
Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5
Evaluating DeepTelos for ConceptBase - A Contribution to the Multi-level Process Challenge 1
Special Issue on Multi-Level Modeling Process Challenge

Evaluating DeepTelos for ConceptBase
A Contribution to the Multi-Level Process Challenge

Manfred A. Jeusfeld *,a

a University of Skövde, School of Informatics, Box 408, Sweden

Abstract. The process modeling challenge provides an opportunity to compare various approaches to
multi-level conceptual modeling. In particular, the challenge requests the definition of constructs for
designing process models plus the facilities to create process models with these constructs, and to analyze
the execution of such processes, all in one multi-level model. In this paper, we evaluate the performance of
DeepTelos in solving the challenge. DeepTelos is an extension of the Telos modeling language that adds a
small number of rules and constraints to the Telos axioms in order to facilitate multi-level modeling by
means of so-called most-general instances, a variant of the powertype pattern. We present the technology
behind DeepTelos and address the individual tasks of the process modeling challenge. A critical review
discusses strengths and weaknesses exposed by the solution to the challenge.

Keywords. Multi-level modeling • Telos • Process modeling • ConceptBase • Datalog

Communicated by João Paulo A. Almeida, Thomas Kühne and Marco Montali.

1 Introduction

Telos (Mylopoulos et al. 1990) is a knowledge
representation language used for conceptual meta-
modeling in particular within the domain of re-
quirements engineering (Koubarakis et al. 2021).
In its original definition, it features unlimited
instantiation hierarchies (tokens/objects, classes,
metaclasses, metametaclasses, etc.) alongside a
so-called omega-level of classes, whose instances
can stem from any of the aforementioned levels.
While the metamodeling capabilities of Telos are
quite flexible, in particular by allowing relations
spanning different instantiation levels, it does suf-
fer from the accidental complexity of classical
object-oriented modeling languages (Atkinson
and Kühne 2008). For this reason, we investigated
a number of options to add multi-level modeling

* Corresponding author.
E-mail. manfred.jeusfeld@acm.org
Note: This work is an extension of the article "DeepTelos
for ConceptBase: A contribution to the MULTI process
challenge", which was published in the proceedings of MOD-
ELS/MULTI 2019.

features to Telos without compromising the other
features of Telos.
The purpose of this paper is to evaluate the

expressive power of DeepTelos as a multi-level
modeling language. The evaluation is performed
via the creation of a solution to a generic multi-
levelmodeling challenge, which presents a number
of requirements for a multi-level process modeling
framework. Some of these requirements are about
the formalization of process modeling constructs,
while others are about the use of the constructs to
define process models and their executions.
The paper is organized as follows. First, we

present the features of Telos as implemented by the
ConceptBase system (Jeusfeld 2009, 2022). We
then review an early attempt to represent process
models with Telos (Jarke et al. 1990) and high-
light its weaknesses with respect to the accidental
complexity and its problems to support process
execution analysis. We then discuss the definition
of DeepTelos via a small number of deductive
rules and integrity constraints.

http://dx.doi.org/10.18417/emisa.17.5
https://orcid.org/0000-0002-9421-8566
manfred.jeusfeld@acm.org


International Journal of Conceptual Modeling
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5

2 Manfred A. Jeusfeld
Special Issue on Multi-Level Modeling Process Challenge

The main body of the paper presents the de-
tailed solution to the multi-level process modeling
challenge of this special issue. We conclude by
a discussion of the strengths and weaknesses of
DeepTelos for solving the modeling challenge.

2 Constructs of Telos and DeepTelos

The basic constructs of Telos1 are instantiation,
specialization, and attribution/relations. They are
defined by a set of axioms (Jeusfeld 2009) with
the following semantics:

Instantiation: An object x (called the instance)
can be assigned to a class c by a fact (x in c).
Due to the Datalog semantics (Ceri et al. 1989) of
Telos, the set of instances of a class (its extension)
is always finite. An instance of a class can use
the attributes defined at any of its classes by in-
stantiating one or all of the attributes of the class.
An object can have any number of classes. The
predicate (x in c) can be used in the condition
and the conclusion position of a deductive rule.
Hence, instantiation can be derived by deductive
rules.

Specialization: An object c can be defined as
a specialization of an object d, denoted by (c isA
d). Any instance of c is also an instance of d by a
predefined axiom. We call the object c the subclass
of d, and d the superclass of c. Subclasses can
refine the attributes of superclasses by specializing
the attribute class of the corresponding attribute at
the superclass. The predicate (c isA d) may not be
derived by user-defined rules, i.e. its semantics is
completely defined by the fixed axioms of Telos.

Attribution/relations: Two objects x and y
can be linked by an attribute. Telos regards values
(numbers, strings, etc.) as objects. Hence, it does
not distinguish classical attributes from (binary)
relations. The predicate (x m y) expresses that
there is an attribution link between x and y, where
m is the label of some attribute definition of some

1 In the following we use the term Telos as referring to the ver-
sion of Telos as implemented by ConceptBase. Koubarakis
et al. (2021) discusses some of the differences of this version
of Telos compared to its original specification.

class of x. Explicit attributes or relations are also
objects in Telos.
There are five predefined objects in Telos. The

object "Individual" has all objects as instances
that are not explicit attributes, instantiations, or
specializations, i.e. all node-like objects. The ob-
ject "Attribute" has all explicit attributes/relations
as instances, the class "InstanceOf" has all explicit
instantiations as instances, and "IsA" all explicit
specializations. The predefined object "Proposi-
tion" subsumes the instances of all four previous
classes. The five predefined objects form the
so-called "omega" level of Telos. These classes
have instances that can be on any ontological ab-
straction level. The full specification of Telos
as implemented by ConceptBase is provided in
(Jeusfeld M. A. et al. 2021, pp. 14ff).
DeepTelos adds three constructs to Telos, the

"most-general instance" relation, the derivable
specialization construct, and the enumeration
construct:

Most-general instance: This construct de-
clares the object m as “most-general instance”
of the class c, expressed by a fact (m IN c). Any
instance of c shall then be a subclass of m, and
subclass of m shall be an instance of c.2 As conse-
quence of the DeepTelos rules (m IN c) implies
(m in c) because the isA-relation is reflexive in
Telos.

Derivable specialization: This is a second
construct to declare c as derived specialization of
d, expressed by (c ISA d).

Enumerations3 : This construct is the counter-
part to UML enumerations. It provides an easy
way to declare a class by means of a fixed set of
instances. In DeepTelos, we use enumerations to
lift a finite set of instances one level up, much like
with singleton classes.

2 This construct is the inverse of the powertype construct used
in MLT*. Hence, (m IN c) is equivalent to (c powertypeOf
m).
3 Enumerations were not part of the first specification of
DeepTelos. The construct is introduced here to further reduce
the accidental complexity of DeepTelos models.

http://dx.doi.org/10.18417/emisa.17.5
https://orcid.org/0000-0002-9421-8566


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5
Evaluating DeepTelos for ConceptBase - A Contribution to the Multi-level Process Challenge 3
Special Issue on Multi-Level Modeling Process Challenge

The three DeepTelos constructs and the five
associated multi-level rules and one constraint
listed in Sect. 2.2 realize a simple multi-level mod-
eling environment. Basic constructs are defined
as attributes of the omega class "Proposition" in
Telos/ConceptBase. Since this class can be ex-
tended by a user of ConceptBase, any user can
add new modeling constructs. In the case of this
challenge, we defined an attribute "lastupdate"
for "Proposition". This attribute of "Proposition"
facilitates the representation of the last update
time for any explicit fact in a model. Likewise, the
DeepTelos constructs for most-general instances
are defined at the omega class "Proposition". Con-
sequently, traditional classes as well as attributes
and relations can be most-general instances.
The most-general instance construct is a flavor

of the powertype pattern. Partridge et al. (2018)
survey multiple powertype flavors used in informa-
tion systems engineering. The closest flavor in that
survey to our approach is the "UML Powertype".
The difference lies in the semantic grounding.
While Partridge et al. (2018) use set-theoretic
specifications, DeepTelos uses the minimal model
semantics of Datalog. Specifically, DeepTelos
needs two deductive rules to (1) derive special-
izations from instantiations to the powertype, and
(2) derive instantiations to the powertype from
specializations of the (most-general) instance of
the powertype. DeepTelos does not offer differ-
ent types of specializations such as complete and
disjoint decomposition either.

2.1 The 1990 Software Process Model
In the late 1980-ties, Telos was used as the founda-
tion of a repository system ConceptBase (Jarke et
al. 1995) to store artifacts created during software
development. The data model for the repository
is described by Jarke et al. (1990). It purely uses
the metamodeling features of Telos.
The process model supported three abstrac-

tion levels. The top level defines the metaclasses
"DesignObjectType", "DesignDecisionType", and
"DesignToolType". The relations "from/to" are
for establishing the provenance of design objects.

