes as constituents for the existence of objects,
while ensuring a level of semantic expressiveness
equal to class-based languages (Prototype-Based
Programming 2001). In programming languages
that make use of classes, inheritance can serve
as a language-inherent abstraction mechanism for
encapsulating and re-using object behavior that ad-
dresses general aspects of a group of objects. This
mechanism is not available in prototype-based
languages, in which groups of objects with com-
mon characteristics are created as instances that
reference a common prototype object. Method
calls and read-accesses to properties on each of
the individual objects will then be delegated to the
prototype object, if they reference the common
characteristics defined by the prototype. As Dony
et al. (1998) shows, by factoring out common
behavior of a group of objects into such a “super”-
prototype, and delegating method calls to this
commonly shared prototype, the same semantic
expressiveness as provided by inheritance can be
made available in prototype languages.

A prominent representative of prototype-based
languages is JavaScript Flanagan 2011. In
JavaScript, each object owns a reference
prototype to another object, which is evaluated by
the language execution mechanism as the transpar-
ent target for delegation, if methods or properties
are accessed on an object which are not made
available by the object itself. This kind of delega-
tion provided by prototype-based programming

languages does not make use of roles, since the
delegation is intended to happen transparently be-
tween objects. It is thus to a wide extent different
from the delegation approach we follow, which
is intended to provide an explicit means of ab-
straction for delegation relationships in a domain
model.

Bettini et al. (2003) distinguishes between con-
sultation and delegation which differ in their target
of the self-reference, usually named self or this.
In their definition of delegation the self-reference
refers to the object invoking an operation. This
concept is commonly used by prototype-based
languages as it can be seen as comparable to inher-
itance of operations in class-based languages. For
their definition of consultation, the self-reference
refers to the object which is supplying the op-
eration. The latter concept corresponds to our
definition of delegation.

6.4.3 Distributed programming languages
A special notion of delegation without roles is
realized by distributed programming languages,
i. e., programming languages that allow the devel-
opment of distributed systems based on a location-
transparent language paradigm. A representative
of such a language is Emerald (Raj et al. 1991),
which is a class-less object-oriented language that
also incorporates language mechanisms to deal
with the location and mobility of objects (Black
et al. 1986). Emerald’s language design allows
to expose methods of objects to make them acces-
sible from other objects, independent from where
both objects are physically located in a distributed
system. To realize such a distributed architecture,
the internal mechanisms of the language’s runtime
engine needs to keep track of the location in which
objects reside. Depending on whether accessed
objects are local or remote, the invocation mech-
anism can transparently decide whether a local
method call is realized, or whether a remote invo-
cation via a local proxy is performed. In the latter
case, one could speak of a method being trans-
parently delegated from a local proxy object to a
physically remote object. This kind of delegation
intentionally does not make use of roles, because

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

42 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

it is the very purpose of the language to hide the
internals of the delegation that takes place, in order
to achieve location-transparency. The question
whether an object is actually accessed on a local
system, or an object is playing the role of a proxy
which delegates the actual program behavior to a
remote object, remains transparent from the pro-
grammer. The programmer does not have to take
care of distribution characteristics and thus can
remain in a consistent mindset while developing
scalable applications that can be developed and
tested locally and later transparently be distributed
(Black et al. 1986). On the one hand, this provides
a less error-prone way of developing distributed
systems, because the view taken in on a system
by the programmer is conceptually cleaner and
not interwoven with management functionality to
handle local distribution. On the other hand, this
transparency may lead to unexpected program be-
havior regarding non-functional characteristics of
software systems, especially with respect to perfor-
mance issues caused by slow network connectivity,
or deadlocks that may occur due to dysfunctional
network communication. In distributed program-
ming languages, programmers do not have control
over the mechanisms that handle local distribu-
tion. Because of this implicit nature of role-less
delegation in distributed programming languages,
this use of delegation differs significantly from
role-based delegation approaches, including ours,
which aim at explicating delegation relationships
intentionally.

6.4.4 Aspect-oriented programming
The idea of using aspects (Elrad et al. 2001;
Steimann 2006) for defining program behavior
shares a number of characteristics with delegation
conceptualizations. Aspects represent pieces of
behavior which are defined separately from other
program units, and subsequently are “woven” into
other behavior definitions. This resembles the
idea that at some points, a program’s behavior
should not only consist of definitions made partic-
ularly for one method or function, but in parts the
responsibility for executing the program is shifted

to elements that are factored out of the regular be-
havior definitions. In this sense, responsibility for
behavior execution is “delegated” to aspects. This
approach provides a definition mechanism which
allows to compose behavior flexibly from indepen-
dently declared elements, which is in line with our
conceptualization of delegation, and also resem-
bles fundamental notions by Kühn et al. (2014),
Riehle (2000), and Steimann (2000a) and others.
A difference to our notion of delegation is that
aspects assume a static composition of behavior
at build time, while especially for our approach,
dynamic assignment of behavior during runtime
is important to be able to reflect a range of domain
characteristics which can change over time.

