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Abstract. The MULTI Challenges are intended to encourage the Multi-Level Modelling research community
to submit solutions to the same, well described problem. This paper presents one solution in the context
of process management, where universal properties of process types along with task, artefact and actor
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criteria established for the MULTTI Process chal-
lenge (Almeida et al. 2021, 2019). MuLTECORE
enables multi-level modelling through the Eclipse
Modelling Framework (EMF) (Steinberg et al.
2008), and therefore allows reusing the existing
EMF tools and plugins. The MuLTECORE tool is
available on its webpage! and the Eclipse projects
which contain all the artefacts of our solution to
this challenge can be downloaded from a GitHub
repository.?

With MuLTEcorEg, modellers can create flex-
ible multi-level structures of models that can in

1 Introduction

Research in Multi-Level Modelling (MLM) is con-
tinuously increasing and MLM approaches and
tools are getting more mature and varied. The
MULTI challenges were created to enhance discus-
sion and facilitate contributions within the MLM
community. Encouraging researchers to submit
solutions to a common challenge makes it pos-
sible to compare them and fosters improvements
towards the same set of common goals. In this
paper, we use the MULTEcoORE tool (Macias et al.
2016) to create models by applying various multi-

level constructions, which are key to fulfilling the turn be composed with each other to include ad-

ditional aspects. This process is mainly done by
defining multi-level hierarchies, where usually
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E-mail. arte@hvl.no the main one is called the application hierarchy
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and the additional ones are called supplementary
hierarchies. Using parallelism to model Software

I MuLTEcoRE website: https://ict.hvl.no/multecore/

2 GitHub repository with all the artefacts of the MuLTECORE
solution: https://github.com/MultEcore/no.hvl.multecore.
examples.emisa.process2021


http://dx.doi.org/10.18417/emisa.17.8
arte@hvl.no
https://ict.hvl.no/multecore/
https://github.com/MultEcore/no.hvl.multecore.examples.emisa.process2021
https://github.com/MultEcore/no.hvl.multecore.examples.emisa.process2021

International Journal of Conceptual Modeling

Vol. 17, No. 8 (2022). DOI:10.18417/emisa.17.8

Alejandro Rodriguez, Fernando Macias

Special Issue on Multi-Level Modeling Process Challenge

Product Lines, an application hierarchy could
be understood as the base language module in
the context of a language product line (Méndez-
Acuiia et al. 2016). Supplementary hierarchies
can therefore be used to add new dimensions to the
application one, with concepts that are not part of
the latter’s domain. An application hierarchy can
include several supplementary hierarchies which
can also be removed without introducing incon-
sistencies or affecting the integrity of the models.

We also take advantage in this paper of the
newest features in MULTEcoRE, some of which
are part of our current development efforts. In
particular, we discuss the specification of con-
straints (static semantics) and behaviour (dynamic
semantics) of the models by applying MuLT-
EcorEe’s model transformation language, which
we call Multilevel Coupled Model Transforma-
tions (MCMTs) (Macias 2019; Macias et al. 2019;
Rodriguez et al. 2019a). The key aspects of our
framework which have been applied to solve the
challenge are summarised as follows:

* The definition of multi-level hierarchies in a
flexible way has allowed us to create tree-like
structures where the commonalities of the lan-
guage are defined once, and the branches can
be separately specified and instantiated in a con-
trolled manner by using the notion of potency,
which restricts the levels at which an element
can be used to type other elements. Moreover,
we use our three-valued definition of potency,
which is able to unify consistently the kinds
of potency defined, among others, in Atkinson
and Gerbig (2016) and Lara and Guerra (2010).

* Being able to define supplementary hierarchies
helped us with one of the requirements of the
challenge (time-stamping nodes).

* The combination of inheritance (i.e. special-
isation) and typing (i. e. instantiation) relations,
which can be used together consistently in our
approach, has been exploited to address certain
requirements.

* We benefited from the two main applications
of MCMTs to both check the structural correct-
ness of the modelled hierarchies and to specify
behavioural descriptions of the bottom-most
models.

¢ An infrastructure that connects MULTECORE
with the MAUDE system (Clavel et al. 2007)
allowed us to execute our models applying the
behavioural MCMT rules.

In this edition, the challenge concerns the do-
main of process management, which includes both
the particular instantiations of elements (e. g., pro-
cess instances, task occurrences), and the univer-
sal aspects of the domain (e. g. process definitions,
task types). Note that we use British English
throughout the paper, however, we use the ori-
ginal US English of the challenge description for
quotations and for the names of our elements in
the models. For example the reader may find
artifact being used instead of artefact in some con-
texts. Respondents to the challenge are required
to define, first, universal concepts for process man-
agement, and second, an application of such a
conceptualisation in the scope of a particular soft-
ware engineering process. Optionally, they can
also capture a different scope for the insurance
domain. In order to demonstrate the flexibility
of our framework, we have defined a multi-level
hierarchy where both domains are included.

The rest of this paper is organised according
to the structure recommended in the challenge
description, as follows. We describe in Sect. 2 the
technological aspects of MuLTEcoRE. In Sect. 3,
we analyse the challenge description and clarify
all the assumptions and decisions that we have
made in order to fulfil the proposed requirements.
We detail in Sect. 4 all the specific elements which
are contained in the multi-level hierarchies of our
solution, presenting both the software engineering
and the insurance domains. We also discuss how
we handle cross-level constraints and the oper-
ational semantics. In Sect. 5, we discuss each
requirement and describe how we addressed it in
our solution. In Sect. 6, we assess the choices
we have made and describe how certain aspects
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of our approach facilitate the resolution of the
requirements. We discuss in Sect. 7 related work
with respect to other solutions developed for past
editions of the challenge, both in terms of the
approaches used and the solutions developed. Fi-
nally, we summarise and conclude the paper in
Sect. 8.

2 Technology

Our solution has been entirely modelled using the
MuLTEcoRrE tool (Macias et al. 2017; Rodriguez
and Macias 2019), formally specified in Macias
(2019) and Wolter et al. (2019). The MuLTECORE
tool is designed as a set of Eclipse plugins, giving
access to its mature tool ecosystem (through integ-
ration with EMF) and incorporating the flexibility
of MLM. In the MuLTECORE approach (Macias et
al. 2019), the abstract syntax is provided by a set of
models that compose the language. The semantics
in MuLTEcoRrE (behaviour and constraints) can
be specified by using Multilevel Coupled Model
Transformations. Using the MuLTECORE tool
modellers can: (i) define multi-level hierarch-
ies using the model graphical editor; (ii) define
MCMTs using the textual DSL for rule edition;
and (iii) execute and analyse specific models. The
execution of MuLTEcoRrRE models relies on a
bidirectional transformation of the models into
MAUDE (Clavel et al. 2007) specifications. MAUDE
is the most efficient engine for rewriting modulo
(combinations of) associativity, commutativity,
and identity (Durdn and Garavel 2019; Garavel et
al. 2018). MAUDE’s customisation power has pro-
moted a minimal representation distance which fa-
cilitates the bidirectional transformation between
MuLTEcCoRE and MAUDE.

It has also allowed us to directly translate the
multi-level setting avoiding to flatten it to two-
level, which would be necessary if we wanted
to use other off-the-shelf model transformation
tools, such as aATL—these could be adapted to
MLM but not straightforwardly (Atkinson et al.
2015). Furthermore, by using MAUDE we can
directly take advantage of several of its tools for

execution and analysis. When we design a multi-
level DSML, we first define its syntax/structure
through a multi-level modelling hierarchy and then
we specify its semantics via the MCMTs. At the
moment, and from an user’s point of view, multi-
level hierarchies are designed using a Sirius-based
graphical editor for each model that conforms
it. Conversely, MCMTs are specified through an
XTEXT-based textual DSL in a single file that
contains all the rules associated with a hierarchy.
Both kinds of syntax are equivalent, however, and
we believe that the graphical one is more suitable
for illustration and explanation of the models and
rules, and therefore is the only one we use in the
rest of this paper for both hierarchies and MCMT
rules. But for the purpose of specifying bigger
models and more complex transformation rules,
we also believe that the textual syntax is more
concise and manageable, and we plan to adapt it in
the future for the design of multi-level hierarchies,
in addition to MCMTs. A generic depiction of a
node and an edge using the graphical syntax is
shown in Fig. 1, for illustrative purposes. Nodes
in MuLTECORE are depicted as yellow rectangles
with the node’s name on the upper part and a
lower section for its attributes. The type of the
node is depicted as a blue ellipse on the top border
of the node, and if it has a supplementary one
(see Sect. 2.2), it is depicted on the right side
in a green ellipse. A red box also on the top
contains the three values, separated by dashes,
used by MurLTECORE to specify potency and
therefore control the levels in which instances of
the node can be created, as explained in Sect. 2.3.
For edges, the name and potency are depicted
together, separated by the ‘@’ symbol, as an
annotation to the arrow that represents them. The
type also appears as an annotation, but in italics.
Since we depict each model in our solution in
a separate figure (and different editor windows
in the tool), there is no need to have a graphical
representation for models themselves. However,
we do represent them as rectangles with their
names inside in Fig. 2 to show a bird’s eye view
of our solution, and represent their instance-of
relations with dotted arrows. Levels within a
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hierarchy are separated from each other by red
lines, and labelled increasingly from the top, and
hierarchies themselves are depicted as a dashed
bounding box, in blue for the application hierarchy
in our solution and in green for the supplementary

one.
MainType start-end-depth
NodeName SuppType
T
TEdgeName@start—end—depth
EdgeType
Figure 1: Node template
2.1 Levels

MuLtEcoreE is a level-adjuvant approach (Atkin-
son et al. 2014; Kiihne 2018a) where levels are
explicitly used to organise models and the ele-
ments inside them. For implementation reasons,
MuLrTEcoRrE prescribes the use of Ecore (Stein-
berg et al. 2008) as root model (graph) at level
0 in all example hierarchies. However, from a
theoretical point of view, any graph-based model
that is able to define itself via typing would be
suitable to occupy level O, e. g., a simple graph
with a node and an edge which are their own types,
respectively. Therefore, we only use the types
EClass and EReference for typing the nodes
and edges in our models, and provide them with
potency O-*-* (unmodifiable, and only allowed
for these two elements), which enables them to
type themselves, respectively, and allows their
unbounded instantiation, both direct and indirect
in any level below. While the implementation of
MuLtEcorE also uses EAttributes to simplify the
interoperability with EMF, attributes are formally
defined in our approach as nodes that are double-
typed as data types. The specific mechanism is out
of the scope of this paper, but the interested reader
can find a detailed explanation of this mechanism
in Macias (2019, Sect. 2.3.3). We omit Ecore and
the level O from the figures in this paper for the
sake of simplicity.