The middle level defines the set of design deci-
sion types supported by the repository. Here, the
design decision type "EntHierMapMoveDown"
denotes a strategy to map specialization hierar-
chies to relational tables. The input design objects
("tdlentities") are class definitions in TDL (Taxis
Design Language). The result ("nonfirstrelations")
of the mapping are relational table definitions (de-
sign object type "DBLP_REL_DO"). The design
tool type is "MappingAssistant". The lowest level
shows an example mapping of two classes ("Pa-
pers", "Invitations") to a relational table definition.
The example shows that Telos treats explicit

attributes/relations like ordinary objects. For
example, the "nonfirstrelations" relation of "En-
tHierMapMoveDown" is an instance of the "to"
relation of "DesignDecisionType". In the textual
syntax of Telos, the model is represented as:

DesignDecisionType with attribute
from: DesignObjectType;
to: DesignObjectType; by: DesignToolType

end

EntHierMapMoveDown in DesignDecisionType with
from tdlentities: TDL_EC_DO
to nonfirstrelations: DBLP_REL_DO
by tool: MappingAsistant

end

The software process model can represent the
provenance of design objects. However, the cate-
gories "from", "to", and "by" are not available to
formulate queries at the lowest abstraction level,
e.g. to show the provenance of design objects like
"InvitationsRel_0". This is due to the way rela-
tions such as "to" are instantiated in Telos. At the
next lower abstraction level, a new relation like
"nonfirstrelations" needs to be defined. While it
could use the same name "to", this is not a general
solution, since instances of "DesignDecisionType"
can have several relations with the category "to".
As a consequence, the original software process
model realized with Telos led to redundant and un-
necessarily complex query definitions to analyze
the provenance of design objects.

http://dx.doi.org/10.18417/emisa.17.5


International Journal of Conceptual Modeling
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5

4 Manfred A. Jeusfeld
Special Issue on Multi-Level Modeling Process Challenge

Figure 1: Software process model adapted from Jarke et al. (1990, p. 98).

2.2 DeepTelos: An extension for Telos to
support multilevel modeling

DeepTelos (Jeusfeld and Neumayr 2016) was orig-
inally defined by just three deductive rules ex-
tending the existing Telos constructs attribution,
instantiation, and specialization. These three rules
were later extended to five rules and one constraint
to better integrate the derived specializations of
DeepTelos and the existing Telos specialization
axioms. The core idea of DeepTelos is to em-
ploy the powertype pattern (Gonzalez-Perez and
Henderson-Sellers 2006; Odell 1998) via the fol-
lowing rule: if a class c has a “most-general
instance” m, then any instance of c is a subclass of
m (see "mrule4" in Sect. 2.2). The most-general
instance m serves as a “proxy” for class c at one
instantiation level lower. It has all instances of
instances of c as its instances. The class m itself
can have another most-general instance m1, which
serves as a proxy for m at even one instantiation
level lower. So, the lattice of most-general in-
stance relations, denoted as (m IN c), spans a
family of modeling levels. ConceptBase (Jarke
et al. 1995) is a multi-user database system for
managing all kinds of models and metamodels.
It implements its logical component (rules, con-
straints, queries) via a Datalog-neg engine. It
also features a graphical user interface. Formally,

most-general instances are defined by the exten-
sion of the predicate (m IN c) under Datalog-neg
semantics of the rules defined below in this sub-
section.
DeepTelos Revision 2 is defined by five de-

ductive rules and one constraint. The rules are
defined in terms of two new constructs IN and
ISA defined for any proposition (see source code
in Sect. 10.1). The first rule is the main rule: If
there is a most-general instance m of c (m IN c)
and instance x of c and x is not already derivable
to be a (Telos) specialization of m, then (x ISA m)
is derived, i.e. all such instances become (DeepTe-
los) specializations of the most-general instance
m. The arrow symbol in the formula stands for
the logical implication, separating the rule body
from the real head.
mrule1: forall m,x,c/Proposition
(x in c) and (m IN c) and not (x isA m)
==> (x ISA m)

The second rule realizes the class membership
inheritance from sub classes to super classes. A
virtually identical rule is predefined for the Telos
specialization predicate (c isA d). We use (c ISA
d) in DeepTelos, because the Telos specialization
predicate may not be derived itself.
mrule2: forall x,c,d/Proposition
(c ISA d) and (x in c) ==> (x in d)

http://dx.doi.org/10.18417/emisa.17.5
https://orcid.org/0000-0002-9421-8566


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5
Evaluating DeepTelos for ConceptBase - A Contribution to the Multi-level Process Challenge 5
Special Issue on Multi-Level Modeling Process Challenge

The third rule links two most-general instances
by a specialization relation if their classes are also
specialized. This rule allows managing parallel
hierarchies of most-general instances.

mrule3: forall c,d,m,n/Proposition
(m IN c) and (n IN d) and (c ISA d)
==> (m ISA n)

The next rule is the reverse case of "mrule1":
if a most-general instance m has a subclass x, then
this is also an instance of the powertype c of m. In
the ConceptBase implementation, we demand for
technical reasons that x is not a so-called query
class.

mrule4: forall m,x,c/Proposition
(m IN c) and (x isA m) ==> (x in c)

The fifth rule is a variant of "mrule4" that takes
into account that we have two different predicates
for specialization in DeepTelos.

mrule5: forall m,mx,x,c/Proposition
(m IN c) and :(x isA mx): and (mx ISA m)
==> (x in c)

The predicate :(x isA mx): stands for an explic-
itly declared specialization. Finally, DeepTelos
has one constraint to prevent inconsistent hierar-
chies of most-general instances:

mconstr1: forall x,m,c/Proposition
(m IN c) and (x in c) ==> not (x in m)

DeepTelos is similar to MLT* (Fonseca et al.
2018) wrt. the use of the powertype construct.
The difference to MLT* is that DeepTelos has far
fewer axioms. The additional axioms of MLT*
do make sense to prevent modeling errors but
we decided not to realize them in DeepTelos for
the sake of simplicity. MLT-Telos (Jeusfeld et al.
2020) is however available as a comprehensive
implementation of MLT* in ConceptBase.
A notable difference between DeepTelos and

MLT* is the reification of relations and attributes.
In DeepTelos, attributes/relations can be defined
as most-general instances of attributes/relations at
the next higher instantiation level. DeepTelos only

supports a single subclass hierarchy under a given
most-general object. So, dual decompositions
like "persontype by gender" or "persontype by
age group" are not supported. This is due to the
simplicity of the DeepTelos rules, in particular
"mrule2" and "mrule4" (see Sect. 2.2). We have
derived the variant MLT-Telos that incorporates
an implementation of MLT*, which itself can
cope with such multiple decompositions via the
"partitions" construct. This paper is however using
DeepTelos and thus does not support multiple
decompositions of a most-general instance.

2.2.1 Enumeration classes
The multi-level modeling challenge has elements
that require to link classes to other classes and/or
their instances. To avoid redundancy in the defini-
tion of such relations, we introduce the following
extension to DeepTelos:

Enumeration in Class with
attribute
member: Proposition;
memberset: Proposition

rule
rmember: $ forall x/Proposition

EN/Enumeration
(EN member x) ==> (x in EN) $;

rmemberset: $ forall x,S/Proposition
EN/Enumeration

(EN memberset S) and (x in S)
==> (x in EN) $

end

The class allows defining enumerations of
explicit instances ("member") and instances of
classes ("memberset").

2.2.2 Using DeepTelos in ConceptBase
To motivate the use of DeepTelos, consider the
following simple scenario. A car has a model num-
ber and a mileage. In potency-based approaches
to multi-level modeling (Atkinson et al. 2009;
Atkinson and Kühne 2001; Frank 2014; Lara et al.
2014), one would have a meta class "CarModel"
(M2 level) with two attributes. The attribute
"model number" would be applicable to instances
of "Car", i.e. classes at M1 level (potency 1).
The attribute "mileage" would be applicable to

http://dx.doi.org/10.18417/emisa.17.5


International Journal of Conceptual Modeling
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5

6 Manfred A. Jeusfeld
Special Issue on Multi-Level Modeling Process Challenge

instances of instances of "Car" (M0 level, potency
2). In DeepTelos, the potency levels are replaced
by most-general instances:

Figure 2: DeepTelos solution for the car example.

The object "CarModel" is a meta class with the
most-general instance "Car". The model num-
ber is applicable to instances of "CarModel",
whereas the mileage is applicable to instances
of "Car". In the above example, "ACMECar" is
defined as an explicit (Telos) subclass of "Car". By
DeepTelos rule "mrule4" (Sect. 2.2 and sources
at http://conceptbase.cc/emisaj2021challenge), it
is then a derived instance4 of "CarModel" and
thus may use the "modelnr" attribute. The object
"mycar1" is then an instance of "ACMECar" (and
thus of "Car") and can instantiate the mileage at-
tribute. The concepts "Car" and "CarModel" shall
be regarded as one aggregated concept: "Car" is
the proxy of "CarModel" at the abstraction level
below "CarModel". Thus, the purpose of the
most-general instance "Car" is to be able to define
attributes like mileage that are applicable to all
cars.
As a second example, consider the application

of most-general instances to the software process
model of Fig. 1. Figure 3 virtually duplicates the
structure of the metaclass level to the class level.
Consider the most-general instances "DesignOb-
ject", "DesignDecision", "DesignTool" and their
relations "from", "to" and "by" as proxies of their
counterparts at the metaclass level. They make

4 Derived links are visualized by gray arrows in the diagrams.
This applies to derived instantiations and to derived special-
izations. Explicit specializations are indicated by blue arrows.
All diagrams in this paper are created with ConceptBase
from the original models.

the predicate (x from y), (x to y) and (x
by y) available to instances of instances of "De-
signDecisionType". At first glance, this appears
like redundancy. The deductive rules defining
DeepTelos derive the specialization facts

(TDL_EC_DO ISA DesignObject),
(DBLP_REL_DO ISA DesignObject),
(EntHierMapMoveDown ISA DesignDecision),
(MappingAssistant ISA DesignTool).

The objects at the bottom are thus instances of
these proxy classes and can be queried as their
instances. The example shows that relations such
as the "from" relation of "DesignDecisionType"
can also have most-general instances in DeepTelos.
In the textual syntax, this is expressed as

DesignDecision!from with
IN class: DesignDecisionType!from

end

The inclusion of the constructs for "DesignOb-
ject", "DesignDecision", "DesignTool" and their
relationships allows one to query objects like
"mapInvitations" via the most-general instances.
For example, one can list all instances of "De-
signDecision" that are linked to the design object
"Papers", without having to know the explicit class
"TDL_EC_DO" of "Papers". Note that the model
is not strictly layered into disjoint abstraction lev-
els. For example, the object "mapInvitations"
is at the lowest abstraction level, but the object
"Papers" is arguably a class. This is typically for
process models where the result of activities (here
design decisions) are software artifacts, such as
classes.5 The most-general instances also allow
one to define attributes such as "vendor" for "De-
signTool". Then, the instance "MA_exec1" can
directly instantiate this attribute without having to
define it for its explicit class "MappingAssistant".