6.4.5 Interfaces, mixins, and traits
The use of interfaces in object-oriented system
specification also shows a number of similarities
with the use of roles. Like roles, interfaces pro-
vide a partial definition of an object’s behavioral
capabilities, rather than demanding for covering
the entire range of an object’s behavioral features.
It is also inherent to the notion of interfaces that
they can be combined to compose the description
of object behavior from several parts that have
originally been defined independently from each
other (Steimann 2001). While these similarities
refer to the capabilities of interfaces and roles to
contribute to an object’s method signature, i. e.,
to the question in which contexts an object can
be used, the question of how this behavior is
implemented, and possibly reused from existing
implementation specifications, is addressed differ-
ently by interfaces and roles. Roles allow to factor
out the description of behavior in the form of
method signatures, and also provide a mechanism
for defining the actual implementation of behavior
separate from class definitions. In addition, they
come with defined semantics on how to include
their behavior into an object’s behavior, e. g., by us-
ing delegation as suggested by approaches as ours.
This aspect of implementation reuse, which is also
stressed by Riehle (2000), constitutes a substantial
difference between interfaces and roles, regarding
roles not only as passive facets through which

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 43

objects can be accessed, but also as elements for
the modularization of behavior specifications.

Mixins (Stefik and Bobrow 1986; Zivkovic and
Karagiannis 2016) are another approach with sim-
ilarities to roles, especially if roles are understood
as means for achieving modularization. Stefik
and Bobrow (1986) describes mixins as “special
classes that bundle up descriptions and are ’mixed
in’ to the supers lists of other classes in order to
systematically modify their behavior”. If a mixin
is added to a class, its features are added to the
class in addition to the features it inherits from
its superclass. Mixins are compositional entities
on a finer level of granularity than classes. They
represent parts of class functionality, that can be
shared among multiple classes, however, they are
not intended to be instantiable classes on their own.
This makes them differ from concpetualizations
of roles which indeed ascribe separate identities
to roles.

Being incomplete entities that cannot exist on
their own is a shared feature between mixins and
roles in delegation. For mixins, however, this
dependency is effective only on the class level at
build time, while delegator in our understanding
additionally require their delegatee objects to be
associated at runtime.

There are two common options to implement
mixins. On the one hand, languages can treat
mixins like classes to inherit from them. On the
other hand, in languages such as Ruby (Flanagan
and Matsumoto 2008; Ruby Programming Lan-
guage nodate) or Scala (Leuthäuser and Aßmann
2015), mixins are independent language concepts
that can be included as bundles of functionality.
In either case, a mixin is not instantiated by its
own, but only as a part of the class it has been
added to (Stefik and Bobrow 1986).

Besides mixins, traits are yet a further option
for enhancing a class with functionality. Schärli
et al. (2003) defines a trait as a “set of methods
that implement [...] behavior”. Traits are thus a
special form of mixins. They are also inserted as
a bundle of functionality into a class, but traits
are not self-contained. When they are inserted,
they need to be parametrized with behavioral or

structural features of the containing class. Both
the concepts of mixins and traits appear in various
forms in the literature. To achieve a more precise
understanding of the terms, further research is
required.

The Java based programming language
Groovy (Knig et al. 2015) uses traits. Similar to
our approach method invocations are delegated,
in this case from a class to a trait. The trait can
have fields and therefore have a state. In contrast
to our approach, the trait does not have a separate
identity like a delegatee. It is part of the delegating
class and cannot exist without it. Any dynamic
changes to the delegation relation are impossible
without an identity.

6.4.6 Delegation versus inheritance in
object-oriented programming
languages

Orrù et al. (2015) and Tempero et al. (2013) con-
ducted an empirical study on the usage of inheri-
tance in object-oriented programming languages.
They examined open source code from various
projects written in Java and Python and tried to
decide what the motivation behind making use of
the inheritance relation was. A significant number
of cases was found where inheritance should better
be replaced by, e. g., composition. Bloch (2008)
defines composition as having a field pointing to
an object of the class where reused functionality
comes from. This approach resembles our dele-
gation pattern, albeit it is not built-in and needs
wrappers to be added manually.

More recent object-oriented programming lan-
guages, such as Rust (Matsakis and Klock 2014)
and Go (Donovan and Kernighan 2015), do not
make use of classes, but rather allow to define
types as compositions of other types. As a conse-
quence, they also do not make use of the notion of
inheritance, but instead provide advanced means
for interface composition.

The development of Rust was mainly moti-
vated by the wish to overcome deficiencies of
the C and C++ languages, while still targeting
a low-level, hardware-related execution environ-
ment. In the first place, this means that Rust,

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

44 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

like C and C++, is a language which compiles
to hardware-dependent machine code, but it pro-
vides a safe memory management by default which
avoids typical problems such as buffer overruns
and dangling pointers. Besides such general im-
provements, Rust also offers a type abstraction
system which makes use of traits as fundamental
abstractions to factor out structural and behavioral
commonalities from individual types to common
descriptions over a group of types (Matsakis and
Klock 2014).