Models in MuLTECORE are distributed in multi-
level modelling hierarchies. A multi-level mod-
elling hierarchy in our context is a tree-shaped
arrangement of models with a single root at the
top of the hierarchy tree. Levels are indexed with
increasing natural numbers starting from the up-
permost one, having index 0. All our inter-level
relationships between models, nodes and edges are
represented via typing relations with the ‘instance-
of” meaning. We use levels as an organisational
tool, where the main rationale for locating ele-
ments in a particular model is based on how they
could potentially define an independent modular
artefact. In this regard, we encourage the level co-
hesion principle (Kiihne 2018a), that is, we recom-
mend to organise elements that are semantically
close (by means of potency and level organisa-
tion). On the contrary, we do not promote the level
segregation principle, which establishes that level
organisational semantics should be unique, i.e.,
aligned to one particular organisational scheme,
such as classification or generalisation. Still, we
generally use typing relations with classification
semantics, and the typing relation still implies
that a node defines which attributes its instances
can instantiate and which relations they can have
to other nodes. Furthermore, the MULTECORE
tool checks correct potency and typing safeness.
Typing safeness is checked via internal constraints
that forbid relations to be circular, reversed or in-
consistent neither vertically, i. e., within the same
hierarchy, nor horizontally, i.e., if we consider
more than one hierarchy.

2.2 Supplementary hierarchies

Frequently, we denote a multi-level hierarchy as
the main or default one and call it application hier-
archy, since it represents the main language being
designed. An application hierarchy can optionally
include an arbitrary number of supplementary
hierarchies which add new aspects to the applica-
tion one. There exist other techniques to achieve
the composition of languages or the inclusion of
additional aspects into a main language (Méndez-
Acuiia et al. 2016), such as merge, weaving, in-
heritance and facet-oriented modelling (Lara et al.
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2018). Our approach based on supplementary
hierarchies, present some advantages w.r.t., for ex-
ample, a merge operator. In the merge approach, a
new element is constructed upon the original ele-
ments that are going to be merged. This promotes
the loss of the original elements that have been
merged. This capability might be useful in several
situations, specially when the elements that are
being merged are not identical, but powering up
each other. With the supplementary hierarchies
technique, we can use the individual elements as
well as use the composed one, increasing the num-
ber of resources available for the modeller. We
say that we achieve a virtual composition, rather
than a physical composition (such as the merge,
weaving and inheritance approaches). Virtuality
refers to the capability of dynamically adding and
removing new types to elements in a non-intrusive
way. The facet-oriented modelling approach (Lara
et al. 2018) shares similarities with our approach.
Some key features that both approaches support
are: (i) modularity and non-intrusiveness; (ii) cap-
ability of easily extending elements with new types
and attributes; (iii) manual and automatic acquisi-
tion of types and attributes; and (iv) mechanisms
to control the repetition of features between the
composed languages.

Adding or removing supplementary hierarchies
is made possible by the incorporation or extraction
of additional typing chains (see Wolter et al. (2019)
for the formal details). For instance, we might
have different hierarchies (physically separated,
e. g., different projects in the MuLTECORE tool)
that we want to use together. Such a result can
be achieved by assigning the role of application
hierarchy to one of them and adding the rest as
supplementary ones. In this paper, the Process
Hierarchy acts as application hierarchy and the
Timestamp Hierarchy is a supplementary one (see
Fig. 2 and Sect. 4).

2.3 Instance Characterisation

MuLtEcore allows for deep characterisa-
tion (Atkinson and Kiihne 2001) which means
that the elements of a model can be instantiated
not only in the model immediately below it,

but also further down in the hierarchy. It is
common in level-adjuvant approaches to use
the so-called potency mechanism to control the
deep instantiation. Potency (Kiihne 2018b) is a
well-known concept in MLM and it is used on
elements as a way of restricting the levels at which
this element may be used to type other elements.
By using potencies, we can define the degree
of flexibility and restrictiveness that we want to
allow on the instantiation of the elements of a
multi-level hierarchy. Our potency specification is
composed by three values on nodes and edges and
by two values on attributes. The first two values,
start and end, specify the range of levels below,
relative to the current level, where the element can
be directly instantiated. The third value, depth, is
used to control the maximum number of times
that the element can be transitively instantiated,
or re-instantiated, regardless of the levels where
this occurs. Since attributes can be instantiated
only once, as it does not make sense to create an
instance of such instance, the depth on attributes
is always 1 and it is not modifiable. Hence, in
practical terms, only the first two values (start and
end) of the potency are available to the user.

It is worth mentioning that in some parts of
this paper, for abbreviation purposes, we use the
X:Y@n notation to represent that X is an instance
of Y. The optional @n represents the n number of
levels in which Y is located above (to which we
informally refer as reverse potency), with respect
to X. Note that the default case is @1, which is
omitted.

3 Analysis

In this section we discuss our interpretation of the
case description, clarifying the assumptions and
additions that we have considered to the original
description.

First, the challenge description states that
‘domain-specific concepts may be defined in their
dedicated branches of a hierarchy of models
without polluting the general terminology of pro-
cess management, allowing domain-specific beha-
viour to be defined for each branch of the hierarchy
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while allowing for the reuse/enforcement of com-
mon structure/behaviour’. This is precisely the
way in which we have organised the required con-
cepts: in a hierarchy with a top model for the
generic elements related to processes (Fig. 2, top),
from which two branches bifurcate. The first
branch (Fig. 2, right) refines these concepts for the
(sub)domain of software engineering processes.
The second branch (Fig. 2, left) does the same for
the domain of insurance processes, since we have
also included this optional set of concepts in our
submission. Based on the suggested refinements
(instantiation) of concepts in both branches, the
software branch has one more level, since inter-
mediate refinements (e. g. SEActor) are required.

Second, the description also requests that ‘sub-
mitted solutions should include bottom-level in-
stances, at least for key types, exemplifying all
attributes mentioned in the challenge description’.
So both of our branches include a bottom-most
model which illustrates the instantiation of the
nodes, edges and attributes to define a specific
state of a process. The result is a five-level, two-
branch hierarchy, where each level accounts for
a different degree of abstraction in the challenge
description. The four user-defined levels (ignoring
level O with Ecore) are closely aligned with the
ones proposed by de Lara et al. in the original
process case study (Lara and Guerra 2018, Fig. 4).

Third, we assume that when we declare a
concept—usually represented with a node—as
a meta-concept that will be used to later define
actual realisations of it, the former is clearly acting
as a type. For instance, the challenge description
states the need to define ‘actor types’ so that we
can define ‘actors’. Hence, we consider that nam-
ing the meta-concept ActorType is redundant,
and therefore we choose to simply name it Actor.
Consequently, all the generic elements such as
actor type, task type and process type, are named
Actor, Task and Process in our solution. It is
worth mentioning at this point that we also use a
naming convention for relations among nodes, in
which verbs are always used in the third-person
singular form.

Fourth, we understand that the relation between
actors (people) and the duties they can fulfil (roles)
is an N:M relationship. That is, one person may
have more than one purpose in a process, and one
purpose may be shared between several people.
If we were to model this situation with actors
being connected via a relation to tasks, we would
be forced to explicitly model all NXM permuta-
tions of people allowed to do tasks, creating too
much redundancy. In order to avoid this issue, we
created a distinction between actor and role, and
created the actor - role - task triangle of concepts,
which addresses P5, P9 and P14 (see Sect. 5).
This also allows us to easily apply a composite
pattern (Gamma et al. 1994) for combined roles,
which are suggested in P15. More importantly,
these elements do not affect the general semantics
of the models or the alignment with the require-
ments of the challenge.

Finally, as discussed in Sect. 5, we chose to
create a secondary hierarchy to support the re-
quirement for time stamps (P19) in a minimally
invasive manner. We also argue that this scenario
is a perfect fit to such kind of aspect orienta-
tion techniques for MLM that are supported in
MuLTECORE.

4 Model presentation

Fig. 2 shows the overview of the system architec-
ture we have constructed. We first detail the (main)
application hierarchy that captures both domains
described in the challenge. This is represented
within the dashed central box in the figure, under
Process Hierarchy. We describe each level in a
subsection and start from level 1 (process).

We also describe how we use the supplementary
dimension (dashed box to the right) Timestamp
Hierarchy to address one of the requirements of
the challenge. Note that supplementary hierarchy
is not bound to a specific level but it is orthogonal
to the application hierarchy, which means that
several models within the Process Hierarchy can
make use of the types and attributes defined, in
this case, in the unique timestamp model. We
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further describe this supplementary hierarchy in
Sect. 4.3.3.

We only display the cardinalities on edges in
those cases where it is not the default one (0..%).
The reason for this value as default is due to
MuLrtEcore’s focus on flexibility, where such
values are generally those which allow more kinds
of instantiation. This principle also applies to the
value of potency depth for nodes and edges, which
is unbounded by default and therefore enables the
unlimited instantiation of those nodes and edges
unless otherwise specified. It is also important to
note that we do not show the Ecore model located
at level O, but start from level 1 as shown in Fig. 2.

4.1 Level 1 — Process

The first model in level 1 contains the concepts
concerning universal processes (see Fig. 3) and
corresponds to the process item placed at the top
in Fig. 2.

A Process contains an arbitrary number of
Tasks. As shown in the figure, the type of a node,
provided by some element in an upper metamodel,
is indicated in a blue ellipse at its top left side,
e. g., EClass is the type of Process. Notice the

Process Hierarchy
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Figure 2: High-level system overview

second green ellipse at the right of Process that
provides it with a supplementary TimeStamp
type. The supplementary type is always placed
to the right of the node, while the application
one is placed at the top left corner of it so they
can be distinguished. Even though we further
discuss this in Sect. 5, it is worth mentioning
that this second type enables us to instantiate the
lastUpdated attribute on any node of the process
hierarchy. Note that all the elements within the
process hierarchy that are illustrated in this section
instantiate the lastUpdated attribute with value
26-Apr-21. All elements in this model include
this second type and can therefore instantiate the
attribute, same as their instances in the levels
below.