2.2.3 Modules in ConceptBase
For supporting model reuse, we employ the mod-
ule system of ConceptBase to organize the model

5 This level-mismatch was also observed by Gonzalez-Perez
and Henderson-Sellers (2006). It highlights why pure UML-
based approaches are limited when it comes to process
modeling.

http://dx.doi.org/10.18417/emisa.17.5
https://orcid.org/0000-0002-9421-8566
http://conceptbase.cc/emisaj2021challenge


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5
Evaluating DeepTelos for ConceptBase - A Contribution to the Multi-level Process Challenge 7
Special Issue on Multi-Level Modeling Process Challenge

Figure 3: Multi-level version of the software process model adapted from Jarke et al. (1990, p. 98).

System

oHome

DeepTelos

ProcessModels

CodingProcess

Process1 Process2 Process3

CarExampleSoftwareProcess
DataModel

Figure 4: ConceptBase modules used in this paper.

definitions and separate variants of models. Con-
ceptBase supports sub-module hierarchies, where
a sub-module "sees" all definitions made in the
super-module but not the definitions inside sibling
modules. There are two predefined modules in
ConceptBase: the root module "System" contains
all builtin objects of Telos and ConceptBase, in
particular the omega class "Proposition". The
"System" module has a sub-module "oHome",
which contains the definitions made by a user of
ConceptBase.

We shall use the "oHome" module for the defi-
nition of some useful formulas such as cardinality
constraints, transitivity, symmetry and other fre-
quently used relational properties. Inside the
"oHome" module, we define the module DeepTe-
los, which includes the 5 rules and the one con-
straint discussed above plus some graphical types
for a nicer visualization ofDeepTelosmost-general
instance hierarchies. Then, the DeepTelos module
contains a sub-module "ProcessModels", which
contains the solution for the requirements P1-P19
of the challenge, i.e. the constructs for defining
process models. The sub-module "CodingPro-
cess" of "ProcessModels" contains the example
software engineering process model of the multi-
level process challenge. Finally, the sub-modules
"Process1", "Process2", and "Process3" of "Cod-
ingProcess" contain example processes of the
process type defined in "CodingProcess". The
car example of Fig. 2 is stored in another sub-
module of DeepTelos, sharing the definitions of
DeepTelos, "oHome" and "System" but not of
"ProcessModels" and its sub modules. The legacy
software process data model is managed in the
sub-module with the same name.

http://dx.doi.org/10.18417/emisa.17.5


International Journal of Conceptual Modeling
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5

8 Manfred A. Jeusfeld
Special Issue on Multi-Level Modeling Process Challenge

The sources for the modules in Fig. 4 are pro-
vided via the link in Sect. 10.1 at the end of this
paper. In the next section, the multi-level pro-
cess challenge is outlined and key concepts are
assigned to their designated abstraction levels.

3 Analysis of the multi-level process
challenge

This section discusses the abstraction levels of
concepts mentioned in the multi-level process
challenge. The challenge defines three main con-
cepts. First, there are tasks and task types. Task
types are used to define process models (roughly
M1 level). The process models can be instantiated
and deliver processes (M0 level). A process is
the trace of the execution of a process model for
a given case (e.g. to develop a software system).
The second main concept is the actor type, resp.
actor. Actor types are related to task types, e.g.
to define the required competence of an actor to
execute a task type. Thirdly, there are artifacts and
artifact types. They define the inputs and outputs
of task types (M1 level) and of their instances (M0
level). At the M1 level, task types define the types
of inputs and outputs whereas the M0 level defines
which actual input and output artifacts were used
in a specific execution of the process, resp. its tasks.
Some attributes and relations link objects at the
same instantiation level, while others link objects
at different abstraction levels. For example, one
can authorize a single actor like "AnnSmith" (M0)
as the sole person allowed to execute a given task
type such as "CodingInCobol". A particular such
cross-level attribute is the "lastupdate" attribute
(requirement P19 of the challenge). Our solution
will allow to specify the last update time for any
concept at any instantiation level.
While DeepTelos does not have predefined lev-

els such as M0, M1, M2, M3 and so forth, it
is still useful to roughly identify objects that an
OMG-educated modeler would assign objects to.
M0: Here we find objects like "AnnSmith",

task instances such as "coding1" as instance of
"CodingInCobol", which is started at a given date
and ends at another date. We also find artifact

instances such as "cobolprogram1". It should be
noted that such artifacts can contain objects at a
higher instantiation level. For example, a design
document can contain a whole UML class diagram
(M1) level. We have discussed this phenomenon
earlier in the context of process-data diagrams
(Jeusfeld 2011, pp. 3–5). The solution there did
however not use DeepTelos, but declared certain
objects to be both instance and specialization of
meta class.
M1: This level contains the specification of a

process type such as the ACME coding process
type of the challenge. This level roughly corre-
sponds to a BPMN process model. In contrast
to BPMN, our solution (and the challenge) also
covers the execution of the process model at M0.
In our solution, the concepts "Task", "Artifact",
"Actor", and "Process" are all at the M1 level.
M2: The M2 level defines constructs such as

"ArtifactType" (having the most-general instance
"Artifact"), "TaskType" (most-general instance
"Task"), "ActorType" (most-general instance "Ac-
tor"), and "ProcessType" (most-general instance
"Process"). Certain subclasses of these classes
are also defined at this level such as "Critical-
TaskType". We re-use the definition of a core
BPMN language at the M2 level and pull it from
the ConceptBase Forum.6 Such reuse of existing
metamodels simplifies the solution to the chal-
lenge.
M3: The M3 level contains the meta-meta

classes "Node", "NodeOrLink" and the link object
(label "connectedTo"). We reuse these definitions
since the core BPMN language was defined with
these meta-meta classes.
Omega: We make heavy use of the omega-class

"Proposition" as discussed in the introduction to
define DeepTelos and to provide the "lastupdate"
attribute. The omega level also contains the im-
plementations of multiplicity constraints such as
"necessary" (1..*) and single (0..1), see also the
sources at the web page http://conceptbase.cc/
emisaj2021challenge/SOURCES.

6 http://conceptbase.cc/CB-Forum.html

http://dx.doi.org/10.18417/emisa.17.5
https://orcid.org/0000-0002-9421-8566
http://conceptbase.cc/emisaj2021challenge/SOURCES
http://conceptbase.cc/emisaj2021challenge/SOURCES
http://conceptbase.cc/CB-Forum.html


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5
Evaluating DeepTelos for ConceptBase - A Contribution to the Multi-level Process Challenge 9
Special Issue on Multi-Level Modeling Process Challenge

Figure 5: Concepts for multi-level process modeling.

The challenge demands a particular property of
task types, namely the planned duration. In our
solution, we shall allow to compare the planned
duration (task type) with the actual duration of a
task instance (derived from start and finish date).
Function definitions are used for that purpose. We
also define a number of queries to analyze process
models and their execution.

4 Model presentation: The constructs

This chapter introduces the solution of the pro-
cess challenge by DeepTelos and ConceptBase.
The figures are also included on the web page
mentioned in Sect. 10.1, where they are linked
to executable graph files to be processed by the
ConceptBase graph editor.

4.1 The levels
Fig. 5 shows the abstraction levels used for the
solution. On the top left is the object "Proposi-
tion" defining the two DeepTelos relations "IN"
(for relating a most-general instance to its class)
and "ISA" (for derived specialization relations).
These two relations extend the so-called omega-
level of Telos. All explicit objects in this diagram
including all nodes and links are instances of the

omega-class "Proposition". The next level is es-
tablished by the objects "Node", "NodeOrLink"
and the "connectedTo" link of "NodeOrLink". In
traditional metamodeling, these objects would be
dedicated as metameta classes, i.e. members of
the M3 or even M4 level. It is used to define
modeling languages such as BPMN. In the figure,
the object "BPMN_Element" is the superclass
of all constructs of a core BPMN metamodel
that we utilize in our solution. Since this meta-
model does not cater for all constructs needed for
the challenge, we also define a meta class "Pro-
cessElementType", which subsumes all required
constructs including the core BPMN constructs.
All subclasses of "ProcessElementType" plus the
class "ProcessType" would be regarded as M2
level in a UML environment.
The next level is formed by the most-general in-

stances "Actor" (of "ActorType"), "Task" (of "Task-
Type"), "Artifact" (of "ArtifactType"), "ProcessE-
lement" (of "ProcessElementType") and "Process"
(of "ProcessType"). Hence, "Task" is a simple
class (regarded as M1 level in UML) and has all
instances of instances of "TaskType" as instances,
as derived via the DeepTelos rules. The instances
of the displayed most-general instances form the

http://dx.doi.org/10.18417/emisa.17.5


International Journal of Conceptual Modeling
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5

10 Manfred A. Jeusfeld
Special Issue on Multi-Level Modeling Process Challenge

M0 level. We will see such instances in the sec-
tion for the example processes. In summary, the
solution features four UML-ish abstraction levels
plus the omega level.

4.2 Requirements P1-P3
• P1: A process type (such as "claim handling")
is defined by the composition of one or more
task types (receive claim, assess claim, pay
premium) and their relations.

• P2: Ordering constraints between task types of
a process type are established through gateways,
which may be sequencing, and-split, or-split,
and-join and or-join.

• P3: A process type has one initial task type
(with which all its executions begin), and one
or more final task types (with which all its
executions end).