As part of its traits implementation mechanism,
the Rust compiler is able to handle type poly-
morphism in two equivalent, but fundamentally
different implemented, ways. At first, it can com-
pile various versions of operations for different
concrete types in parallel, which realizes a zero
abstraction overhead for the generated code. Alter-
natively, operations can be compiled as accessing
traits generically, which requires to offer a dy-
namic mode of accessing them via an indirection
mechanism that resembles one form of delega-
tion (Turon 2015). Here, delegation is used as
an internal implementation alternative to static
composition of behavior, in order to implement
higher-level type abstractions. This kind of del-
egation does not become visible to the user of
the programming language and is not expressed
explicitly by the programming language.

One could argue that an understanding of
delegation in this sense represents the starting
point of a continuum, which ranges from entirely
implementation-driven approaches that boil down
to dynamically resolving a function address ref-
erence, to fully conceptually driven approaches
which understand delegation and related concepts
as description means to express concepts of a
domain. Our approach resides at the latter end of
this continuum.

In Go, as another example, a type can be de-
fined by specifying a structure with attributes and
methods in a traditional way, and in addition, by
embedding other types into the type definition.
This way, all characteristics of embedded types
are made available to the embedding type as well,
which allows the embedding type to be composed

of any number of existing types. In the termi-
nology of the Go language specification, this is
achieved by promoting the characteristics of em-
bedded types to the embedding type (Donovan
and Kernighan 2015). In other words, accesses
to attributes and methods that are not declared
as individual members of an embedding type are
transparently delegated to embedded types. This
notion of delegation also does not rest upon the
use of roles, it does not even demand for the
declaration of interfaces for the embedded types
(interfaces are never explicitly declared in Go,
every type that implements the methods of an
interface is automatically treated as being able to
satisfy that interface).

Like in Rust, the use of delegation in Go thus
also is restricted to internal language processing
mechanisms, and rather serves implementation
purposes than provides meta-concepts for describ-
ing object-oriented systems. While from the point
of view of our approach this represents the other
side of the conceptual continuum mentioned above,
it seems reasonable to incorporate these imple-
mentation mechanisms into a comprehensive ex-
amination of delegation approaches, to cover the
full spectrum of conceptual notions around the
term “delegation”.

6.5 Delegation as Design Pattern
A view which mostly focuses on constructive as-
pects of designing systems comes into play by sug-
gesting the use of delegation as a design pattern for
system construction. Gamma et al. (1994) discuss
the use of the delegation pattern specifically to
promote this aspect. In their collection of design
patterns, delegation is incorporated, but merely
reduced to a mechanism for replacing missing
inheritance semantics. While delegation is indeed
capable of partially replacing the inheritance se-
mantics as discussed in Sect.s 2.2 and 3.1, the
narrow perspective of Gamma et al. (1994) does
not fully account for the conceptual capabilities
of letting objects play the role of other ones, inter-
changeable at runtime. In addition to mentioning
delegation as “a way of making composition as
powerful for reuse as inheritance” (Gamma et al.

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 45

1994, p. 31), Gamma et al. propose two patterns,
“Proxy” and “Chain of Responsibility” that rec-
ommend transparent message forwarding similar
to delegation. However, both patterns are mainly
intended for certain technical purposes and lack a
conceptual foundation comparable to delegation.

A special case of using delegation between
objects is the use of the “Builder” pattern (Gamma
et al. 1994). A Builder is an object which serves
to instantiate other objects, comparable to the
“Factory” design pattern (Gamma et al. 1994). It
is mostly used in cases when objects are created
that demand for a complex configuration to be
fully instantiated, for example, a large number
of attributes that need to be set before the object
can be used. Instead of creating such objects
directly by instantiating their class and then set
the attributes as desired, using a separate Builder
object allows to first configure all attributes, and
then create the desired object and internally pass all
previously set attributes to that object. A Builder
thus provides a kind of deferred delegation: the
Builder manages all required attributes and allows
to set them in a way similar to setting them directly
on the object to be built. But instead of providing
functionality that processes these attributes, they
are stored for the purpose of passing them on to a
new object to be built. In this sense, the Builder
serves as a temporary memory of the configuration
of objects, and delegates the configuration is has
received to new objects. Besides a temporal
decoupling of the configuration process of an
object and its instantiation, this pattern also allows
to apply the same configuration to multiple object
instances, thus to create any number of objects
that are equally configured, while the Builder
only needs to be configured once. This use of
delegation is different from our proposed approach,
not only because it operates without the notion of
roles, but because it intentionally mirrors object
characteristics for the purpose of providing proxy
capabilities that allow the Builder to act as a
placeholder for objects that are created at a later
point in time.