The type of an arrow is written near the arrow
in italic font type, e. g., EReference for contains.
We support attribute declarations that can be typed
by one of the four basic Ecore data types, namely
Integer, Real, Boolean and String. For instance,
Task has declared four attributes, beginDate and
endDate of type string, expectedDuration of
type int and isCritical as a boolean. Nodes can
have at the same time declared and instantiated
attributes, as illustrated in Task, that has the four
declared attributes commented above, and the las-
tUpdated instantiated attribute. The annotations
displayed as three numbers in a red box at the top
right of each node, and concatenated to the name
after @ for every edge, specify their potencies.
Potency in attributes is displayed as two numbers
as an attribute’s depth is always 1, since first it is
declared, and it can be instantiated only once in a
level below. For instance, the potency specified
for Task is 1-2-3, which means that an element
can be directly instantiated one and two levels
below (levels 2 or 3 in the hierarchy), and such
instances can be re-instantiated up to 3 additional
times. This depth is therefore dependent on the
value of the type, and the depth of an element
must always be strictly less than the depth of its
type.

Each process must have one and only one Initial
Task (1..1 cardinality in initialTask edge) and can
have one or more Final Tasks (1..* cardinality in
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Figure 3: Level 1 — Process model

finalTask edge). The MuLTECORE tool allows us
to make use of the inheritance relation. The inher-
itance (i. e. specialisation) relation is a special type
of arrow among any two nodes within the same
level, which imposes on the child node the same
typing and potency as the parent node. Moreover,
the inheritance relation gives the child node ac-
cess to the incoming and outgoing arrows of the

parent node together with its attributes, while still
allowing the child node to define additional at-
tributes or arrows. For instance, InitialTask and
FinalTask are children nodes of Task. In MuLT-
EcorEe we can also mark a node, e. g., Gateway,
as an abstract node, which cannot be instantiated
(indicated by the name in italics). This means that

a Gateway must always be instantiated using one
of its five children, namely, AndSplit, And)oin,
Sequence, OrJoin or OrSplit (right side of Fig. 3).
They can connect one or more tasks, depending
on the gateway, as indicated in the multiplicity in
each source and target relations.

Tasks are created and performed by Actors.
We define actor types as Roles (as discussed
in Sect. 3). The edge hasRole between Actor

and AbstractRole models this.

We apply

to roles the Composite pattern from object-
orientation (Gamma et al. 1994). We define Ab-
stractRole as an abstract node. Normal roles are
defined as Role and further special roles might
inherit from it, for instance, SeniorRole inherits
from Role. Furthermore, we use Combined-
Role to define roles than can be composed by
simple roles (the 2..* cardinality in the includes
edge ensures that there are at least two roles com-
bined). Also, certain roles can perform certain
tasks, which is covered by the executes edge
from AbstractRole to Task. Regarding artefacts,
the composite pattern is applied again so that an
AbstractArtifact can either be a simple Artifact
or a composition of more than one of them into a
CombinedArtifact, as indicated by the includes
relation. A Task might use and/or produce
artefacts of any of these two kinds.

4.2 Software engineering process domain

In this section, we disclose the domain-specific as-
pects for the software engineering process which
corresponds to the right hand branch of the ap-
plication hierarchy (see Fig. 2).
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4.2.1 Level 2 — Software engineering
process

This level concerns the refinement of concepts

from general processes that apply to any software

engineering domain. Itis represented in Fig. 4 and

it corresponds to software engineering process

in Fig. 2.

The creation of this level facilitates the resolu-
tion of multiple requirements which are discussed
in Sect. 5. Every software engineering artifact
SEArtifact, which is typed by Artifact (placed at
level 1, Fig. 3) must have a responsible software en-
gineering actor (responsibleActor relation with
multiplicity 1..1 to SEActor). The specification
of SEArtifact and SEActor forces the definition
of any artifact or actor within the software en-
gineering domain to be typed by SEArtifact or
SEActor instead of the generic Artifact or Actor,
respectively. Also, each concrete SEArtifact must
be assigned a version number (versionNumber
attribute). Note the potency 2-2, as the instance
level of the software engineering domain is placed
atlevel 4 (acme software engineering process
configuration at the bottom of Fig. 2). Further-
more, SEValidationTasks have to validate at least
one SEArtifact, represented via the validates
reference with cardinality 1..*.

4.2.2 Level 3 — Acme software engineering
process

We now discuss the aspects related to the Acme

software engineering process. This model cor-

responds to the acme software engineering

process component in Fig. 2. We show in Fig. 5

Artifact 1-1-2

St responsibleActor@2-2-1 S

Design

selected parts of the model (right-hand side) in or-
der to compare it with the graphical representation
in concrete syntax given in the Challenge descrip-
tion (left-hand side of Fig. 5). The complete model
that fulfils all the requirements and specifications
is shown in Fig. 6. From this point on, the ele-
ments we describe refer to the right-hand side of
Fig. 5.

At this level, we specify the fypes that belong
to the Acme software engineering domain. Note
that some of the types of the elements, e. g., Ini-
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Figure 4: Level 2 — Software engineering process
model
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Figure 5: Level 3 — Selected parts of the Acme soft-
ware engineering process model (right-hand side) to
compare it with the graphical schema given in the
Challenge description (Almeida et al. 2021)
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Figure 6. Level 3 — Complete Acme software engineering process model
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Figure 7: Level 4 — Acme software engineering process configuration model

tialTask, Sequencel, RequirementsAnalysis,
etc., are allocated two levels above, which is spe-
cified for nodes in the ellipses where the type is
given concatenated with @2, and for the edges
concatenated in the types with italic font. One can
observe, comparing it with the left-hand side rep-
resentation, that all the information is accurately
reproduced and easy to track.

Note that the potency of some elements, such
as Sequencel, AndSplitl, Sequence2, Se-
quence3, Andjoinl and Sequence4, is 0-0-0.
These values are due to the fact that those elements
cannot be further instantiated, which clearly in-
dicates that they belong to this level where the
general Acme workflow is represented. Also,
notice that we instantiate some attributes here
apart from lastUpdated, for example isCritical,
which is set to true in TestCaseDesign node,
and expectedDuration=9 in Testing node.

It could be argued that common concepts of
software engineering processes like Coding and
Testing should belong to the model above this one
(level 2, software engineering process) to simplify
the definition of other software processes within
Acme or other companies. In such a way, each
specific process could refine these concepts as
needed or use them as a standard definition of
common activities, and the software branch of our
solution could have sub-branches for different soft-
ware processes and their configurations. While
this is a valid option that we considered for our
submission, we chose not to implement it since it
is not required for the scenario presented in the
requirements. We believe that abstracting those
concepts in this case would mean over-engineering

the solution and would harm the simplicity and
readability of our models. A different example
of this kind of abstraction of commonalities is
shown for more abstract concepts of processes
in the process model (Fig. 3). Of course, if the
requirements changed to allow for the definition
of different software processes, our solution could
be modified accordingly by ‘lifting’ the aforemen-
tioned concepts to level 2.

4.2.3 Level 4 — Acme software engineering
process configuration

In this section, we describe the aspects related
to a specific application of the concepts defined
on the Acme software development process. In
this branch (software engineering domain) this
model represents a state (i.e. a potential execu-
tion) of a process. This model is depicted in
Fig. 7 and corresponds to the acme software
engineering process configuration element in
Fig. 2. The nodes and relations displayed in this
model have been reconstructed using information
provided along the software engineering domain
requirements (S1, S2, etc.) from the challenge
description (Almeida et al. 2021). Notice that all
nodes and relations at this level have as potency
0-0-0, since this is the bottom-most model and
cannot be further instantiated. We discuss the
elements of this model from left to right on Fig. 7.

JohnDoe (typed by SEActor@2) is re-
sponsible of the concrete artifacts COBOL
(typed by ProgramminglLanguage, with
versionNumber=1.3) and COBOLCode.
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This responsibility is indicated by the in-
coming cobol_responsibleactor and cobol-
code_responsibleactor edges. Also, CO-
BOLCode is written (the type of the edge
cobolcode_written) in COBOL. Besides, Codin-
COBOL:Coding task uses COBOL and produces
COBOLCode. These two relations are captured
by codingcobol _codinguses and codingco-
bol_codingproduces relations, respectively.

Finally, =~ AnnSmith:SEActor@2 is an
actor that has assigned, via the anns-
mith_hasrole:hasRole@3 relation, the CO-
BOLDeveloper role.  AnnSmith performs
CodingCOBOL, which the COBOLDeveloper
role is allowed to execute. Notice that certain
types of the elements aforementioned (e. g., De-
veloper or ProgramminglLanguage) are not
explicitly shown in the excerpt on Fig. 5, whose
full version is detailed in Fig. 6.

Another example of a model in this level can
be found in Sect. 4.5, with an alternative, more
complete instantiation of the Acme process.

4.3 Insurance process domain

The challenge description outlines the so-called
insurance domain. Even though respondents are
encouraged to focus on the software engineer-
ing domain, with the insurance part used ‘for
illustrative purposes only’, we have constructed
it in a separate branch and used all the inform-
ation obtained from analysing the PX rules and
specifications given in Sect. 2.2 of the challenge
description document. As one can observe in the
left-hand side of the Process Hierarchy in Fig. 2,
the branch is composed by two models (if we
ignore process at level 1) rather than three as in
the software engineering domain. The demands
of this domain do not require the creation of a
model that is equivalent to software engineer-
ing process model (level 2 in Fig. 2). Instead,
the level 2 of the insurance branch directly corres-
ponds to the XSure company (xsure insurance
process model). This difference demonstrates
the flexibility of MuLTECORE, where the lengths
of the different branches of a hierarchy are not
required to be equal.

4.3.1 Level 2 - XSure insurance process
The xsure insurance process model, which
corresponds to the xsure insurance process ele-
ment in Fig. 2 at level 2, represents the workflow
of the ClaimHandling process. The complete
model is shown in Fig. 8.

We describe the model from top to bottom. A
ClaimHandling:Process is composed by all the
tasks depicted in the model (nodes typed by Ini-
tialTask, Task and FinalTask) which are connec-
ted to it by containment relationships. A Receive-
Claim precedes an AssessClaim task, which are
connected via Sequence2. To proceed, an As-
sesClaim uses a Claim:Artifact (to the middle
left of the figure) and produces a ClaimPay-
mentDecision. Also, AssessClaim is created
(via benboss_creates relation) by BenBoss,
who is an Actor. Furthermore, ClaimAssessor is
a Role which is allowed to execute AssessClaim
tasks. We also find at the top right of the figure
two roles declared, SeniorManager:SeniorRole
and ProjectLeader:Role.

AssessClaim leads to the following task, Au-
thorizePayment, connected by the Sequence3
gateway. Both ClaimHandlingManager and
FinancialOfficer roles are allowed to execute Au-
thorizePayment tasks. Finally, we also find,
connected by sequence gateways (Sequence4
and Sequenceb), the PayPremium task which
comes after AuthorizePayment and that leads to
FinalTask, which ends the workflow of a claim
handling process.