Fig. 6 shows the solution to requirements P1-P3.
"ProcessType" is modeled as a container for "Pro-
cessElementType", which subsumes all required
constructs (including gateways, start/end elements
and task types). The ordering of the process ele-
ment types is supported by the "next" relation of
"BPMN_Element". The two subclasses "Place-
Like" and "TransitionLike" are used to embed
BPMN into a Petri-net semantics, which we do
not use in this solution but can be inspected in
the publicly available models given in the foot-
note.7 The figure also shows the object "Process"
as most-general instance of "ProcessType". It
features a "contains" relation, which is the most-
general instance of the corresponding relation of
"ProcessType". Hence, the "contains" relation at
the M2 level is propagated to the M1 level. Just as
we define process models as containers of process
element types, we define processes as containers
of process elements.
The complete source code is available via the

link in Sect. 10.1.

7 http://conceptbase.cc/dynamic-models.html

4.3 Requirements P4-P6
• P4: Each task type is created by an actor, who
will not necessarily perform it. For example,
Ben Boss created the task type "assess claim".

• P5: For each task type, one may stipulate a set
of actor types whose instances are the only ones
that may perform instances of that task type.

• P6: A task type may alternatively be assigned
to a particular set of actors who are authorized
(e.g., John Smith and Paul Alter may be the
only actors who are allowed to assess claims).

These requirements introduce the first cross-
level relations between "Actor" (M1) and "Task-
Type" (M2).
The relation "creator" links a task type to the ac-

tor, who created it. Figure 7 also shows an instance
of this relation (see link to actor "BobBrown").
The relation "executortype" links "TaskType" and
"ActorType" (requirement P5). The executor type
of a task type can also be an enumeration (see
Sect. 2.2.1). This addresses requirement P6. The
definition of "CobolCoder" in DeepTelos is:

CobolCoder in Enumeration isA Developer with
member m1: AnnSmith end

The label "m1" here is distinguishing several
entries under the attribute category "member".
This lifts the object "AnnSmith" to the singleton
class "CobolCoder".
Fig. 7 shows two links that are derived by

rules. First, "TestCaseDesign" is an explicit in-
stance of "BPMN_Activity", which itself is an
explicit subclass of "TaskType". Then, by a prede-
fined rule of specialization, "TestCaseDesign" is
a derived instance of "TaskType". Second, since
"TestCaseDesign" is an instance of "TaskType",
the DeepTelos rule "mrule1" derives that "Test-
CaseDesign" is a subclass of "Task". The derived
links are shown here for explaining the function
of the Telos and DeepTelos constructs. They
are not typically included in diagrams created by
modelers.

http://dx.doi.org/10.18417/emisa.17.5
https://orcid.org/0000-0002-9421-8566
http://conceptbase.cc/dynamic-models.html


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5
Evaluating DeepTelos for ConceptBase - A Contribution to the Multi-level Process Challenge 11
Special Issue on Multi-Level Modeling Process Challenge

Figure 6: Requirements P1-P3.

Figure 7: Requirements P4-P6.

4.4 Requirements P7-P9
• P7: For each task type (such as "authorize
payment") one may stipulate the artifact types
which are used and produced.

• P8: Task types have an expected duration
(which is not necessarily respected in particular
occurrences).

• P9: Critical task types are thosewhose instances
are critical tasks; each of the latter must be
performed by a senior actor and the artifacts they
produce must be associated with a validation
task.

Task types use and produce artifact types. This
is also propagated to tasks, which use and produce
artifacts.
Critical task types and validation task types

are modeled as subclasses of "TaskType". The
query class "CriticalButNotValidatedM1" checks
requirement P9. This query returns all critical

task types that are not checked by a validation
task type. A similar query "CriticalButNotVali-
datedM0" is defined for the most-general instance
"CriticalTask". The code for both query classes is
available via the source code link in Sect. 10.1.
The latter query operates at the M0 level, i.e.

checks actual executions of the process rather than
the process type. In addition, constraints (see class
"CriticalTaskType" in the source code via 10.1)
are used to address the actor requirements of P9.
Finally, Fig. 8 shows the planned duration (re-

quirement P8) and the actual duration (property of
Task). The latter is not demanded by the challenge
but we found it useful to later check whether a
task is delayed.

4.5 Requirements P10-P16
• P10: Each process typemay be enactedmultiple
times.

• P11: Each process comprises one or more tasks.
• P12: Each task has a begin date and end date.
• P13: Tasks are associated with artifacts used
and produced, along with performing actors.

• P14: Every artifact used or produced in a task
must instantiate one of the artifact types stipu-
lated for the task type.

• P15: An actor may have more than one actor
type (e.g., Senior Manager and Project Leader).

• P16: An artifactmay havemore than one artifact
type.

http://dx.doi.org/10.18417/emisa.17.5


International Journal of Conceptual Modeling
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5

12 Manfred A. Jeusfeld
Special Issue on Multi-Level Modeling Process Challenge

Figure 8: Requirements P7-P9.

Requirement P10 is automatically fulfilled by
Telos since any process type (instance of "Pro-
cessType") may itself have any number of in-
stances. We shall later provide instances of the
ACME example process type. Requirement P11
is fulfilled by the "contains" relation of "Pro-
cess", see Fig. 6. "Task" is a subclass of "Pro-
cessElement". For requirement P13, we refer to
Fig. 8. Of particular interest in this solution is
that the "uses" and "produces" relations for "Task"
are most-general instances of their counterparts
defined for "TaskType". As a consequence, an
instance of "TaskType" such as "Testing" (see
Fig. 13) would instantiate the "uses" and "pro-
duces" relations defined for "TaskType". These
relation instances are then subclasses of the "uses"
and "produces" relations for the most-general in-
stance "Task". This allows querying instances of
"Task" using the generic relation names "uses"
and "produces". Requirement P12 (begin and
end of a task) is implemented by two attributes
"begindate" and "enddate" of "Task":

Task in Class with IN class: TaskType
attribute
uses : Artifact; produces : Artifact;
begindate : Integer; enddate : Integer;
duration : Integer; executor : Actor

end

The full definition is in the source code via
Sect. 10.1. It calculates the actual duration of a
task by a deductive rule based on the function

"taskDuration". Since the task type of a task has a
"plannedduration", we can retrieve delayed tasks
by a query class "DelayedTask":

DelayedTask in QueryClass isA Task with
constraint isDelayed:
$ exists T/TaskType pd,d/Integer
(this in T) and (T plannedduration pd)
and (this duration d) and (d > pd) $

end

This approach also allows defining a derived
attribute ‘avgduration’ of TaskType, which is the
average of all duration values of its instances (not
implemented here). This supports datawarehouse-
like aggregation of class-level attributes from
instance-level attributes.
Requirement P14 is realized by the query class

"UnmatchedTask" (see Sect. 10.1). Requirements
P15 and P16 is also fulfilled by Telos since each
object may have multiple classes. Hence, any
actor can have multiple actor types. A similar ar-
gument holds for requirement P16. The processes
"Process1" to "Process3" have examples for such
objects that have multiple classes.

4.6 Requirements P17-P18
• P17: An actor who performs a task must be
authorized for that task. Typically, a class of
actors is automatically authorized for certain
classes of tasks.

• P18: Actor types may specialize other actor
types, in which case all the rules that apply

http://dx.doi.org/10.18417/emisa.17.5
https://orcid.org/0000-0002-9421-8566


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5
Evaluating DeepTelos for ConceptBase - A Contribution to the Multi-level Process Challenge 13
Special Issue on Multi-Level Modeling Process Challenge

to instances of the specialized actor type must
apply to instances of the specializing actor type.

Requirement P17 demands that each actor who
performs (=executes) a task must be authorized
to do so. The requirement is related to the "ex-
ecutortype" relation of "TaskType". Our solution
to this requirement does not implement defaults
when authorizations are not defined explicitly. De-
fault rules could however be added quite handily
since Datalog realizes negation as failure.

Figure 9: Requirement P17.

Fig. 9 shows the relevant defined relations. The
authorization is then expressed by a Telos con-
straint "isAuthorized" of class "Actor":

Actor in Class with
attribute authorizedFor: TaskType
constraint
isAuthorized :

$ forall a/Actor t/Task T/AuthorizedTaskType
(t in T) and (t executor a)
==> (a authorizedFor T) $

end

The query class "AuthorizedTaskType" is used
to filter out those tasks that have no authoriza-
tion declared. The solution is only about half of
what should be expected by a proper authoriza-
tion schema. We argue that it could be extended
but foresee a rather complicated specification by
Telos rules and constraints involving negated pred-
icates to model defaults. Requirement P18 is
again easily fulfilled by Telos. All instances of
sub-classes are also instances of super-classes in
Telos. Consequently, rules and constraints appli-
cable to instances of the super-classes also apply
to instances of the sub-classes.

4.7 Requirement P19
• P19: All modeling elements, at all levels, must
have a last updated value of type time stamp.

This requirement demands that all objects and
classes in a model should have an attribute "las-
tupdate" to check when it has been modified for
the last time. ConceptBase is a temporal database
storing the transaction time interval with each
proposition. This allows a generic solution to this
requirement since all updates to objects are real-
ized by inserting (start of transaction time) and
deleting (end of transaction time) propositions.
The rule to derive the "lastupdate" attribute is:

forall o/Proposition tt/TransactionTime
(tt = lastUpdateTime(o)) ==> (o lastupdate tt)

It uses a function "lastUpdateTime", which is
available via the source code link in Sect. 10.1.
The solution applies to all objects ("propositions"),
not just DeepTelos objects. Since the transaction
time of an object is itself an object, one could
also store the name of the user who performed the
transaction. By this, one can even check who has
created what model elements at which time down
to the granularity of single attributes. An example
of the derived attribute "lastupdate" is shown in
Fig. 18. The solution is realized by a single
function definition plus the above generic rule
applicable to any object in the database regardless
of its abstraction level.