7 Conclusions and Future Work

The presented work has conceptualized a notion of
delegation that extends the existing set of language
elements for object-oriented system design and im-
plementation. We have discussed various options
for realizing delegation in object-oriented specifi-
cations, and have compared the use of delegation to
the use of inheritance. It satisfies all requirements
presented in Sect. 2.3. With a list of guidelines
for using delegation, the article contributes to its
practical application, and to a pragmatic under-
standing of delegation as one additional means of
expression for describing object-oriented systems.
By providing two alternative implementations of
delegation in the XModeler language engineer-
ing environment, prototypes have been created,
which exemplify the potential of delegation both
as a modeling construct and as part of an underly-
ing object-oriented programming language. With
these implementations available, our aim to pro-
vide a language framework for delegation within
which the different approaches can be constructed,
analyzed and compared, is fulfilled.

Note that the current implementation in the
XModeler accounts for all aspects of the spec-
ification. Out of the two implementations we
presented in this paper, we decided for the one
where “self” refers to the delegator object, because
it is more appropriate from a conceptual point of
view. Also, the implementation in the XModel-
erML does not support the optional requirement
SR3 (and, as a consequence, DR5), because in
most cases it is more appropriate to restrict the
number of simultaneous delegatee objects to one.
As a consequence of DR3 delegation to class
(MR2) is not included in the current version of
the XModeler . Its implementation would, how-
ever, be straightforward using the already existing
implementation of delegation between objects at
the same level.

The elaborations in this article provide the foun-
dation for diverse further directions of research.
The realization available so far is based on a dy-
namically typed programming language with type-
checking at runtime only. Integrating delegation

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

46 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

semantics into the grammar of a statically typed
language, i. e., a language that allows for checking
type conformance by validating the source code
at development time, would allow for ensuring
valid assignments of delegatees to delegators at
development time, and could detect ambiguities
and name clashes in signatures, e. g., when the
same method signature is inherited and delegated.
Incorporating these features into a statically typed
language is thus one of the next topics to focus
conceptual research on.

The idea of delegation can be extended from re-
ferring to behavioural features only, to also include
structural features. This means that attributes of
classes can be made accessible via delegation as
well. In such a setting, different modes of opera-
tion can be distinguished, e. g., delegation in cases
when no own attribute declaration is available to
the delegator, or delegation for the purpose of pro-
viding a default value, in cases when an attribute
is empty or has a null value. Questions of encap-
sulation and attribute visibility may additionally
have to be reconsidered when delegation is added
to the available modes of accessing attributes.

The potential use of delegation in multi-level
type systems (Frank 2014) also raises a number
of new research questions. How should delega-
tion across multiple levels of a class hierarchy be
understood, and should it generally be allowed
for in a multi-level type hierarchy? What are
the consequences of combining delegation and
inheritance, and what implications go along with
covariant / contravariant refinements of classes
that stand in relation to other classes via dele-
gation? For example, a class Role1 delegates
to the class Rolefiller1. Class Role1A is a
subclass of Role1. Then Role1A requires a dele-
gatee of class Rolefiller1. Class Role1A could
now be altered to delegate to Rolefiller1A.
What can we say about the relationship between
Rolefiller1 and Rolefiller1A? Would sub-
stitutability require an object of Role1A, which
can act as an object of Role1, to accept any dele-
gatee of Rolefiller1? Such questions are to be
addressed in subsequent work.

To support programming with delegation, re-
flexive language capabilities for introspecting del-
egators, delegatees, and delegated operations, are
yet to be provided. Such functions not only in-
crease the degree of programmatic control over
the delegation mechanism but can rather serve as
debugging instruments when it comes to under-
standing the runtime behaviour of objects that are
involved in delegation relationships.

On the level of modeling pragmatics, implica-
tions for the usability of delegation in modeling
and programming languages need to be exam-
ined. One central question is how to represent
behavioural elements that are made available to a
delegator through a delegation relationship, and,
vice versa, how to indicate by a delegatee, which
elements are intended to be made available via
delegation.

We are convinced that this work substantially
contributes to a wider and more reflected use of
delegation, both in conceptual modeling, as well
as in software engineering, and in particular in
Information Systems. We hope that the presented
results foster a wider use of delegation because it
is clearly suited to improve reuse, flexibility and
integrity of software systems.

The use of delegation is demonstrated in
a screencast at https://le4mm.org/delegation/.
The corresponding models as well as the
XModelerMLare available at https://le4mm.org/
xmodelerml/#download.