4.3.2 Level 3 — XSure insurance process
configuration
As stated before, the xsure insurance process
configuration model placed at level 3 (see Fig. 2)
represents the instance level in this particular
branch, i.e., represents a concrete scenario and
therefore a non-instantiable model (notice the O-
0-0 potencies). The model is depicted in Fig. 9.
An instance of the process ClaimHandling,
named HandlingClaim123, is defined at this
level, and could be interpreted as the concrete
implementation of the claim assessment process
of the XSure company for a claim with id /23. It


http://dx.doi.org/10.18417/emisa.17.8

Enterprise Modelling and Information Systems Architectures

Vol. 17, No. 8 (2022). DOI:10.18417/emisa.17.8

Multi-Level Modelling with MultEcore

13

Special Issue on Multi-Level Modeling Process Challenge

Process

ClaimHandling

claimhandling_initialtask@1-1-1

lastUpdated=26-Apr-21

TnitialTask >-Ji-1-1 |

InitialTask

initialTask

claimhandling_contains1@1-1-1

lastUpdated=26-Apr-21

source
Sequence LE-O-O

Sequencel

lastUpdated=26-Apr-21

P

target

Task )-|1-1 =il
ReceiveClaim

lastUpdated=26-Apr-21

contains

Claim

lastUpdated=26-Apr-21

assessclaim_uses@1-1-1
uses

claimhandling_contains2@1-1-1

sequence2_s@0-0-0
source

Sequence2

lastUpdated=26-Apr-21

sequence2_t@0-0-0
target

Task 1-1-1

sequencel_s@0-0-0

equencel_t@0-0-0

SeniorRole m

SeniorManager

lastUpdated=26-Apr-21

Role
ProjectLeader

lastUpdated=26-Apr-21

Role
ClaimAssessor

lastUpdated=26-Apr-21

claimassessor_executes@1-1-1
executes

Actor

AssessClaim

contains

assessclaim_produces@1-1-1

produces

ClaimPaymentDecision

lastUpdated=26-Apr-21

claimhandling_contains3@1-1-1

lastUpdated=26-Apr-21

benboss_creates@0-0-0

BenBoss

lastUpdated=26-Apr-21

sequence3_s@0-0-0

source

Sequence3

lastUpdated=26-Apr-21

equence3_t@0-0-0
target

Task
AuthorizePayment

creates

Role
FinancialOfficer

lastUpdated=26-Apr-21

fofficer_executes@1-1-1

executes

contains

claimhandling_contains4@1-1-1

lastUpdated=26-Apr-21

equence4_s@0-0-0
source

Sequence4

lastUpdated=26-Apr-21

sequence4_t@0-0-0
target

Task
PayPremium

contains

claimhandling_finaltask@1-1-1

lastUpdated=26-Apr-21

sequenceS_s@0-0-0

source

Sequence5

lastUpdated=26-Apr-21

S

sequence5_t@0-0-

target

FinalTask

finalTask

lastUpdated=26-Apr-21

chmanager_executes@1-1-1

executes

ClaimHandlingManager

lastUpdated=26-Apr-21

Figure 8: Level 2 — XSure insurance Claim Handling process model
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Figure 9: Level 3 — XSure insurance process configur-
ation model

contains, via the handlingclaim123_chcont2
relation, the task AssessingClaim123 that in-
stantiate the two attributes beginDate=01-Jan-
19 and endDate=02-Jan-19. Also, XSureAs-
sessor is a ClaimAssessor role that both PaulAl-
ter and JohnSmith actors have assigned. Even
though they share that specific role, they each
have a second role, respectively, XSureManager
for PaulAlter and XSurelLeader for JohnSmith.
This way we display that an actor might have more
than one role assigned (as stated by one of the
requirements).

4.3.3 Supplementary hierarchies

In this subsection, we discuss how we make use of
one of the key features that characterises MuLT-
Ecore. The process hierarchy, which includes
both the insurance and the software engineering
branches in Fig. 2, is the application hierarchy
in this case. As mentioned earlier, an applica-
tion hierarchy can optionally include an arbitrary

number of supplementary hierarchies which add
new aspects to the application one. The sup-
plementary hierarchy notion has been applied in
previous work in different ways: (i) for the runtime
verification of properties of an executable work-
flow (Macfas et al. 2018); (ii) to complement a
main language with additional non-functional fea-
tures, for instance, data types (Rodriguez et al.
2018) or additional information to augment the
data of a node (Rodriguez and Macias 2019); and
(iii) to power up instance elements, where compos-
ition of application and supplementary hierarchies
could be carried out (Rodriguez et al. 2019b).

In this work, we use a supplementary hierarchy
to satisfy one of the requirements of the challenge,
where all elements in our solutions must have a
value for the last time they have been updated.
This is a perfect match for supplementary hier-
archies, where we need to introduce a new aspect
that affects our whole domain (process models)
but does not really belong to it, since those models
would still make perfect sense without such a fea-
ture, and the idea of time stamps for elements can
be applied to other domains. Therefore, creating
a different hierarchy which can be attached to any
other hierarchy where this aspect is suitable is a
more desirable alternative to polluting the existing
domain (application hierarchy) with it by adding
the concept to the existing models or introducing
a new model which would neither make sense
from an ontological point of view. Additionally,
defining time stamps as a separate hierarchy eases
its reusability from a tooling perspective, since
MvurTECcoRE can add an existing hierarchy as
supplementary in just a few clicks.

-1 -

TimeStamp

1-* lastUpdated : string

Figure 10: TimeStamp node

Asillustrated in Fig. 2, we have created a supple-
mentary hierarchy that can provide a last updated
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value to ideally any node defined in the applic-
ation hierarchy. The supplementary hierarchy,
called Timestamp Hierarchy in Fig. 2 consists
of a single model, called timestamp which has
one single node called TimeStamp, as shown in
Fig. 10. This node has declared the lastUpdated
attribute of type string. It is worth reminding that
elements from supplementary hierarchies can be
used in an orthogonal manner. The advantages
of our solution by defining this feature as supple-
mentary is that any node, in any of the models
distributed along the Application Hierarchy in
both branches can instantiate the attribute lastUp-
dated to give it a concrete value (we use the same
for all the nodes, lastUpdated=26-Apr-21). The
only requirement is to double-type all elements in
the process model at level 1, such as Task and
Gateway. The result is that any node residing in
one of the models depicted in Figs. 3, 4, 5 (and its
full version in 6), 7, 8 and 9, can instantiate the
attribute. This attribute can be instantiated in both
all nodes in level 1 and all their instances in the
levels below thanks to the way we use potency. By
giving TimeStamp unbounded depth, we ensure
that all instances of the nodes in level 1 are also in-
stances of it, which implies that the lastUpdated
attribute is visible to them. Those instances (e. g.
Code) can then instantiate the attribute even if
their direct type (SEArtifact) has already done
so, since lastUpdated has an unbounded end
potency, which allows its direct instantiation any
number of levels below. This construction does
not entail that the attribute is being re-instantiated
as we do for nodes and edges, which would go
against the constraints of the framework; it means
that lastUpdated can be directly instantiated in
an indirect instance of TimeStamp.

4.4 Cross-level constraints

As introduced in Sect. 2, MCMTs can be used
to specify the dynamic semantics for the defini-
tion of behavioural descriptions (as we will see in
Sect. 4.5). In previous work, we have shown that
this sort of semantics can be executed by using
MAUDE to evolve models with the infrastructure

we have built in Rodriguez et al. (2019a). How-
ever, the specification and verification of static
semantics, 1. e., constraints to check some struc-
tural correctness of the constructed multi-level
hierarchy is explored in this section.

The usual application of the MCMTs when
describing behaviour is as endogenous in-place
model transformation rules (Mens and Gorp 2006).
In this context, the transformation rules represent
actions that may happen in the system. These
model transformations (MTs) are rule-based modi-
fications of a source model (specified in the left-
hand side of the rule) resulting in a new state of
such a model (determined by the right-hand side).
The left-hand side (LHS) takes as input (a part of)
a model and it can be understood as the pattern we
want to find in our original model. The right-hand
side (RHS) describes the desired modifications
that we want to perform in our model and thereby
the next state of the system. There is a match when
what we specify in the LHS is found in our source
model and the execution of the rule represents a
single transition in the state space.

These transformations work fine when we want
to find a match, and then produce a new state of the
model. Still, this mechanism does not completely
align with the one we require to define constraints.
In order to be able to verify that certain constraints
are satisfied we propose a check mode that behaves
differently than conventional MTs. In this mode,
the goal is to find a correspondence in the models
through a two-step procedure. Instead of having
a model that evolves or changes to a new state as
the behaviour is specified (LHS — RHS), now,
for the model to pass or to be correct with respect
to the constraint, both situations (what is being
specified in the LHS and the RHS) must be found
in the multi-level hierarchy. The fact that the two
conditions do not match (or only one of them)
results in a constraint violation.

Let us analyse, for instance, the requirement
P17: ‘An actor who performs a task must be au-
thorized for that task. Typically, a class of actors
is automatically authorized for certain classes of
tasks.” Fig. 11 shows an MCMT rule in check


http://dx.doi.org/10.18417/emisa.17.8

International Journal of Conceptual Modeling

Vol. 17, No. 8 (2022). DOI:10.18417/emisa.17.8

Alejandro Rodriguez, Fernando Macias

Special Issue on Multi-Level Modeling Process Challenge

mode to satisfy such a constraint, with a graph-
ical notation instead of the textual one used in
the tool to simplify the explanation. The META
block allows us to locate types in any level of the
hierarchy, and can be used in the FROM and TO
blocks (separated by a black horizontal line). It
is worth pointing out that the two levels specified
(the one for the META and the one for the FROM
and TO) in this rule are not required to be consec-
utive and they would match on levels 1 and 4 of
the right-hand branch on Fig. 2, respectively. In
the case of the insurance domain, this rule would
match with levels 1 and 3, respectively, being the
rule reusable for both domains.

At the META level, we mirror part of the pro-
cess metamodel, defining elements like Actor,
Task, AbstractRole and Role nodes and per-
forms, hasRole, executes and executedBy
edges that are used directly as types in the levels
below in the rule. These are constants, which is
indicated by underlining the name of the element.
A constant in an MCMT rule can only match to an
element with the exact name in the corresponding
model that has been matched.