5 Model presentation: example process

The example ACME software engineering process
of the challenge is modeled using the capabilities
of the core BPMN language implemented by a
Telos metamodel:
The representation of the sequencing between

the start element, the task types, the gateways,
and the end element is done by using the ‘next’
relation of BPMN_Element (see Fig. 6). The task
type "CodingInCobol" is defined as a subclass of
"Coding". This is used for a variant of the process
type. Fig. 10 uses BPMN-style graphical shapes
where appropriate.

http://dx.doi.org/10.18417/emisa.17.5


International Journal of Conceptual Modeling
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5

14 Manfred A. Jeusfeld
Special Issue on Multi-Level Modeling Process Challenge

Figure 10: The ACME process type in our solution.

In the full solution, the BPMN constructs are
mapped to an executable Petri net, i.e. enabled
tasks can be fired in a kind of a "token game". One
can analyze certain well-formedness properties
such as that each taskmust be on a path from a start
event to an end event. Modeling errors like joining
a parallel "and" gateway by an "or" gateway can
be detected by appropriate query classes. This is
however beyond the scope of this paper.

5.1 Requirements S1-S4
• S1: A requirements analysis is performed by
an analyst and produces a requirements specifi-
cation.

• S2: A test case design produces test cases.
• S3: An occurrence of coding is performed by
a developer and produces code. It must fur-
thermore reference one or more programming
languages employed.

• S4: Code must reference the programming
language(s) in which it was written.

The upper part of Fig. 11 shows the constructs
for "TaskType", "ActorType" and "ArtifactType"
(M2 level) . The executor of the task is assigned
using the "executortype" relation of "TaskType".
The produced artifact type, e.g. "TestCaseDoc-
ument" (M1 level) uses the "produces" relation
of "TaskType". The artifact type "ProgramCode"
has a "language" attribute. A similar attribute is
defined for the "Coding" task type.
To understand the instantiations derived by

Telos, consider the object "DeveloperOrTestDe-
signer". It is defined as an (explicit) instance

of "NormalActorType", which is an explicit spe-
cialization of "ActorType". Via DeepTelos rule
"mrule4" (see Sect. 2.2) it is then also an instance
of "ActorType". This instantiation then allows
using the "executortype" relation for linking Test-
CaseDesign to its executor "DeveloperOrTestDe-
signer". Note that the figure does not show all
instantiations to keep it readable.

5.2 Requirements S5-S7
• S5: Coding in COBOL always produces
COBOL code.

• S6: All COBOL code is written in COBOL.
• S7: Ann Smith is a developer; she is the only
one allowed to perform coding in COBOL.

These requirements demand that the task type
"CodingInCobol" always produces Cobol code
and that Cobol is the languages used in this task
type. Moreover, Ann Smith is a developer and the
only person authorized to execute this task type.
In the DeepTelos solution, the "Coding" pro-

cess produces "ProgramCode" (relation artifact1).
This is specialized to "CobolCode" for "Coding-
InCobol". Ann Smith is the actor developer, who
can execute "CodingInCobol". The type "Cobol-
Coder" is defined as an enumeration, as discussed
in the solution to requirements P4-P6. The enu-
meration type lifts the instance "AnnSmith" to
the singleton type "CobolCoder", which has just
one instance. The instantiation of "AnnSmith"
to "CobolCoder" is derived via a generic rule of
"Enumeration". The language Cobol is prescribed
to "CodingInCobol" by a constraint:

CodingInCobol in BPMN_Activity isA Coding with
constraint useCobol:
$ forall cic/CodingInCobol
(cic useslanguage Cobol) $

executortype coder : CobolCoder
produces artifact1 : CobolCode

end

CobolCoder in Enumeration
isA Developer with
member m1 : AnnSmith

end

http://dx.doi.org/10.18417/emisa.17.5
https://orcid.org/0000-0002-9421-8566


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5
Evaluating DeepTelos for ConceptBase - A Contribution to the Multi-level Process Challenge 15
Special Issue on Multi-Level Modeling Process Challenge

Figure 11: Requirements S1-S4.

Figure 12: Requirements S5-S7.

Note that "CobolCoder" is also a subclass of
"Actor", hence via the axioms of DeepTelos it
is an instance of "ActorType". This makes the
association "executortype" an allowed class for
the "cobolcoder" link. Thus, the "executortype"
of "CodingInCobol" is "CobolCoder", and "Ann-
Smith" is the only instance of that class.

5.3 Requirements S8-S10
• S8: Testing is performed by a tester and pro-
duces a test report.

• S9: Each tested artifact must be associated to
its test report.

• S10: Software engineering artifacts have a
responsible actor and a version number. This

applies to requirements specification, code, test
case, test report, but also to any future types of
software engineering artifacts.

The "Testing" task type shall be performed by
a "Tester" and it shall produce a "TestReport"
as artifact. A test report is associated to other
software engineering artifacts produced by other
tasks.

Figure 13: Requirements S8-S9.

In the DeepTelos solution, "SWEngineeringAr-
tifact" is the superclass of all artifact types pro-
duced by the ACME process. It is a subclass
of "Document", which is an instance of "Arti-
factType". The DeepTelos rules then derive that
"SWEngineeringArtifact" is also an instance of
"ArtifactType".

http://dx.doi.org/10.18417/emisa.17.5


International Journal of Conceptual Modeling
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5

16 Manfred A. Jeusfeld
Special Issue on Multi-Level Modeling Process Challenge

Figure 14: Requirement S10.

Fig. 14 shows the solution to requirement S10.
The latter is defined to be necessary (1..*) and
single-valued (0..1). These two cardinalities are
defined by appropriate multi-level formulas in the
oHome module as discussed in the introduction.

5.4 Requirements S11-S12
• S11: Bob Brown is an analyst and tester. He
has created all task types in this software devel-
opment process.

• S12: The expected duration of testing is 9 days.

The actor Bob Brown is a tester and analyst.
He is also the creator of all ACME task types.
Furthermore, the expected duration of testing is 9
days.

Figure 15: Requirements S11-S12.

Again, the DeepTelos rules take care of the
necessary derived instantiations and specializa-
tions: "Analyst" and "Tester" are both instances of

"NormalActorType", which is a specialization of
"ActorType". Then, both "Analyst" and "Tester"
are derived instances of "ActorType", and conse-
quently "Analyst" and "Tester" are derived special-
izations of "Actor". Then, "BobBrown" becomes
an instance of "Actor" as well and can instantiate
the "createdby" attribute of "TaskType". "Bob-
Brown" is associated as creator of all ACME task
types.

5.5 Requirements S13
• S13: Designing test cases is a critical taskwhich
must be performed by a senior analyst. Test
cases must be validated by a test design review.

Figure 16: Requirement S13.

The test case document is produced by "Test-
CaseDesign" (a critical task) and used by "TestDe-
signReview" (a validation task). The requirement
that the executor must be a senior analyst is ad-
dressed by a constraint of class "TestCaseDesign":

forall tcd/Task a/Actor (tcd in TestCaseDesign)
and (tcd executor a) ==> (a in SeniorAnalyst)

The definition of "TestCaseDesign" plus all of
the source code and examples are available via the
weblink specified in Sect. 10.1. This completes
the discussion of the ACME case requirements.
Note that the definitions are mostly at the M1 level
(simple classes). Actual executions of the ACME
process type deliver instances of the tasks, i.e.
objects at the M0 level. We provide three sub-
modules "Process1", "Process2", and "Process3"

http://dx.doi.org/10.18417/emisa.17.5
https://orcid.org/0000-0002-9421-8566


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5
Evaluating DeepTelos for ConceptBase - A Contribution to the Multi-level Process Challenge 17
Special Issue on Multi-Level Modeling Process Challenge

for such examples. The first is an example of
the standard ACME process, the second uses the
variant with "CodingInCobol", and the third adds
contents to the software engineering artifacts such
as actual lines of code to the instances "Cobol-
Code". The third submodule "Process3" shows
how to trace dependencies between artifacts in-
cluding dependencies between individual model
elements, e.g. between specific lines of code and
specific requirements.
The diagram in Fig. 17 displays mostly explicit

facts. There are two exceptions. First, the two
"duration" links (indicated by the broken black
lines) are derived by a simple rule subtracting the
start/end attributes of a task (labels "d1" and "d2").
Second, the two instantiation links to the class
"DelayedTask" (which is a so-called query class)
are derived by the constraint of "DelayedTask", see
requirements P12. The two instantiation links have
slightly more dot than the explicit instantiations
in the figure.

6 Example process traces

Instances of tasks form traces of the executions of
process types such as the ACME process. Actual
instances of tasks have a begin date, a finish
date, and are performed by suitable actors. They
also produce and use instances of the artifact
types specified in the ACME process type. The
process instances are at the lowest abstraction
level (M0), though artifacts may actually contain
models (compare Jeusfeld 2011) such as a UML
class diagram.
The example process trace in Fig. 17 shows

a violation of the pattern "critical task (test-
casedesign1) not validated".
Fig. 18 shows transitive dependencies between

model elements (here code lines via design ele-
ments to requirements). Model traceability was
not included in the list of requirements of the
challenge. However, it comes as an inexpensive
bonus by a small set of rules. One rule derived
a direct dependency between artifacts, if there
is a task that produces an artifact from a used
artifact. Secondly, this direct dependency is made

transitive by a transitive closure rule. The precise
solution is included in the sources accessible via
the web page listed at the end of the paper (see
Sect. 10.1).

7 Discussion
DeepTelos is a straightforward extension of Telos
and defined by just 5 deductive rules interpreted
by a Datalog engine.