References

Ambler S. W. (2004) The object primer : ag-
ile modeling-driven development with UML 2.0,
Third edition.. Cambridge University Press

Ambler S. W. (2005) The elements of UML 2.0
style eng. Cambridge University Press

Atkinson C., Gerbig R. (Jan. 1, 2016) Flexible
Deep Modeling with Melanee. In: Reimer S. B. U.
(ed.) Modellierung 2016, 2.-4. März 2016, Karl-
sruhe – Workshopband Vol. 255. Gesellschaft für
Informatik, pp. 117–122 published

http://dx.doi.org/10.18417/emisa.19.2
https://le4mm.org/delegation/
https://le4mm.org/xmodelerml/ #download
https://le4mm.org/xmodelerml/ #download

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 47

Atkinson C., Kühne T. (2001) The Essense of Mul-
tilevel Metamodeling. In: UML 2001 - The Uni-
fied Modeling Language. Modeling Languages,
Concepts, and Tools. Lecture Notes in Computer
Science Vol. 2185. Springer, pp. 19–33

Atkinson C., Kühne T. (2008) Reducing accidental
complexity in domain models. In: Software &
Systems Modeling 7(3), pp. 345–359

Ayesh A. (2002) Essential UML fast: using SE-
LECT use case tool for rapid applications devel-
opment eng. Springer

Bachman C. W., Daya M. (1997) The Role Concept
in Data Models. In: Proceedings of the Third Inter-
national Conference on Very Large Data Bases -
Volume 3. VLDB ’77. VLDB Endowment, Tokyo,
Japan, pp. 464–476

Baldoni M., Boella G., van der Torre L. (2006)
powerJava: Ontologically Founded Roles in Ob-
ject Oriented Programming Languages. In: Pro-
ceedings of the 2006 ACM Symposium on Ap-
plied Computing. SAC ’06. ACM, Dĳon, France,
pp. 1414–1418

Balzert H. (2011) Lehrbuch der Objektmodel-
lierung: Analyse und Entwurf mit der UML 2 ger,
2. Aufl., Nachdr. Spektrum Akad. Verl.

Bettini L., Capecchi S., Venneri B. (2003) Extend-
ing Java to dynamic object behaviors1 1This work
has been partially supported by EU within the FET
- Global Computing initiative, project AGILE IST-
2001-32747 and by MIUR project NAPOLI. The
funding bodies are not responsible for any use that
might be made of the results presented here. In:
Electronic Notes in Theoretical Computer Science
82(8) WOOD2003, Workshop on Object Oriented
Developments (Satellite Event of ETAPS 2003),
pp. 33–52

Black A. P., Hutchinson N. C., Jul E., Levy H. M.
(1986) Object Structure in the Emerald System. In:
Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’86),
Portland, Oregon, Proceedings., pp. 78–86

Bloch J. (2008) Effective Java (2Nd Edition) (The
Java Series), 2nd ed. Prentice Hall PTR

Cardelli L., Wegner P. (1985) On Understanding
Types, Data Abstraction, and Polymorphism. In:
ACM Comput. Surv. 17(4), pp. 471–523

Chu W. W., Zhang G. (1997) Associations and
roles in object-oriented modeling In: Conceptual
Modeling — ER ’97: 16th International Confer-
ence on Conceptual Modeling Springer, pp. 257–
270

Clark T. (2016) Static meta-object protocols:
towards efficient reflective object-oriented lan-
guages. In: Fuentes L., Batory D. S., Czarnecki K.
(eds.) Companion Proceedings of the 15th Interna-
tional Conference on Modularity, Málaga, Spain,
March 14 - 18, 2016. ACM, pp. 160–167

Clark T., Gonzalez-Perez C., Henderson-Sellers B.
(2014) A foundation for multi-level modelling.
In: Proceedings of the Workshop on Multi-Level
Modelling co-located with ACM/IEEE 17th Inter-
national Conference on Model Driven Engineering
Languages & Systems (MoDELS 2014), Valencia,
Spain, September 28, 2014., pp. 43–52

Clark T., Sammut P., Willans J. (2008a) Ap-
plied Metamodelling: A Foundation for Language
Driven Development

Clark T., Sammut P., Willans J. (2008b) Super-
languages: developing languages and applications
with XMF. Ceteva

Clark T., Willans J. (2012) Software Language
Engineering with XMF and XModeler. In: For-
mal and Practical Aspects of Domain-Specific
Languages: Recent Developments. IGI Global,
pp. 311–340

Coad P., Yourdon E. (1991) Object oriented design
eng. Yourdon Press

Cook W. R. (1989) A Proposal for Making Eiffel
Type-Safe. In: ECOOP ’89: Proceedings of the
Third European Conference on Object-Oriented
Programming, Nottingham, UK, July 10-14, 1989.,
pp. 57–70

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

48 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

Cook W. R. (1992) Interfaces and Specifications
for the Smalltalk-80 Collection Classes. In: Con-
ference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’92),
Seventh Annual Conference, Vancouver, British
Columbia, Canada, October 18-22, 1992, Proceed-
ings., pp. 1–15

Cook W. R., Hill W. L., Canning P. S. (nodate) In-
heritance Is Not Subtyping. In: Conference Record
of the Seventeenth Annual ACM Symposium on
Principles of Programming Languages, San Fran-
cisco, California, USA, January 1990, pp. 125–
135

Donovan A. A., Kernighan B. W. (2015) The Go
Programming Language, 1st ed. Addison-Wesley
Professional

Dony C., Malenfant J., Bardou D. (1998) Classi-
fying Prototype-based Programming Languages.
In: Prototype-based Programming: Concepts, Lan-
guages, and Applications