For variables (i.e. non-constants), we allow
the type on the elements to be indirect, meaning
that there can be intermediate types in the actual

performs
Actor Task
executedB
hasRole execlledy executes
»|AbstractRole
META L Role
FROM TO
Actor, . o Task —' | Actor— Task '
a :performs t—|: | a :perfzrms > t;l:
A ! A
: Role | : Role |
' r lie I 'w—e I
. executes | | \ hasRol& executes |
" [a.performs->size()] ‘[a.performs->size()]

Figure 11: Constraint satisfying requirement P17

hierarchy where the MCMT is matched. We see
variables in the FROM block, where a first correct
match of the rule comes when an element, coupled
together with its type, fits an instance of a:Actor
that has a relation p:performs to an instance of
t:Task. Also there must exist an instance of r:Role
thatis linked to t:Task via the e:executes relation.
Note that there are two dashed boxes surrounding
certain elements. One must take into account
that in different scenarios there could an arbitrary
number of tasks connected to an actor that can
perform them, and that several roles can also be
allowed to execute a certain task. To cover all
the permutations with a single rule, we use a box-
based mechanism that allows us to automatically
replicate the contained elements at runtime. Boxes
may appear in both sides of the rules, they can
be nested, and each of them may have an explicit
cardinality specified. Basic support for the Object
Constraint Language (ocv) (Clark and Warmer
2003) is incorporated into the MCMTs for: (i) the
computation of the cardinality of a box, i. e., the
number of times it has to be replicated; (ii) for the
manipulation of attribute values (not used in this
rule); and (iii) for the specification of conditions
(not used in this rule), which greatly improves the
expressiveness of the tool. Note that while the
support for ocL is very basic, we plan to extend
it in future work. For instance, the expression
used in the outer box ([a.performs->size()])
is using the size operation. In octL, the size()
operator calculates the size of the collection it is
applied on. The a.performs expression returns
the collection of edges whose source is a and its
type is performs. Note, however, that the way
in which types are used in MLM is a bit different
than for standard ocr. This grants transitive
typing, which allows for the matching candidate
to have any type that is either performs itself or
(in intermediate levels) other elements which are
ultimately typed by performs. In practical terms,
the [a.performs->size()] expression means that
the size of the collection is given by the number
of tasks connected to the matched actor (a) via
edges of type performs. Similarly, the inner box
that encapsulates r:Role and e:executes with
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the [t.executedBy->size()] expression would
count the number of edges (which types ultimately
match executedBy) the element t has. Note that
executedBy relation is not defined in the process
model (Fig. 3) since this rule is yet theoretical.

Once all the boxes have been unfolded for the
FROM part of the rule, and there has been a
match of all the (unfolded) variables, this partial
matching is saved and reused in the TO block, to
check whether its contents can also be matched.
In the case of the TO block, for each task that an
actor is performing, and given that a certain role
can execute such a task, there must exist a relation
h of type hasRole between the actor and some of
the roles that are allowed to execute the task. The
two consecutive and successful matches would
verify that the multi-level hierarchy satisfies the
constraint.

Note that this novel application of the MCMTs
to specify constraints is highly influenced by
graph constraints (Orejas et al. 2010). In fact,
nested graph constraints have been widely dis-
cussed in the literature (see e.g., Arendt et al.
(2014), Ehrig et al. (2006), Habel and Pennemann
(2009) and Radke et al. (2018)). The current
state of the MCMTs to check constraints only
covers constraints in the form of IF:THEN and
FOR-ALL:EXIST as explained in the previous para-
graph where we refer to the two-step procedure.
This is, IF we find the LHS, THEN the RHS must
also be found; and FOR-ALL elements specified in
the LHS (if we are using boxes) there must also
EXIST what is specified in the RHS. Addition-
ally, MCMTs can include application conditions.
These are not shown in this paper but we refer the
reader to our Petri nets case study® for an example
of them.

Two more examples of constraints specified
with MCMTs in check-mode can be found in the
discussion of requirement P9 in Sect. 5.

3 Petri nets case documented in the MuLTECORE website
https://ict.hvl.no/a-petri-net-multilevel-hierarchy

4.5 Operational semantics

The challenge description does not comment on
the possibility of describing the operational se-
mantics of processes, which can also be done quite
naturally through model transformations. We find
this fact surprising, given that MT is one of the
pillars of Model-Driven Software Engineering in
general, and has been already tackled by several
authors within the MLM community apart from
ourselves (Atkinson et al. 2012, 2009; Kiihne and
Schreiber 2007; Lara and Guerra 2010; Lara et al.
2015; Rossini et al. 2014). We believe that ex-
ploring the possibilities of MT for this challenge
could enrich the submissions, debate within the
community and further editions of the multi-level
challenge. Moreover, the process domain of this
challenge is a good candidate for specifying op-
erational semantics through MT rules, since the
concept of processes being executed already im-
plies some sort of evolution through time of the
models that represent them. So, in this subsection
we focus on a simplified proposal for MT rules to
model the way in which gateways are triggered to
create the next tasks of a process once the previous
ones are completed.

For a more realistic and comprehensive collec-
tion of rules that could fully animate the models,
a new version of the challenge would be required
where MTs are taken into account to create a
more complete and unambiguous description of
the operational semantics of the elements on the
domain.

We have explained how MCMTs could be used
to specify cross-level constraints that check the
structural correctness of the multi-level hierarchy
(Sect. 4.4). Now we describe how MCMTs can be
used to specify the behavioural descriptions of the
modelled system by means of model transforma-
tions. MCMTs have been widely improved since
their initial proposal in Macfas et al. (2019). While
MCMTs are powerful enough to describe many
behavioural aspects, it is necessary to have an
engine that can execute them against a multi-level
hierarchy to have an actual execution mechanism
capable of evolving the models. To do so, we
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rely on the mauDE System (Clavel et al. 2007;
Durén et al. 2020), a specification language based
on rewriting logic (Meseguer 1992), which can
naturally deal with states and non-deterministic
concurrent computations. A preliminary version
of the infrastructure we have implemented (still
under development) was presented in Rodriguez
et al. (2019a). In that version, the multi-level
hierarchy and the set of MCMT rules was trans-
formed into a functional MAUDE representation
that could be executed using the MAUDE console
environment. The obtained results in MAUDE, i. €.,
the new model states produced, where stored in
separate XML files. These had to be manually
taken one by one and interpreted by MuLTECORE,
which had some practical and usable limitations.
Also, the MCMTs expressive power was rather
limited in that version compared to the capabilities
they offer nowadays.

Since the goal of this paper is to demonstrate
how MuLTEcCORE can be used to model the
proposed challenge, we do not enter into the
MAUDE specification details. Still, all the pro-
duced MAUDE files can be found in our GitHub

repository. The current state of the infrastructure
that connects MULTECcORE with MAUDE relies
on a bidirectional transformation that takes the
entire MULTECORE representation (both the multi-
level hierarchy and the associated MCMT rules)
and automatically generates MAUDE specifica-
tions. Then, this transformer takes the xML output
files that MAUDE produces as result of perform-
ing execution, and automatically translates them
back into MuLTEcoRrE models that are graphic-
ally displayed. The mAauUDE part is handled by a
background process which makes the underlying
MAUDE transformations transparent to the user.
In other word, the integration of MAUDE as a
process within MuLTEcoRE allows us to execute
and verify the instance models directly from the
MuLTEcorE interface and obtain new results
automatically.

To show the potential of the MCMTs we provide
now an example of how they can be used to sys-
tematically create parts of the models based on
the information allocated within the process hier-
archy. Therefore, as an illustrative example and
to open this line for future Multi-Level Modelling

target
atewa EEEE— Task o
source Gateway . 2
EErEmE q Ta_Sk - - source o o
= target T B
; AndSplit
AndSplit
e | wisoion B X,
Task AndSplit__ Task __ 1 | Jke2 UGS Loz T,
— : RquJrgraeirr;%nts andsplit1_s|  AndSplit1 — 2
T1 | sourcel| AS [targetl T2 | 4 source@2————————— Task@2 >
— W
source :_ Ea_rget : —— {andsplit1_t2 [TestCaseDesign
META : : target@2
F RO M TO : : Requirements . .
| X Analy.sis Design TestCaseDesign
T1 ! T2 ! rqurl]rae]r;ms?gts design testcasedesign 5
t1 2] | X
1 ! »

[AS.target->size()]

(a) AndSplit MCMT rule

(b) Matched elements in
software engineering branch

Figure 12: (a) MCMT rule to create new tasks based in their types connected via and-split gateways. (b) Matched

elements in the Software engineering branch
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challenges, we have sketched five simple MCMT
rules that involve the creation of new tasks at the
bottom-most levels (level 3 for insurance and level
4 for software engineering) through the informa-
tion of corresponding gateways connected to the
tasks on the levels above. This set of rules handles
several cases regarding the different gateways and
the initial and final tasks. In the following, we
describe one of the rules, but the remaining ones
can be found in their textual form with the rest of
the artefacts in our solution to the challenge on
GitHub.

We show in Fig. 12(a) an MCMT rule to cre-
ate several output tasks from an input task where
their types are connected via an and-split gate-
way. Similarly to the rule shown in Fig. 11 in
Sect. 4.4, we define at the topmost level of the
MCMT constant elements such as AndSplit that
inherits from Gateway that is connected to Task
via source and target relations. The second
META level defines variable elements, such as T1
and T2 of type Task and AS of type AndSplit
that connects with the former two via sourcel
and targetl, respectively. These will be matched
with elements in level 3 of the software engin-
eering branch, and with elements in level 2 for
the insurance branch. In the FROM block, we
identify a single t1 task whose type (T1) would be
the input of the corresponding and-split gateway.
Then, in the TO block, we remove the matched t1
and create the new t2 tasks, the types of which
are the outputs of the and-split. Note that each
particular process can establish an arbitrary num-
ber of output tasks for different instantiations of
AndSplit. To make a generic rule that works
for any number of output tasks, we define boxes
around targetl and T2 from the META block
and around t2 from the TO block. Note that the
possibility to establish cross-level boxes is a new
feature which we have introduced in MuLTECORE
to be able to handle the current case. The ocL
expression [AS.target->size()] counts how many
target tasks are connected to the matched and-split
gateway. Note that the cross-level box is needed
because the gateway information is not given at
the instance level, but a level above. Therefore,

the three elements must come together into the
same box, so when it is unfolded at runtime, the
type of each produced t2 is paired correctly with
the information located in the level above.