7.1 Employed levels
DeepTelos has no level numbers and no potencies.
Instead, levels are introduced by declaring a rela-
tion like (Task IN TaskType). So, the instances of
"TaskType" form one level below "TaskType", and
the instances of "Task" form another level below
"Task". The main levels of this solution are shown
in Fig. 5. As discussed earlier, one can identify the
4 UML-ish levels M0 to M3 in our solution plus
the omega level ("Proposition"). In this solution,
we had no chain of most-general instances such as
(m1 IN m2), (m2 in m3). This indicates that there
are only potencies 1 and 2 used for attributes in
our solution. Consider the position of "Node" in
Fig. 5 as a level on top of "ProcessElementType"
to create such a chain. DeepTelos spans levels
by the (m IN c) predicate, but they are existing in
parallel and have no static level number8 .

7.2 Cross-level relationships and
cross-level constraints

Such relationships were always possible in Te-
los. DeepTelos makes this feature even more
useful, since such relations can be defined be-
tween objects that stand in most-general instance
relation. For example, the object "TaskType" has
a relation "createdBy" to "Actor". "Actor" is a
most-general instance of "ActorType" and is re-
lated to "TaskType" by other (same-level) relations.
As mentioned earlier, we have formally no static
level numbers. Instead, we (intuitively) derive

8 As shown in http://conceptbase.cc/deeptelos, one can de-
fine objects: (M0Object IN M1Object), (M1Object IN
M2Object), (M2Object IN M3Object) to force objects into
UML-ish levels. There is however no apparent advantage to
do so.

http://dx.doi.org/10.18417/emisa.17.5
http://conceptbase.cc/deeptelos


International Journal of Conceptual Modeling
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5

18 Manfred A. Jeusfeld
Special Issue on Multi-Level Modeling Process Challenge

Figure 17: Computing delayed tasks.

Figure 18: Transitive dependencies between artifacts.

the numeric level of an object by the chain of
instantiations.
For example, "BobBrown" has no instance but

is instance of "Actor", "Actor" is (most-general)
instance of "ActorType", which is an instance of
"Node". Hence, we would associate "BobBrown"
to level M0, "Actor" to M1, "ActorType" to M2,
and "Node" to M3. In general such a calculation is
not delivering unique level numbers in DeepTelos.
But the intuition is still useful. Orthogonal to all
these levels is the omega level: objects of any
level are also instances of "Proposition". One may
interpret this level as the linguistic level of Telos.
Cross-level constraints are also used in our so-

lution, e.g. to define the "authorizedFor" relation
as solution of requirement P17 (see Sect. 4.6):

forall a/Actor t/Task T/AuthorizedTaskType
(t in T) and (t executor a)

==> (a authorizedFor T)

The variable a ranges over the "Actor" level
(M1) and T over the "TaskType" level (M2). The
relation "authorizedFor" is also a cross-level rela-
tionship. Since Telos regards all explicit informa-
tion as objects, such constraints are technically no
different from other constraints.

7.3 Integrity mechanism
Integrity constraints are specified as shown above
as first-order formulas, which are compiled to
Datalog rules using the algorithm developed by
Lloyd and Topor (1984). Datalog defines the
minimal Herbrand model of a Datalog program
via a fixpoint engine. ConceptBase includes such
an engine. Technically, the integrity constraints
are formally negated to derive the violation of the
constraint ("denial form"). If the violation can be
derived, the corresponding update to the database
(i.e. Telos models) is rejected. The Datalog
engine uses the closed-world assumption (CWA)

http://dx.doi.org/10.18417/emisa.17.5
https://orcid.org/0000-0002-9421-8566


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5
Evaluating DeepTelos for ConceptBase - A Contribution to the Multi-level Process Challenge 19
Special Issue on Multi-Level Modeling Process Challenge

for handling negated predicates. This yields a fast
implementation but is not equivalent to classical
negation. However, the advantage of the CWA is
that it naturally computes the transitive closure of
relations. Rules defining transitive closures play
an important role in (software process) modeling,
e.g. to realize traceability.
For example, dependencies between artifacts

can be traced via a transitive closure. In this solu-
tion we also used queries to formulate constraints,
see "CriticalBut-NotValidatedM0/M1" in Sect. 2.
Queries cannot be violated but can be used to
return violators as their answer. This is in many
cases the preferred way in ConceptBase to define
constraints. It allows working with incomplete
models that technically violate some constraints
while being completed. A formal integrity con-
straint would forbid such models. A query can be
called at any time and the modeler can then change
the models to reduce the number of violators.
Cardinality constraints are defined via the "nec-

essary", "single" categories (compare Fig. 14).
The constraints are maintained by ConceptBase.
A violation leads to the rollback of the model
update that first introduced the violation. Car-
dinality constraints can be formulated at any ab-
straction level since ConceptBase represents all
explicit model elements as objects. For example,
classes and metaclasses are all objects (instances
of "Proposition").

7.4 Abstraction
The solution is organized in modules. The upper-
level modules have more abstract definitions than
the lower level models. For example, the "DeepTe-
los" module defines the DeepTelos constructs.
They can be used in any multi-level modeling
project (e.g. the "CarExample"). The "DeepTe-
los" module is a highly re-usable and not domain-
dependent. The "ProcessModels" module con-
tains the definition of processes (tasks, actors,
artifacts, etc.). This can be re-used to the extent
to which this conceptualization of processes is
deemed generic enough. In our solution, we in-
tegrated an existing BPMN meta model into this
module to save modeling time.

In the original BPMN meta model, a Petri net
like semantics was inherited by the BPMN meta
model: tasks could be triggered and that led to
a token flow to the next task. We used an active
rule (ECA) to implement the token flow semantics.
However, this is disabled in this solution because
the processes of the challenge have more of a "col-
ored Petri net" semantics. The task instances (M1)
could be produced by triggering an active rule that
realizes the semantics of the corresponding task
type (setting dates, input/output artifacts, executor,
...). Since this cannot be automated due to missing
data, we abstained from realizing such dynamic
semantics. Still, the "ProcessModels" module is
abstract enough to be reused for other process
modeling domains. The module "CodingProcess"
defines the ACME process example. This is ap-
parently not very reusable in other domains since
it is a toy example.

7.5 Deep characterization
Consider as example the two levels (Task IN Task-
Type). The two levels are closely related via
the DeepTelos rules. In particular each instance
of "TaskType" becomes a subclass of "Task".
As mentioned earlier, DeepTelos replaces po-
tencies by most-general instances. So, a prop-
erty such as "duration" is defined at the object
"Task", not "TaskType". One could see the pair
"Task+TaskType" as a single abstract entity. Then,
the attribute "duration" is indeed defined at an ab-
stract level and characterizes objects at the UML-
ish M0 level.
Another aspect of deep characterization are

the multi-level rules used in this solution. They
range over three or more instantiation levels and
are partially evaluated to sets of rules ranging
over just two levels. For example, the "necessary"
construct defined the "1..*" multiplicity by a single
formula. It characterizes all uses of the necessary
construct.
Note that DeepTelos itself is defined by multi-

level rules. Amulti-level rule is a rulewhose labels
and variables refer to objects of more than two
abstraction levels. For example, in "mrule1" the
label "Proposition" refers to an object at the omega

http://dx.doi.org/10.18417/emisa.17.5


International Journal of Conceptual Modeling
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5

20 Manfred A. Jeusfeld
Special Issue on Multi-Level Modeling Process Challenge

level. The variable "c" refers to an instance of
"Proposition", and the variable "x" to an instance
of "c". Hence, this rule refers to objects at three
abstraction levels. Multi-level rules are partially
evaluated by ConceptBase into a set of equivalent
two-level rules. The main reason for this partial
evaluation is the efficiency of rule evaluation.
Another benefit is the ability to extract the specific
set of two-level rules that govern a given multi-
level model. This may support the mapping of
multi-level models into a set of two-level models.
This is however not yet supported by our system.

7.6 Reuse
This aspect was already discussed in the previous
paragraphs. The reuse is supported by the mod-
ule structure. The source code of the modules
(Telos sources) is shared at http://conceptbase.cc/
emisaj2021challenge/SOURCES.
A module source can be directly inserted into

a ConceptBase database and then be used. The
sources are compiled to a set of facts/objects plus
a set of (executable) rules. One can regard them
as logical theories. Like with logical theories,
one can combine them provided that integrity
constraints are satisfied by the combination. In
the case of this challenge, we also reused existing
Telos sources (BPMN) and integrated them into
the DeepTelos concepts. The formalization of
BPMN in Telos was done prior to this challenge
and included a mapping to Petri nets including
their semantics (firing enabled transitions). This
semantics is thus also inherited in our solution,
i.e. one can evaluate the BPMN process models
in our solution by firing "enabled" tasks.

7.7 Semantics
ConceptBase uses a Datalog-neg engine to eval-
uate rules and constraints. The axioms for the
basic constructs for specialization (c isA d), at-
tribution/relations (x m y), and instantiation (x
in c) are also expressed as rules and constraints.
The semantics of a model in ConceptBase is the
minimal fixpoint interpretation (=extension) for
the logical predicates occurring in rules and con-
straints, as computed by the Datalog engine. The

DeepTelos rules "mrule1" to "mrule5" (Sect. 2.2)
are subject to the Datalog engine as well, deriving
particular solutions to the DeepTelos specializa-
tion (c ISA d) and the Telos instantiation predicate
(x in c). Domain-specific rules and constraints
are treated in the same way as any rule or con-
straint in ConceptBase. For example, there are
rules for the predicate (a authorizedFor t). The
extension specifies which actor is authorized for
which task, which is evaluated at the M0 level
(here: process traces). The extension is computed
by ConceptBase.
The Telos specialization relationship (c isA d) is

axiomatized by Jeusfeld (2005). One of the axioms
realizes the Nixon diamond pattern for attributes
and relations: for any combination of an object x
and a class attribute/relation label m, the class c
that defines the most specific m is unique. This
axiomatization supports substitutability: wher-
ever an instance of the superclass d is allowed,
an instance of the subclass is also allowed. Note
however that Telos does not support class methods.
Substitutability is limited to rules, constraints, and
queries. The DeepTelos specialization (c ISA d)
shall behave like the Telos specialization, though
we did not yet transcribe all axioms for (c isA d)
to (c ISA d). The only reason to introduce the
DeepTelos specialization is an implementation
limitation for the Telos specialization in Concept-
Base: it does not support user-defined rules for
the Telos specialization predicate.