Elrad T., Filman R. E., Bader A. (2001) Aspect-
oriented Programming: Introduction. In: Commun.
ACM 44(10), pp. 29–32

Embley D. W., Kurtz B. D., Woodfield S. N. (1992)
Object oriented system analysis : a model driven
approach. Yourdon Press

Flanagan D. (2011) JavaScript: The Definitive
Guide, 6th ed. O’Reilly Media

Flanagan D., Matsumoto Y. (2008) The Ruby
Programming Language, 1st ed. O’Reilly

Fowler M., Beck K., Brant J., Opdyke W., Roberts
D., Gamma E. (1999) Refactoring: Improving the
Design of Existing Code English, 1st ed. Addison-
Wesley Professional

Frank U. (2000) Delegation: An Important Con-
cept for the Appropriate Design of Object Mod-
els. In: Journal of Object-Oriented Programming
13(3), pp. 13–18

Frank U. (2014) Multilevel Modeling: Toward
a New Paradigm of Conceptual Modeling and
Information Systems Design. In: Business and
Information Systems Engineering 6(6), pp. 319–
337

Frank U. (2018) The Flexible Modelling and Exe-
cution Language (FMMLx) – Version 2.0: Analy-
sis of Requirements and Technical Terminology

Frank U., Clark T. (2023) Language Engineering
for Multi-Level Modeling (LE4MM): A Long-
Term Project to Promote the Integrated Develop-
ment of Languages, Models and Code. In: Pro-
ceedings of the Research Projects Exhibition at
the 35th International Conference on Advanced
Information Systems Engineering (CAiSE 2023).
CEUR, pp. 97–104

Frank U., Mattei L. L., Clark T., Töpel D. (2022)
Beyond Low Code Platforms: The XModelerML -
an Integrated Multi-Level Modeling and Execu-
tion Environment. In: Proceedings of the Model-
lierung 2022 Satellite Events. GI, pp. 235–244

Gamma E., Helm R., Johnson R., Vlissides J.
(1994) Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Long-
man Publishing Co., Inc.

Guarino N., Carrara M., Giaretta P. (1994) Formal-
izing Ontological Commitments. In: Proceedings
of the Twelfth AAAI National Conference on Arti-
ficial Intelligence. AAAI’94. AAAI Press, Seattle,
Washington, pp. 560–567

Halpin T. (1995) Conceptual schema and relational
database design, 2nd ed. Prentice Hall

Herrmann S. (2003) Object Teams: Improving
Modularity for Crosscutting Collaborations. In:
Aksit M., Mezini M., Unland R. (eds.) Objects,
Components, Architectures, Services, and Appli-
cations for a Networked World. Springer, pp. 248–
264

Jäkel T. (2017) Role-Based Data Management.
PhD thesis, Technischen Universität Dresden

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note) 49

Kappel G., Schrefl M. (1991) Object/behavior
diagrams. In: [1991] Proceedings. Seventh Inter-
national Conference on Data Engineering, pp. 530–
539

Kegel H., Steimann F. (May 2008) Systematically
refactoring inheritance to delegation in java. In:
30th International Conference on Software Engi-
neering (ICSE 2008), pp. 431–440

Kiczales G., Des Rivieres J., Bobrow D. G. (1991)
The art of the metaobject protocol. MIT press

Knig D., King P., Laforge G., D’Arcy H., Cham-
peau C., Pragt E., Skeet J. (2015) Groovy in Action,
2nd ed. Manning Publications Co.

Kühn T. (2017) A Family of Role Modeling Lan-
guages. PhD thesis, Technischen Universität Dres-
den

Kühn T., Leuthäuser M., Götz S., Seidl C., Aß-
mann U. (2014) A Metamodel Family for Role-
Based Modeling and Programming Languages
In: Software Language Engineering: 7th Interna-
tional Conference, SLE 2014, Västerås, Sweden,
September 15-16, 2014. Proceedings Springer,
pp. 141–160

Leuthäuser M. (2015) SCROLL - A Scala-based
library for Roles at Runtime.

Leuthäuser M., Aßmann U. (2015) Enabling View-
based Programming with SCROLL: Using Roles
and Dynamic Dispatch for Etablishing View-based
Programming. In: Proceedings of the 2015 Joint
MORSE/VAO Workshop on Model-Driven Robot
Software Engineering and View-based Software-
Engineering. MORSE/VAO ’15. ACM, L’Aquila,
Italy, pp. 25–33

Lieberman H. (1986) Using Prototypical Objects
to Implement Shared Behavior in Object Ori-
ented Systems. In: Proceedings of the Conference
on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA’86). ACM,
pp. 214–223

Liskov B. H., Wing J. M. (1994) A Behavioral No-
tion of Subtyping. In: ACM Transactions on Pro-
gramming Languages and Systems 16, pp. 1811–
1841

Matsakis N. D., Klock II F. S. (2014) The Rust
Language. In: Ada Lett. 34(3), pp. 103–104