Fig. 12(b) shows the corresponding matched
elements in the software engineering branch. We
can observe in this example the vertical flexibility
of the MCMT rules, since the matched elements
are distributed within level 1, level 3 and level
4 for the three levels specified in the rule. Even
though there exists an intermediate level in the
software engineering branch (level 2), it is not
a problem for the rule to ignore it and match
the appropriate elements in the correct models.
At the bottom of Fig. 12(b) we see, divided by
a vertical line, the two parts of the model that
would match the FROM and the TO blocks. In this
case, requirementsanalysis would match t1 and
design and testcasedesign the two replicated
t2 variables.

The mAUDE integration within MuLTECORE
allows us to use all the available tools for MAUDE.
For execution, we allow the modeller to specify a
number of steps to be executed (being each step
the application of one of the available rules) or
directly customise the execution by stating which
rules and in which order should they be applied.
To demonstrate the application of different rules,
we have created two basic instance models, one
for the insurance domain and one for the software
engineering domain, each of them with a single
element named initialTask. The five MCMT rules
specified allow us to reach a finalTask based on
each of the workflows defined in Figs. 6 and 8.
Note that the executions are only concerned about
tasks and gateways, and do not consider other
elements such as artefacts or actors.

Fig. 13 shows the models for each of the seven
execution steps that have been obtained by ap-
plying each corresponding MCMT rule on the
software engineering domain. At the top left, we
have the initial model acme-execution-step-1
with the initialTask node. The reasons for having
the first model as the one containing the initial task
are two: (i) having a rule to create the initial task
from an empty model would require a complex
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left-hand side and negative application conditions
to ensure that is not always triggered, since we
would need to ensure that the model is empty
first; and (ii) if we visualise the evolution of the
process execution as a sequence of models, having
an empty model as the first step does not provide
any meaningful information, hence we choose to
avoid it. To its right, obtained by applying the rule
that triggers the Sequencel gateway we have
the acme-execution-step2 with the requirme-
netsanalysis101 node. Note that the number
appended to the name is generated using a Counter
object that is used in the MAUDE representation,

m AndSplit1

whose value gets increased every time a new iden-
tifier is created. This counter allows us to create
fresh elements avoiding name duplication. The
name below each curved arrow between model
states (instances) does not represent the name of
the executed MCMT rule, but the gateway that is
matched in the level above where the workflow is
represented (see Fig. 6). One can observe at the
bottom right of Fig. 13 how we finally reach an
instance finaltask101 representing the end of the
workflow.

Likewise, and demonstrating the horizontal flex-
ibility of the MCMTs, Fig. 14 represents six model

acme-execution-step-1

initialtask

acme-execution-step-2

RequirementsAnalysis m

requirementsanalysis101

acme-execution-step-3

TestCaseDesign)| 0-0-0

design101 testcasedesign101

acme-execution-step-4

Coding )|0-0-0| (TestCaseDesign m

coding101 testcasedesign101

m

acme-execution-step-5

coding101 testdesignreview101

AndJoin1 m

acme-execution-step-6 acme-execution-step-7

testing101 finaltask101

Figure 13: Acme software engineering obtained states by applying subsequent MCMT rules

xsure-execution-step-1

initialtask

xsure-execution-step-2

ReceiveClaim m

receiveclaim101

xsure-execution-step-3

AssesClaim m

assesclaim101

xsure-execution-step-4

AuthorizePayment M

authorizepayment101

xsure-execution-step-5

PayPremium m

paypremium101

xsure-execution-step-6

FinalTask m

finaltask101

Figure 14: Xsure insurance claim handling process model states obtained by applying subsequent MCMT rules
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states produced by the execution engine by apply-
ing the same set of rules to the insurance domain.
Similarly, the workflow established in the corres-
ponding level above (the XSure insurance claim
handling process) is defined in Fig. 8. The process
is quite similar as for software engineering, where
there exists an initial task (top left of Fig. 14) in
the initial model xsure-execution-step-1. Then,
by applying rule by rule we get new elements in
new model instances, such as receivclaim101,
assesclaim101, ... and finally finaltask101.

An alternate set of rules could be defined for a
slightly different operational semantics: we could
exclude the bottom levels in both our branches, or
have the bottom level be a replica of the level above
(including all gates), where we indicate the current
state of the process execution via attributes—e. g.,
a current flag for active tasks—, pointers—e. g.,
a Current node and edges that connect it to the
active tasks—or tokens in a similar fashion to
Petri nets. These are all valid alternatives that
we discussed for our solution and have used in
previous works (Durdn and Rodriguez 2021), but
we believe that the one presented in this subsection
is more suitable in the context of the process
challenge, for the following reasons:

* QOur approach does not require that the bottom
level is a duplicate of the level above, thus
avoiding duplication of elements.

¢ We do not need to introduce new elements in
the models which would be not ontological but
instrumental for the execution, and therefore
would pollute the model.

* The current state of an execution is visible at
a glance in latest model generated by MCMT
rule application.

* The full execution history is preserved as a
sequence of models containing the finished
tasks, allowing traceability, backtracking, etc.

* The MCMT rules required by this approach are
simpler and easier to understand, especially in
textual syntax.

It is important to point out that our modelling
hierarchy is not influenced by the way in which

its semantics are specified. That is, we could
easily specify different MCMTs to change the way
in which a process model is executed. In such
hypothetical scenario, an instance could grow
as the process advances, with a single model
capturing the full history of the execution. That
model is shown in Fig. 15, and it provides a
complete view into a finished execution of the
Acme process from Fig. 6.

5 Satisfaction of Requirements

In this section, we explain how our solution ad-
dresses all the requirements in the challenge de-
scription. First, we discuss the ones related to the
more abstract concepts of processes, tasks, actors
and artefacts (Almeida et al. 2021, Sect. 2.2.). We
preserve their original name format (PX, with X
being a number) for easy traceability and repro-
duce their text for self-containment.

P1

‘A process type (such as claim handling) is defined
by the composition of one or more task types
(receive claim, assess claim, pay premium) and
their relations.’

This requirement is addressed with the defin-
ition of the nodes Process and Task, and the
containment relationship from the former to the
latter. They are contained in model process at the
top of the hierarchy (see Figs. 2 and 3). The sug-
gested instances (claim handling, receive claim,
etc.) have been also used to create the optional in-
surance (sub)domain in the corresponding branch
of the hierarchy, as presented in Sect. 4.3.

P2

‘Ordering constraints between task types of a pro-
cess type are established through gateways, which
may be sequencing, and-split, or-split, and-join
and or-join.’

We understand from the way the requirement
is written that the set of gateways is fixed and not
likely to change. Also, we consider that, semantic-
ally speaking, they belong to the same level of
abstraction than task, process, etc. This decision
is reinforced by the fact that the same gateways
are common to all processes. Hence, we choose
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Figure 15: Complete Acme software engineering execution
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to define Gateway as an abstract node in the pro-
cess model, and include the four kinds of gateways
as children of it—i. e. related via inheritance, ex-
ploiting the fact that MuLTECORE also allows this
kind of relation, as explained in Sect. 4.1. The
rationale behind declaring Gateway as abstract
is that all processes must use one of its children
types for defining sequencing of tasks, but it does
not make sense to create an instance of the parent.
Finally, it should be noted that, while inheritance
is a less flexible construction than typing, adding
new kinds of gateways (e. g. xor-split and xor-join)
could still be achieved by adding them as new chil-
dren of Gateway. We refer the reader to Sect. 4.5
for a discussion on how the operational semantics
of these gateways could be easily specified with
Multilevel Coupled Model Transformations.

P3
‘A process type has one initial task type (with
which all its executions begin), and one or more
final task types (with which all its executions end).’
This requirement is also addressed using inher-
itance relations in the process model, following a
similar rationale as in the previous one. Therefore,
we include the nodes InitialTask and FinalTask,
and define specialised containment relations from
node Process into them, instead of reusing the
one for intermediate tasks. More importantly,
these two relations define different cardinalities
to enforce a unique initial and at least one final
task per process, as per the requirement. We
do not define inheritance relations among these
different containment relations since that kind of
construction is not supported in MULTECORE.

P4

‘Each task type is created by an actor, who will
not necessarily perform it. For example, Ben Boss
created the task type assess claim.’

This requirement entails in our solution the
definition of the Actor node and the creates
relation from it into Task. The other relation
performs hinted in this requirement is discussed
in the following one. The example instances
mentioned in the requirement are also used in

the lower model of the insurance branch of the
hierarchy (see Sect. 4.3).

P5

‘For each task type, one may stipulate a set of
actor types whose instances are the only ones
that may perform instances of that task type. For
example, in the XSure insurance company, only
a claim handling manager or a financial officer
may authorize payments.’

First, we include another relation from Actor
to Task, called performs. However, this is not
enough to model which types of actor can execute
which types of tasks. As pointed out before in
Sect. 4.1, we split the concept of actor as an actual
person (e. g. Ben Boss) and as a specific role that a
person may play (e. g. claim handling manager) to
allow for the flexibility of several people being able
to play the same role, and also for the same person
to perform more than one role. Therefore, apart
from the Actor node discussed in the previous
requirement, we create the different Role nodes,
some of which appear as a response to following
requirements. For the purpose of fulfilling this
requirement, the way we model the semantics
that an actor is allowed to perform a task, is by
checking that it has a role which can execute that
task. Therefore, we create the aforementioned
nodes, plus the hasRole and executes relations,
so that the semantics are encoded in the Actor —
Role — Task triangle.

P6

‘A task type may alternatively be assigned to a
particular set of actors who are authorized (e. g.,
John Smith and Paul Alter may be the only actors
who are allowed to assess claims).’

A naive way to address this requirement could
consist of the creation of yet another relation
(called assigned or something similar) between
Actor and Task. But since we define the Role
nodes to fulfil other requirements, we can simply
take advantage of the triangle mentioned in the
previous one, and create a role that is assigned to
both actors. In such a way, we cover this require-
ment without needing to define any new elements.
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We argue that, besides being a flexible construc-
tion, this way of modelling the requirement makes
sense from a semantic point of view: there should
be some common ability, permission or status that
makes those people suitable to perform the task,
and we allow modelling it explicitly. Again, the
examples used in the requirement are created as
instances on the insurance branch, and we also
attach plausible roles to those actors to complete
the model.

pP7
‘For each task type (such as authorize payment)
one may stipulate the artifact types which are used
and produced. For example, assess claim uses a
claim and produces a claim payment decision.’
This requirement is tackled by simply defining
the Artifact node and the uses and produces
relations. Again, the examples mentioned in the
requirement are used to construct the optional
insurance branch in our solution.

P8

“Task types have an expected duration (which is not

necessarily respected in particular occurrences).’
We just need to add the expectedDuration

attribute of type Integer to the Task node to

complete this requirement.