7.8 Incremental updates
ConceptBase supports incremental updates at any
instantiation level at any time. The Telos axioms
as implemented by ConceptBase (Jeusfeld 2009)
assign at least the builtin class "Proposition" to
any object. Hence, any object does have at least
the class "Proposition" and can use the features
of "Proposition" to assign attributes, relations,
sub/superclasses, and classes/instances at any time.
In fact, one could start to define objects at the
UMLM0 level first and attach its M1-level classes
subsequently. Similarly, the M2-level of M1-level
objects could be definedwhen theM1-level objects
are already defined (as instances of Proposition).

http://dx.doi.org/10.18417/emisa.17.5
https://orcid.org/0000-0002-9421-8566
http://conceptbase.cc/emisaj2021challenge/SOURCES
http://conceptbase.cc/emisaj2021challenge/SOURCES


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5
Evaluating DeepTelos for ConceptBase - A Contribution to the Multi-level Process Challenge 21
Special Issue on Multi-Level Modeling Process Challenge

In practice, themodeling of the different abstrac-
tion levels usually starts with the more abstract
levels. But, the more abstract levels can be ex-
tended and modified as long as the builtin axioms
and user-defined integrity constraints are satisfied.
Rules, constraints and queries can also be defined
at any time. They can be deleted as well or be
replaced by revisions at any time.

7.9 Lessons learned
One challenge with using ConceptBase was that
recursive rules needed to be evaluated while an
update to a model was processed. ConceptBase
originally disabled “tabling” (caching the exten-
sion of derived predicates) of the Datalog-engine
during updates. That could lead to infinite loops
since tabling is essential to avoid infinite loops
for recursive predicates. We addressed this loop-
hole by temporarily re-activating tabling during
updates. Another lesson learned was that the
formula compiler of ConceptBase ignored the spe-
cialization facts derived by DeepTelos to check
the typing of predicates. This forced us initially
to some awkward definitions for some queries and
redundant specialization facts. This weakness has
been removed.
Finally, the more most-general instances are de-

fined, the more rules and constraints are generated
by the partial evaluator. Hence, it may be more
efficient not to partially evaluate the DeepTelos
rules for very large models.

7.10 Further aspects
The partial evaluator generated about 150 two-
level rules from the 6 multi-level rules. The
number of generated rules depends on the number
of instances and sub-classes associated to objects
matching the predicate (m IN c). Still, one could
use the two-level rules instead of the DeepTelos
rules to carve out sub-sets of the modules, e.g.
just the CodingProcess plus its sub-module.
Some additional features were added to the

process model, in particular to check delayed
tasks. This showcases the ability of ConceptBase
to evaluate arithmetic and function expressions.

ConceptBase was originally developed as de-
sign repository for data-intensive applications,
project DAIDA (Jarke 1993). The metameta
model of the design repository had the con-
cepts "DesignDecision" (="Task"), "DesignOb-
ject" (="Artifact"), and "DesignTool" (roughly
"Actor"). It did also feature all abstraction levels
used in the challenge. The main drawback was
the missing multi-level modeling aspect. This
led to many instantiations of the produces/uses
relations, while in our solution, we only need to
define it for "TaskType" and "Task". The DAIDA
project also pioneered the fine-grain traceability
of requirements to code lines. An updated version
of this feature is available from Jeusfeld (2009,
pp. 160ff).

8 Comparison to MULTI 2019 challenge
solutions

The multi-level process challenge was first
published for the MULTI 2019 workshop
(https://www.wi-inf.uni-duisburg-essen.de/
MULTI2019/), where it attracted three solu-
tions using different multi-level modeling tools.
In this section, we discuss these competing
solutions and highlight the main differences to the
solution with DeepTelos.
Somogyi et al. (2019) presented a solution for

the process challenge based on the DMLA sys-
tem. DMLA features as main construct step-wise
refinement of class attributes, which is kind of a
combination of instantiation (when some attribute
slot is getting a value) and specialization (when
slots are cloned to the refined class). DMLA is
level-agnostic like DeepTelos. DeepTelos how-
ever does clearly differentiate instantiation from
specialization. Both approaches support cross-
level relations (i.e. between classes at different
abstraction levels). DMLA checks conformance
of objects to the class level by its Bootstrap en-
gine (an abstract state engine). DeepTelos relies
on integrity constraints expressed in a first-order
logic syntax to perform this function.

http://dx.doi.org/10.18417/emisa.17.5
https://www.wi-inf.uni-duisburg-essen.de/MULTI2019/
https://www.wi-inf.uni-duisburg-essen.de/MULTI2019/


International Journal of Conceptual Modeling
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5

22 Manfred A. Jeusfeld
Special Issue on Multi-Level Modeling Process Challenge

Rodriguez andMacias (2019) present a solution
to the challenge with the MultEcore system. Mult-
Ecore has explicit levels with three-fold potencies
for attributes. Cross-level relations are realized by
so-called META blocks. Objects may have a sec-
ondary type, which can be used to attach attributes
applicable to objects of multiple abstraction levels.
MultEcore appears to require a certain amount of
duplication of attributes. An important advantage
of MultEcore is its embedding into the Eclipse
Modeling Framework (EMF). Hence, MultEcore
is de facto a multi-level extension to the Eclipse
modeling ecosystem. DeepTelos allows multiple
classification (one object may have any number
of classes) and multiple generalization (on class
can have several superclasses), which was used
to address the challenges of relating objects from
different abstraction levels and to assign attributes
to objects at any abstraction level (e.g. the creation
time of an object).
Frank (2019) presents another level-based so-

lution to the challenge using the FMMLx sys-
tem. FMMLx is based on the XModeler tool,
which realizes the XCore meta model. XModeler
has an expressive constraint language extending
the object-constraint language (OCL). By this,
FMMLX can not only formalize the semantics
of the multi-level constructs but can also evalu-
ate method specifications for objects. In contrast
to DeepTelos, FMMLx realizes single classifica-
tion (an object can only have one direct class)
and also single generalization. Telos as imple-
mented by ConceptBase offers recursive function
definitions to computes the values of certain nu-
meric attributes, e.g. the duration of tasks in a
process trace. While FMMLX is conceptually
close to object-oriented programming languages,
DeepTelos follow more the knowledge representa-
tion/database tradition.
This paper is an extension to the MULTI 2019

challenge solutionwith DeepTelos (Jeusfeld 2019).
The main technical difference is that the new solu-
tion now utilizes enumeration classes to avoid a
certain redundancy of the MULTI 2019 with re-
spect to the "executortype" feature (requirements
P4 to P6 of the challenge). Furthermore, the

new challenge asks for a solution to add a feature
"lastupdate" to objects at any abstraction level.
This was rather easily solved since Telos as im-
plemented by ConceptBase assigns a transaction
time to any explicit fact stored in the database.

9 Critical reflections
The process modeling challenge is rather demand-
ing for multi-level conceptual modeling because
processes are dynamic and their semantics are not
as straightforward as the semantics of static data
models. The execution of process models leads
to artifacts such as instances of tasks. If the pro-
cess model is about creating software engineering
models, then the instances of tasks are associated
to models. Thus, the challenge breaks the strict
stratification of modeling levels familiar within
the UML context. This complication turned out
not to be an issue with DeepTelos because the
underlying Telos language is level-agnostic. Any
notion of level has to be explicitly defined. No
axiom in Telos forbids to associate a metaclass to
a class, or to an individual object.
Another strength of DeepTelos is the ability to

use the rule/constraint/query language to define
the semantics of constructs and to analyze multi-
level models. For example, the traceability of
model elements discussed in Sect. 6 is defined
by simple deductive rules realizing the transitive
closure of base relations.
DeepTelos defines rules to derive specializa-

tions from powertype-relations ("most-general in-
stances"). This appears elegant at first sight but
is also computationally demanding. In Concept-
Base, a partial evaluation mechanism is employed
to compile the rules to a set of simpler rules that
are most efficient to evaluate. However, this mech-
anism reaches its limitation when many rules are
generated by the compiler. So, while the require-
ments of the process modeling challenge were met,
the solution with ConceptBase is not satisfactory
in terms of efficiency. A large number of rules
implies complex computations for large models.
Another suboptimal aspect is that DeepTelos

does not drastically reduce accidental complex-
ity. In DeepTelos (and other powertype-based

http://dx.doi.org/10.18417/emisa.17.5
https://orcid.org/0000-0002-9421-8566


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5
Evaluating DeepTelos for ConceptBase - A Contribution to the Multi-level Process Challenge 23
Special Issue on Multi-Level Modeling Process Challenge

approaches), the numeric levels of classes, at-
tributes and relations are replaced by additional
classes in themodel (e.g. Task vs. TaskType, Agent
vs. AgentType, etc.). In some cases, the relations
at the metaclass level needed to be duplicated
one level below, including powertype relations
between the relations themselves. This should be
hidden in more expressive constructs. This paper
introduced one such construct, the enumeration
class. It allows lifting individual objects to the
class level as a generalization of singleton classes.
It may indeed be useful to investigate more such
constructs. If it is true that level-based approaches
better reduce the accidental complexity, then we
should investigate whether their constructs can be
mapped to powertype-based models. Approaches
like DeepTelos that are based on logic are suppos-
edly more elegant in querying large models.
During the development of the solution, some

weaknesses of the multi-level partial evaluator of
ConceptBase became apparent. While Concept-
Base allows changing objects at any abstraction
level at any time (including deleting them), this
has put the partial evaluator to its limits. It main-
tains a dependency graph between code that is
generated from the formulas to maintain the ex-
ecutable rules. This graph can become cyclic
and then becomes prone to let the evaluator run
into a loop. This can be avoided by defining the
most-general instance relations at the beginning
and then not change them afterwards. Still, it was
an unpleasant experience. The partial evaluator
is also a bit time consuming. It can take a few
seconds to compile all modules. Once compiled,
the execution is relatively fast on small models.
Different to Datalog, arithmetic functions are

supported by ConceptBase. In general, functions
can generate new tokens (numbers) and thus com-
promise the guarantee that Datalog rules are safe,
i.e. their extensions can be computed in finite
time. In the process modeling challenge, some
arithmetic functions had to be introduced, e.g. to
compute the actual duration of a task execution.
So, in general the DeepTelos solution of the pro-
cess could be unsafe. A manual inspection is

needed to check that the arithmetic functions do
not cause any harm.
An interesting exercise was to revisit our old

software process data model (see Fig. 3) and
reformulate it as a multi-level model. In fact,
we did not fully realize back in 1990 that the
constructs at the highest abstraction level needed
to be instantiated two levels below. Themulti-level
variant easily solves this shortcoming.
The module facility of ConceptBase was very

useful to prepare the solution to this challenge.
It allowed separating the definition of DeepTe-
los from the definitions of the example process
modeling languages and their instances. Just by
placing a multi-level model under the module for
DeepTelos, all its axioms become applicable.