Neumayr B., Grün K., Schrefl M. (2009) Multi-
level Domain Modeling with M-objects and M-
relationships. In: Proceedings of the Sixth Asia-
Pacific Conference on Conceptual Modeling - Vol-
ume 96. APCCM ’09. Australian Computer So-
ciety, Inc., Wellington, New Zealand, pp. 107–
116

Neumayr B., Jeusfeld M. A., Schrefl M., Schütz C.
(2014) Dual Deep Instantiation and Its Concept-
Base Implementation. In: Advanced Information
Systems Engineering. Springer, pp. 503–517

Odersky M., Spoon L., Venners B. (2016) Pro-
gramming in Scala: Updated for Scala 2.12, 3rd ed.
Artima Incorporation

Orrù M., Tempero E. D., Marchesi M., Tonelli
R. (2015) How Do Python Programs Use Inheri-
tance? A Replication Study. In: 2015 Asia-Pacific
Software Engineering Conference, pp. 309–315

Pernici B. (1990) Objects with Roles. In: Pro-
ceedings of the ACM SIGOIS and IEEE CS TC-
OA Conference on Office Information Systems.
COCS ’90. ACM, Cambridge, Massachusetts,
USA, pp. 205–215

Prototype-Based Programming: Concepts, Lan-
guages and Applications. Springer

Raj R. K., Tempero E. D., Levy H. M., Black
A. P., Hutchinson N. C., Jul E. (1991) Emerald:
A General-Purpose Programming Language. In:
Softw., Pract. Exper. 21(1), pp. 91–118

Rau K.-H. (2016) Agile objektorientierte
Software-Entwicklung ger, 1. Aufl. 2016. Springer

Riehle D. (2000) Framework Design: A Role
Modeling Approach. PhD thesis, ETH Zürich

Ruby Programming Language. Last Access: Ac-
cessed: February 2, 2024

Rumbaugh J. (1991) Object oriented modeling
and design eng. Prentice-Hall Intl.

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

50 Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

Schärli N., Ducasse S., Nierstrasz O., Black A. P.
(2003) Traits: Composable units of behaviour. In:
European Conference on Object-Oriented Pro-
gramming. Springer, pp. 248–274

Selçuk Y. E., Erdoğan N. (2004) JAWIRO: Enhanc-
ing Java with Roles. In: Computer and Information
Sciences - ISCIS 2004. Springer, pp. 927–934

Selçuk Y. E., Erdoğan N. (2006) A Role Model for
Description of Agent Behavior and Coordination.
In: Engineering Societies in the Agents World VI.
Springer, pp. 29–48

Selic B., Gullekson G., Ward P. T. (1994) Real-
time object-oriented modeling

Sowa J. (1988) Using a Lexicon of Canonical
Graphs in a Semantic Interpreter: Relational Mod-
els of the Lexicon. In: Evens M. (ed.). Cambridge
University Press, pp. 113–137

Stefik M., Bobrow D. (Jan. 1986) Object-oriented
Programming: Themes and Variations. In: AI Mag.
6(4), pp. 40–62

Steimann F. (2000a) Formale Modellierung mit
Rollen. Habilitationsschrift Universität Hannover

Steimann F. (2000b) On the Representation of
Roles in Object-oriented and Conceptual Mod-
elling. In: Data Knowl. Eng. 35, pp. 83–106

Steimann F. (2001) Role = Interface - A merger
of concepts. In: Journal of Object-Oriented Pro-
gramming 14, pp. 23–32

Steimann F. (2006) The Paradoxical Success of
Aspect-oriented Programming. In: SIGPLAN Not.
41(10), pp. 481–497

Stein L. A. (1987) Delegation is Inheritance. In:
Object-oriented programming systems, languages
and applications (OOPSLA 1983). Conference
Proceedings, pp. 138–146

Strahringer S. (1998) Ways of Handling and Inter-
preting Specialization in Object-Oriented Model-
ing In: The Unified Modeling Language: Techni-
cal Aspects and Applications Physica-Verlag HD,
pp. 170–189

Szyperski C., Gruntz D., Murer S. (2002) Compo-
nent software: Beyond object oriented program-
ming, 2nd ed. The Addison Wesley component
software series. Addison-Wesley

Taylor D. A. (1990) Object oriented technology:
a manager’s guide. Addison-Wesley

Tempero E. D., Yang H. Y., Noble J. (2013) What
Programmers Do with Inheritance in Java. In:
ECOOP 2013 - Object-Oriented Programming -
27th European Conference, Montpellier, France,
July 1-5, 2013. Proceedings, pp. 577–601

Turon A. (2015) Abstraction without overhead:
Traits in Rust

Yourdon E. (1994) Object oriented systems design:
an integrated appraoch eng. Yourdon

Zivkovic S., Karagiannis D. (2016) Mixins and
Extenders for Modular Metamodel Customisation.
In: 18th International Conference on Enterprise
Information Systems

http://dx.doi.org/10.18417/emisa.19.2

Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2
An Extended Concept of Delegation... (Research Note)