P9

‘Critical task types are those whose instances are
critical tasks, each of the latter must be performed
by a senior actor and the artifacts they produce
must be associated with a validation task.’

Once again, we can take advantage of the separ-
ation of actors and roles to avoid creating a child
node of Task for critical tasks. Instead, we add a
simple Boolean attribute isCritical to Task. Since
in our solution the information about what an actor
can do is not stored in Actor itself but in Role,
we create a child node of the latter called Seni-
orRole. That is, the actor which performs a task
marked as critical, must have at least one senior
role, which must be able to execute such task, as
indicated by the executes relation. In this case,
we do not use an attribute to distinguish roles from
senior roles since we later use combined roles
through a composite pattern, which is more easily

illustrated using inheritance relations. With these
elements, we can create a similar constraint to
the one defined in Sect. 4.4 to ensure that critical
tasks are only performed by senior actors. This
constraint is shown in Fig. 16, and it states that
if any role (hence r:AbstractRole) is connected
to a critical task, that role must be a senior one
(therefore r:SeniorRole in the TO block).

Task -« executes AbstractRole
- isCritical : boolean T
SeniorRole
META
FROM TO
Task — — Task
t t
- isCritical = true - isCritical = true
e e
AbstractRole executes SeniorRole executes
r r

Figure 16: Constraint satisfying part of requirement
P9 related to senior roles and critical tasks

Regarding the fact that ‘the artifacts they pro-
duce must be associated with a validation task’,
we used the concept of validation tasks for the
software branch only. We think that creating an
specific child node of Task in process for valida-
tion tasks is not a good alternative in this case, as
it would pollute that model with software-specific
concepts—other kinds of processes may not have
validation tasks. If validation tasks were required
in the insurance branch—or any other potential
new branch—the concept could be easily lifted up.
Hence, we refine Task into SEValidationTask in
the software process model in level 2, and create
a validates edge from it into SEArtifact. Then,
in the Acme software process model in level 3,
we define TestDesignReview:SEValidationTask
(instead of being of type Task as the others), and
instantiate validates to indicate that it is used
for that purpose for TestCase. We also instan-
tiate uses between both nodes, even if it could
be considered redundant in this case, for the sake
of coherence and completeness. To enforce the
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fact that the artefacts created by critical tasks
must be validated, we define another MCMT con-
straint, depicted in Fig. 17. In this constraint, any
sea:SEArtifact that is produced by a critical task,
must be connected to an vt:SEValidationTask.

Task produces » AbstractArtifact
- isCritical : boolean T
Artifact
SEValidationTask validates » SEArtifact
META
FROM TO
Task  —— —— SEArtifact
t sea
- isCritical = true v
p validates
SEArtifact produces SEValidationTask
sea sevt

Figure 17: Constraint satisfying part of requirement
P9 related to validation tasks

P10

‘Each process type may be enacted multiple times.’
This requirement is trivially addressed in our

solution since we allow for multiple instantiations

of a process, as our hierarchy shows.

P11
‘Each process comprises one or more tasks.’

The contains relation specified for P1 from
Process to Task, and the way they are instantiated,
already covers this requirement.

P12

‘Each task has a begin date and an end date. (e. g.,
Assessing Claim 123 has begin date 01-Jan-19
and end date 02-Jan-19).

Both attributes have been declared in Task,
and are instantiated in the corresponding node, at
the lower model of the insurance branch in our
hierarchy.

P13
‘Tasks are associated with artifacts used and pro-
duced, along with performing actors.’

This requirement is addressed by creating two
new relations in the process model: uses and
produces from Task to AbstractArtifact. The
performs relation that we discuss in earlier re-
quirements is also used to satisfy this one.

P14

‘Every artifact used or produced in a task must
instantiate one of the artifact types stipulated for
the task type.’

Thanks to the way we model the structure of this
elements in the process model, this requirement
is trivially solved by instantiating Artifact, Task
and the uses and produces relations between
them appropriately. We show how this can be
achieved in the example instance models at the
bottom of both branches in our hierarchy.

P15
‘An actor may have more than one actor type (e. g.,
Senior Manager and Project Leader.)

Thanks to the separation of actors and their
roles in our solution, this requirement can be eas-
ily addressed. The hasRole relation has a 0..*
cardinality, so an actor can have several roles by
default. But in order to improve the reusability
of roles, we choose to include the concept of
CombinedRole, which realises the composite
pattern (Gamma et al. 1994). In such a way, a
combination of roles that several actors share can
be defined just once as an instance of Combined-
Role and related to several actors. Apart from the
aforementioned advantages, using this construc-
tion we also remove the need for multiple typing,
which is commonly not supported in MLM form-
alisations, like those based in Set Theory (Kiihne
and Schreiber 2007) or Graph Theory (Rossini et
al. 2014), including our own formalisation (Wolter
et al. 2019). Some authors even argue that mul-
tiple ontological types are not desirable from an
ontological point of view (Atkinson and Kiihne
2002). Using MuLTECORE’s supplementary hier-
archies (see Sect. 2.2) as a means to add additional
types did not make sense in this context in any
case, since there are no differentiated domains that
justify such a construction.
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P16
‘Likewise, an artifact may have more than one
artifact type.’

Same as we do for roles, we use a composite
pattern to address this requirement. In such a
way, instead of using multiple typing (which, as
argued before, is neither desirable nor a possible
alternative in MuLTECORE), we can join instances
of a simple Artifact into an instance of a Com-
binedArtifact, and use the latter as a replacement
of multiple typing.

P17

‘An actor who performs a task must be author-
ized for that task. Typically, a class of actors is
automatically authorized for certain classes of
tasks.’

Once again, the triangle construction of actors,
tasks and roles allows us to fulfil this requirement
without adding any new elements to the models,
but defining a constraint over them. First, we
explicitly represent in our models that an actor
performs a task and also has a series of roles, some
of which are allowed to execute certain types of
tasks. Then, when instances of Role and Task are
created in lower levels, it can be checked that they
instantiate the corresponding relations in order to
verify this requirement, using the constraint from
Fig. 11.

P18

‘Actor types may specialize other actor types in
which case all the rules that apply to instances of
the specialized actor type must apply to instances
of the specializing actor type. For example, if a
manager is allowed to perform tasks of a certain
task type, so is a senior manager.’

The nature of inheritance in MuLTECORE al-
lows us to easily model this requirement. Since
we use distinction between actors and roles, this
requirement actually affects the latter in our solu-
tion, according to our understanding: a role can
specialise another role, but it does not make sense
for an actual person to inherit from another in this
context. That is, an actor can have a role, and a
separate actor a second role which inherits from
the first. In such a way, the specialising role (child)

—  EClass _

EClass _

Role SeniorRole

Role@2 _ SeniorRole@2 _

Analyst SeniorAnalyst

< ME—

Figure 18: Fragment of the process multi-level hier-
archy showing the P18 requirement fulfilment

would inherit its executes relation to a task from
the specialised role (parent), and any actor having
the specialising role would be allowed to perform
that task too. However, since this requirement also
mentions the possibility of ‘senior’ versions of the
different roles (initially mentioned in P9), we also
include a specialisation of Role into SeniorRole,
which can be directly instantiated in order to re-
cognise those specialised roles involving seniority.
The consequence here is that an X:Role can be
specialised into a Y:SeniorRole, which is allowed
by MuLTEcoRE. In general, a node can inherit
from another as long as their potencies match
and their types are the same, or alternatively the
specialising node’s type is itself a specialisation
of the specialised node’s type. This is required
by our formalisation to ensure that the upwards
typing chains (i. e. the sequence of the type, type
of type, etc. of an element) are consistent through-
out the hierarchy and do not violate the internal
constraints of MuLTEcoRE. In any case, we do
not think this is an undesirable constraint even
from a practical point of view, since it seems
straightforward that the relation between a node
and its parent have to be close, both structurally
and semantically, for inheritance to be established.
An excerpt of our models illustrating this scenario
is shown in Fig. 18. Finally, the constraint that
enforces that only actors with the right role might
execute a particular task also ensures that this
requirement is fulfilled (Fig. 11).
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P19
‘All modeling elements, at all levels, must have a
last updated value of type time stamp. This feature
should be defined as few times as possible, ideally
only once. Respective definitions are exempt from
the requirement to have a last updated value.’
The key to fulfilling this requirement is defining
a lastUpdated attribute with the loosest potency
possible (1-*) in such a way that it can be instan-
tiated no matter how the hierarchy grows—be it
in depth, in width or in number of elements in
a model—without forcing the modeller to add
neither more definitions of that same attribute,
nor typing or inheritance relations to previously
defined elements, nor any other mechanism that en-
tails accidental complexity (Atkinson and Kiihne
2008). With this goal in mind, we considered four
alternative constructions that were possible in our
solution. First, we could naively add a copy of
the attribute to every node without a parent in the
process model. But this solution would forbid the
actual elements in that model from instantiating
the attribute, so it is not a perfectly valid option.
Second, we could add an extra model on top of
process (displacing all models in the hierarchy
one level lower) for the definition of a single node
TimeStamp which contains the aforementioned
attribute definition, and type every node in the
process model by it. This alternative would give
us the desired effect, but does not make any sense
semantically. Besides, it is an ad-hoc solution
which could cause trouble if we eventually need
that level on top for other purposes. The last
two options are based on the use of our supple-
mentary typing mechanism to separate concerns,
since we can consider time-stamping an aspect
that could be included in many domains without
being an integral part of any of them. In such a
way, we can define a supplementary hierarchy with
a single model (two, if we count Ecore on level
0), which contains the TimeStamp node with
the lastUpdated attribute with 1-1 potency and
1..1 multiplicity, since the requirement states that
nodes must instantiate it. So, the third option we
considered consisted of adding this TimeStamp

as a supplementary type to every other node in
the application hierarchy. However, this option is
far from ideal, since every new node that we add
to the hierarchy needs to be double-typed with
this supplementary type to be able to instantiate
the attribute. So, finally, the fourth option which
we actually implement in our solution is an im-
provement of the previous one: we change the
attribute potency to 1-* and only add TimeStamp
as a supplementary type to all nodes in model
process. With this construction, we only define
the attribute once, ‘link’ it less times (through
supplementary typing) and it is already available
everywhere thanks to potency in the rest of the
hierarchy. Moreover, it would still be available in
any new branches, any new models in the exist-
ing branches and any new node that we define in
the existing models using the types of process.
It would only be required to add TimeStamp
as a supplementary type by hand if we were to
instantiate EClass. So we believe that this is a
nearly-optimal solution for this requirement.