10 Conclusions

We provided a solution for the process modeling
challenge. All requirements were met. We also
provided an example process execution to high-
light how the ACME process can be traced and
monitored.
The solution does have some elegance to it,

e.g. directly using the terms actor, actor types etc.
in the solution. We remain unconvinced that we
saved a lot of coding via the DeepTelos multi-
level modeling approach. The advantage seems to
be more in reuse rather than avoiding accidental
complexity. This statement applies to comparison
of DeepTelos vs. Telos, not to DeepTelos vs. a
set of equivalent two-level models. For example,
it was easy to embed an existing BPMN core meta
model into the constructs of this challenge by
using standard specialization.
A key advantage of ConceptBase was that it nat-

urally supports any number of instantiation levels.
Another advantage is that the object "Proposition"
is fully accessible to users of ConceptBase to add
new abstract constructs extending the attribution,
instantiation and specialization constructs.

10.1 Access to the source code
The source code of our solution to-
gether with numerous examples and

http://dx.doi.org/10.18417/emisa.17.5


International Journal of Conceptual Modeling
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5

24 Manfred A. Jeusfeld
Special Issue on Multi-Level Modeling Process Challenge

further documentation is available at
http://conceptbase.cc/emisaj2021challenge.

See sub-directory SOURCES for the complete
source code of all modules listed in Fig. 4. All
model diagrams in this paper are created by the
ConceptBase graph editor and are also made
available as graph files from the web page. Graph
files are self-contained views of models stored in
ConceptBase.

References
Atkinson C., Gutheil M., Kennel B. (2009) A
Flexible Infrastructure for Multilevel Language
Engineering. In: IEEE Trans. Software Eng. 35(6),
pp. 742–755

Atkinson C., Kühne T. (2001) The Essence ofMul-
tilevelMetamodeling. In: UML2001 - TheUnified
Modeling Language, Modeling Languages, Con-
cepts, and Tools, 4th International Conference,
Toronto, Canada, October 1-5, 2001, pp. 19–33

Atkinson C., Kühne T. (2008) Reducing accidental
complexity in domain models. In: Softw. Syst.
Model. 7(3), pp. 345–359

Ceri S., Gottlob G., Tanca L. (1989) What you
Always Wanted to Know About Datalog (And
Never Dared to Ask). In: IEEE Trans. Knowl.
Data Eng. 1(1), pp. 146–166

Fonseca C. M., Almeida J. P. A., Guizzardi G.,
de Carvalho V. A. (2018) Multi-level Concep-
tual Modeling: From a Formal Theory to a Well-
Founded Language. In: 37th International Conf.
Conceptual Modeling, ER 2018, Xi’an, China,
October 22-25, 2018. Springer, pp. 409–423

Frank U. (2014) Multilevel Modeling - Toward
a New Paradigm of Conceptual Modeling and
Information Systems Design. In: Business & In-
formation Systems Engineering 6(6), pp. 319–337

Frank U. (2019) The MULTI 2019 Process Chal-
lenge - A Solution based on the FMMLx. Presen-
tation at MULTI 2019

Gonzalez-Perez C., Henderson-Sellers B. (2006)
A powertype-based metamodelling framework. In:
Softw. Syst. Model. 5(1), pp. 72–90

Jarke M. (ed.) Database Application Engineering
with DAIDA. Research Reports ESPRIT. Springer

Jarke M., Gallersdörfer R., Jeusfeld M. A., Staudt
M., Eherer S. (1995) ConceptBase - A Deductive
Object Base for Meta Data Management. In: J.
Intell. Inf. Syst. 4(2), pp. 167–192

Jarke M., Jeusfeld M. A., Rose T. (1990) A soft-
ware process data model for knowledge engineer-
ing in information systems. In: Inf. Syst. 15(1),
pp. 85–116

Jeusfeld M. A. (2005) Complete List of O-Telos
Axioms. Online: http://merkur.informatik.rwth-
aachen.de/ pub/ bscw.cgi / d1228997/ O- Telos-
Axioms.pdf

Jeusfeld M. A. (2009) Metamodeling and method
engineering with ConceptBase. In: Jeusfeld M. A.,
Jarke M., Mylopoulos J. (eds.) Metamodeling for
Method Engineering. MIT Press, pp. 89–168

Jeusfeld M. A. (2011) A Deductive View on
Process-DataDiagrams. In: 4th IFIPWG8.1Work-
ing Conf. on Method Engineering, Paris, France,
April 20-22, 2011, pp. 123–137

JeusfeldM. A. (2019) DeepTelos for ConceptBase:
A Contribution to the MULTI Process Challenge.
In: 22nd ACM/IEEE MODELS Conf., Compan-
ion, Munich, Germany, September 15-20, 2019.
IEEE, pp. 66–77

Jeusfeld M. A. (2022) ConceptBase.cc User Man-
ual - Version 8.2. Last Access: http://conceptbase.
sourceforge.net/userManual82/CB-Manual.pdf

Jeusfeld M. A., Almeida J. P. A., Carvalho V. A.,
Fonseca C. M., Neumayr B. (2020) Deductive
reconstruction of MLT* for multi-level modeling.
In: ACM/IEEE 23rd MODELS Conf., Canada,
18-23 October, 2020, Companion Proceedings,
83:1–83:10

Jeusfeld M. A., Neumayr B. (2016) DeepTelos:
Multi-levelModelingwithMostGeneral Instances.
In: Conceptual Modeling - 35th International Con-
ference, ER 2016, Gifu, Japan, November 14-17,
2016, pp. 198–211

http://dx.doi.org/10.18417/emisa.17.5
https://orcid.org/0000-0002-9421-8566
http://conceptbase.cc/emisaj2021challenge
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d1228997/O-Telos-Axioms.pdf
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d1228997/O-Telos-Axioms.pdf
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d1228997/O-Telos-Axioms.pdf
http://conceptbase.sourceforge.net/userManual82/CB-Manual.pdf
http://conceptbase.sourceforge.net/userManual82/CB-Manual.pdf


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 5 (2022). DOI:10.18417/emisa.17.5
Evaluating DeepTelos for ConceptBase - A Contribution to the Multi-level Process Challenge 25
Special Issue on Multi-Level Modeling Process Challenge

Jeusfeld M. A. et al. (2021) ConceptBase User
Manual Version 8.1. Online: http://conceptbase.
sourceforge.net/userManual81/

Koubarakis M., Borgida A., Constantopoulos P.,
DoerrM., JarkeM., JeusfeldM. A., Mylopoulos J.,
Plexousakis D. (2021) A retrospective on Telos
as a metamodeling language for requirements
engineering. In: Requir. Eng. 26(1), pp. 1–23

de Lara J., Guerra E., Cobos R., Moreno-Llorena
J. (2014) Extending Deep Meta-Modelling for
Practical Model-Driven Engineering. In: Comput.
J. 57(1), pp. 36–58

Lloyd J. W., Topor R. W. (1984) Making Pro-
log more Expressive. In: J. Log. Program. 1(3),
pp. 225–240

Mylopoulos J., Borgida A., Jarke M., Koubarakis
M. (1990) Telos: Representing Knowledge About
Information Systems. In: ACM Trans. Inf. Syst.
8(4), pp. 325–362

Odell J. J. (1998) Advanced object-oriented anal-
ysis and design using UML In: Cambridge Uni-
versity Press chap. Power types, pp. 23–32

Partridge C., de Cesare S., Mitchell A., Odell J.
(2018) Formalization of the classification pattern:
survey of classification modeling in information
systems engineering. In: Softw. Syst.Model. 17(1),
pp. 167–203

Rodriguez A., Macias F. (2019) Multilevel Mod-
elling with MultEcore: A Contribution to the
MULTI Process Challenge. In: 22nd ACM/IEEE
MODELS Conf., Companion, Munich, Germany,
September 15-20, 2019. IEEE, pp. 152–163

Somogyi F. A., Mezei G., Urbán D., Theisz
Z., Bácsi S., Palatinszky D. (2019) Multi-level
Modeling with DMLA - A Contribution to the
MULTI Process Challenge. In: 22nd ACM/IEEE
MODELS Conf., Companion, Munich, Germany,
September 15-20, 2019. IEEE, pp. 119–127

http://dx.doi.org/10.18417/emisa.17.5
http://conceptbase.sourceforge.net/userManual81/
http://conceptbase.sourceforge.net/userManual81/