Appendix

Data structures used by the XModeler
virtual machine

datatype Obj { of:Obj; slots :[Slot] }
datatype Slot { name:Str; value:Val }
datatype Cons(H,T) { head:H; tail:T }
datatype Nil { }
[T] = Nil + Cons(T,[T])
datatype {T} { elements :[T] }
Val = Obj + [Val] + {Val} + Fun + Atom
Atom = Str + Int + Float + Bool
Code = [Instr]
datatype Fun {
arity:Int; code:Code; globals :[Val];
dynamics :[Val];

self:Obj; properties :[Slot]; supers :[Fun
]; sig:Obj }

Figure 20: XModeler VM Data Structures

Core syntax of the XOCL language

e ::= expressions
| a simple exps
| l e t i = e,... i n e locals
| [e ,...] lists
| [e | i <- e,...] comprehensions
| fun (n ,...) e abstractions
| i f e then e e l s e e tests
| e(e ,...) applications
| k(e ,...) kernel calls
| e.i(e ,...) messages
| e.i slot access
| e.i := e slot update
| throw e exceptions
| w h i l e e do e end loops
| case e of p → e,... end pattern matching
| e;e ordering

a ::= atomic values
i variable

| i(::i)+ lookup
| s | b | n string , boolean , number

k ::= kernel calls
| Kernel_of classifier
| Kernel_setOf set classifier
| Kernel_getSlotValue slot access
| Kernel_hasSlot slot availability
| Kernel_setSlotValue slot update
| Kernel_mkSlot slot creation
| Kernel_mkObj object creation
| Kernel_invoke fun -application
| Kernel_addSlot add a slot

Figure 21: XOCL Language

Essential XCore bootstrap definitions

mkClass(c,name ,parents ,atts) =
Kernel_setOf(c,Class);
Kernel_addSlot(c,"name",name);
Kernel_addSlot(c," parents",parents);
Kernel_addSlot(c," attributes",atts);
c

mkAtt(name ,type) =
l e t a = Kernel_mkObj(Attribute ,[])
i n Kernel_addSlot(a,"name",name);
Kernel_addSlot(a,"type",type);

Class = Kernel_mkObj(n u l l ,[])
Attribute = Kernel_mkObj(n u l l ,[])

mkClass(Attribute ," Attribute",
[StructuralFeature ,DocumentedElement],
[mkAtt ("name",String),mkAtt ("type",
Classifier)])

mkClass(Class ," Class",
[Classifier],
[mkAtt (" attributes",mkSeqType(Attribute)
)])

Figure 22: Excerpt of XCore bootstrap definitions

XOCL evaluation algorithm

http://dx.doi.org/10.18417/emisa.19.2

International Journal of Conceptual Modeling
Vol. 19, No. 2 (2024). DOI:10.18417/emisa.19.2

Tony Clark, Ulrich Frank, Jens Gulden, Daniel Töpel

eval(exp ,env ,o) =
case exp of
Var(n) → env.lookup(n) when env.binds(n);
Var(n) → o.get(n);
Path([n|ns]) → eval(Var(n),env ,o).lookup(ns);
Int(n) → n;
Bool(b) → b;
Str(s) → s;
Let(n,esub1 ,esub2) → eval(esub2 ,env[n mapsto eval(esub1 ,env ,o)],o)
List(listofe) → [eval(e,env ,o) | e <- listofe];
Cmp(e,[]) → [];
Cmp(esub1 ,[n <- esub2]) →
[eval(esub1 ,env[n mapsto v],o) | v <- eval(esub2 ,env ,o)];

Cmp(e,[b | listofb]) →
eval(Cmp(Cmp(e,listofb),[b]),env ,o).flatten ();

Fun(listofn ,e) → InterpretedOperation(listofn ,env ,o,e);
If(esub1 ,esub2 ,esub3) → eval(esub2 ,env ,o) when eval(esub1 ,env ,o);
If(esub1 ,esub2 ,esub3) → eval(esub3 ,env ,o);
App(e,listofe) →
eval(e,env ,o).apply([eval(e,env ,o) | e <- listofe]);

Send(e,n,listofe) →
eval(e,env ,o).send(n,[eval(e,env ,o) | e <- listofe]);

Get(e,n) → eval(e,env ,o).get(n);
Set(esub1 ,n,esub2) → eval(esub1 ,env ,o).set(n,eval(esub2 ,env ,o));
Order(esub1 ,esub2) → eval(esub1 ,env ,o); eval(esub2 ,env ,o);
Throw(e) → Kernel_throw eval(e,env ,o);
While(esub1 ,esub2) →
eval(esub2 ,env ,o); eval(exp ,env ,o) when eval(esub1 ,env ,o);

While(esub1 ,esub2) → n u l l
end

Figure 23: Operational rules of the XOCL interpreter

http://dx.doi.org/10.18417/emisa.19.2