To sum up the discussion of the PX require-
ments, Tab. 1 summarises whether they have been
tackled in our solution and how.

Secondly in this section, we discuss the require-
ments which are specific for software engineering
processes (Sect. 2.3 in the challenge description).
We begin by reproducing in MUuLTECORE the
diagram shown in Fig. 1 in the description, both
of which are included in our Fig. 5 for a side-by-
side comparison.* Using this figure as a starting
point, we add the different nodes and edges that
we require to fulfil those requirements. The full
model is depicted in Fig. 6. Again, we refer to
them with their original names of the form SX,
and summarise the following discussion at the end
of this section, in Tab. 2.

S1

‘A requirements analysis is performed by an ana-

lyst and produces a requirements specification.’
RequirementsAnalysis is present in the de-

piction of the Acme software engineering process

4 Note that each instance of Sequence is depicted as a node,
plus the two arrows which indicate its source and target tasks.
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Table 1: Summary of PX requirements

Req. Addressed? Comments
P1 + —
P2 + Using inheritance
P3 + Using inheritance
P4 + —
P5 + Modelled as a triangle between the nodes Actor, Role and Task
P6 + Does not require new modelling constructs
P7 + —
P8 + —
P9 + Using two constraints
P10 + Trivially addressed
P11 + Addressed in P1
P12 + —
P13 + Partially addressed earlier
P14 + Trivially addressed
P15 + Addressed with composite pattern
P16 + Addressed with composite pattern
P17 + Using a constraint
P18 + Using inheritance and an existing constraint
P19 + Using a supplementary hierarchy

challenge description and is therefore included
already in the initial version of the model in
Fig. 5. To that same model—acme software
engineering process, which we refer to as just
acme process in the remainder—we add the
nodes Analyst:Role and RequirementsSpecific-
ation:SEArtifact, plus the corresponding rela-
tions, according to the process model (Fig. 3).
The usage of SEArtifact instead of Artifact as
type in the latter node is due to requirement S10,
and we refer the reader to that discussion for a
justification of this choice. This same remark also
applies to some of the following requirements.

S2
‘A test case design is performed only by senior
analysts and produces test cases.’

We have simplified the wording of this require-
ment while maintaining its meaning. To fulfil it,
we include SeniorAnalyst:SeniorRole and the
corresponding instance of the executes relation
in model acme process. We indicate that Seni-
orAnalyst is a specialised version of Analyst

through an inheritance relation, as an example
of the construction discussed in P18. We also
include TestCase:SEArtifact and instantiate the
produces relation to indicate that it is a product
of test case design. Note that the senior analyst
role does not need to be connected to an actor for
this model to be correct. Hence, we choose not to
overload the models with additional details beyond
the ones enforced by the requirements, in order to
simplify their description and visualisation in this
paper.

We should also point out that the fact that
TestCaseDesign is marked as critical will ensure
that the constraint in Fig. 16 (from P9) enforces
that the role executing the task is of senior type.

S3
‘An occurrence of coding is performed by a de-
veloper and produces code. It must furthermore
reference one or more programming languages
employed.’

To address this requirement we add to acme
process the nodes Developer:Role, and two
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instances of SEArtifact: Code and Program-
minglLanguage. We connect these nodes to
the coding task by instantiating, respectively, the
relations executes, produces and uses.

S4
‘Code must reference the programming lan-
guage(s) in which it was written.’

In order to represent that a code is written in
a programming language, we create a relation
written between these two artifacts. Since this
relation only covers two software-specific artifacts,
it does not have a type in the process model. For
such scenarios, MULTEcoRE always allows to
create direct instances of an EClass or ERefer-
ence through potency, and in this case we use
the latter as the type of written. Although this
construction differs conceptually from linguistic
extensions (Atkinson and Kiihne 2001), its prac-
tical usage is quite similar to it.

S5 and S6
‘Coding in COBOL always produces COBOL
code.” ‘All COBOL code is written in COBOL.’
We group together these two requirements since
they pertain to the same part of the model and
have common elements. Coding in COBOL, as
an instance of the Coding task, belongs naturally
in a level below the model acme process, since
the latter deals with coding as a generic concept,
as the original figure in the challenge descrip-
tion shows. Therefore, the new node Coding-
COBOL:Coding is declared in the bottom-most
model of the software branch of our hierarchy:
acme software engineering process config-
uration, which we call acme configuration for
short and is depicted in Fig. 7. This same reas-
oning can be applied to COBOLCode:Code and
COBOL:ProgrammingLanguage. To complete
the model, the relevant instances of the relations
coding_uses, coding_produces and written are
used to connect those three nodes to each other,
modelling the semantics of both requirements.

S7
‘Ann Smith is a developer; she is the only one
allowed to perform coding in COBOL.’

The fulfilment of this requirement implies creat-
ing an instance of Actor in the acme configura-
tion model. Due to the refinement of Actor (from
process model) into SEActor (from software
engineering process model, called software
process for short) that S10 entails, the node AnnS-
mith that we create is an instance of SEActor.
Note that our implementation allows us to cre-
ate instances of SEActor in both levels 3 and 4
of the software branch of the hierarchy. Hence,
we include AnnSmith:SEActor@2 in the bottom
model, and instantiate the performs relation from
process (which relates actors to tasks) to indicate
that she carries out the task coding in COBOL.
As already explained, our solution distinguishes
between actors (as actual people) and the roles
they perform, so we also create a special type of
developer that is allowed to code in COBOL, i. e.
COBOLDeveloper:Developer. Ann Smith is
connected to this role via an instantiation of the
hasRole relation. Finally, even though there is
already an instantiation of executes between De-
veloper and Coding in the acme process model,
we think that it is appropriate to instantiate it again
in this model, between COBOLDeveloper and
CodingCOBOL. We believe that this repetition
provides clarity to the model and simplifies the
definition of the constraint presented in 4.4.

S8
‘Testing is performed by a tester and produces a
test report.’

The node Testing is already present, so we
add the nodes Tester:Role@2 and TestRep-
ort:SEArtifact to the model acme process. We
instantiate the relations executes and produces
(from two levels above) in order to connect each
node to Testing, respectively.

S9
‘Each tested artifact must be associated to its test
report.’

At first glance, it could be argued that this re-
quirement can be satisfied in the model software
process in level 2 of the software branch. How-
ever, we believe that it actually belongs to model
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acme process, since it is only related to Test-
ing, which is declared on that model. Moreover,
Testing may not be defined or used in the same
way in different software processes which could
be defined in other hypothetical software com-
panies. With this choice, we also avoid the need
for a constraint that would check that Testing
is associated with only some specific instances
of SEArtifact. Therefore, we include in model
acme process a node TestReport:SEArtifact
that is connected to the existing nodes Testing
and Code via two relations isTested:EReference
and testing_produces:produces@?2, respect-
ively. As explained in S4, we exploit the fact that
MuLrtEcore allows creating direct instances of
EReference anywhere for the typing of isTested.
We choose to only create isTested for Code, but
there is no obstacle if one wants to create more
relations like it from other instances of SEArtifact
to other test reports—or even the same one, if one
wanted to model a test report that contains info
about several tested artefacts.

S10

‘Software engineering artifacts have a responsible
actor and a version number. This applies to
requirements specification, code, test case, test
report, but also to any future types of software
engineering artifacts.’

We hinted in the discussion of previous require-
ments that this one entails, to our understanding,
the creation of the intermediate model software
process for the software branch, that does not
have a counterpart in the insurance branch. In this
new model, we need to refine generic artefacts
into software engineering artefacts which contain
more information. Hence, in the model in level 2
we create Artifact:SEArtifact, which defines the
required attribute versionNumber of type String
that should be instantiated in the bottom-most
level of the branch—i. e. model acme configur-
ation in level 4. The potency that we require
for the attribute is therefore 2-2 (recall that the
depth for attributes is always 1 and consequently
not displayed). The cardinality of this attribute,
not displayed, is 1..1, so that the attribute must

be instantiated, according to the requirement. In
such a way, any X:Y:SEArtifact in model acme
configuration needs to instantiate the attribute,
as COBOL and COBOLCode illustrate. To ful-
fil the rest of the requirement, we also need to
model that instances of SEArtifact have a special
relation to actors. Since MuLTEcoRE does not
allow for cross-level relations, we need to cre-
ate a corresponding SEActor:Actor in software
process so that we can then define responsible-
Actor:EReference among them. Using the same
rationale as for the attribute, the potency of re-
sponsibleActor is 2-2-1 and its cardinality is
1..1. Examples of instances of this relation are
those connecting COBOL and COBOLCode to
JohnDoe in model acme configuration.

S11

‘Bob Brown is an analyst and tester. He has
created all task types in this software development
process.’

We interpret that ‘this software development
process’ refers to a specific instance of a software
process. That is, the model in Fig. 1 in the chal-
lenge description, which corresponds to model
acme process in our solution. Hence, we in-
clude in that model a node BobBrown:SEActor
and instantiate the creates relation from it to-
wards every instance of Task in this model, e. g.
Design. This includes the initial and final tasks
that every process must have. It is worth pointing
out again that our solution allows for the cre-
ation of direct instances of actors in two different
levels, both in the insurance branch (as instances
of Actor) and in the software branch (instantiating
SEActor). This construction is necessary since
the two lower levels in both branches of our hier-
archy (levels 2 and 3 on insurance branch; 3 and
4 in software) may need to define actors in order
to adhere to the requirements, e.g. Bob Brown
needs to appear in model acme process and Ann
Smith in acme configuration. In contrast, roles
can be simply instantiated and re-instantiated in
those levels, since the domain naturally requires
s0, e.g. COBOLDeveloper:Developer:Role@2.
We have made this design choice to allow for the
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representation of specific roles, like a COBOL de-
veloper, without losing the information that such
a role is also in the category of developers, in
general.

While this construction for actors might seem
undesirable at first, we argue that it removes the
need for cross-level relations and that it neither
requires any additional elements to be defined nor
enforces an artificial re-instantiation of actors—
which would be done in a similar manner as we do
for roles. The only shortcoming that we see in our
solution is that the same actor may appear twice
in two models in adjacent levels. For example,
if Ann Smith would be responsible for creating
tasks that appear in acme process, she would
also have to appear there along Bob Brown, and
hence would be a duplicate of the Ann Smith
that is already present in acme configuration.
However, if some practical application of our
models—Ilike code generation—were affected by
such duplication, we could simply identify both
nodes based on the fact that they share the same
name, type and potency.

S12

‘The expected duration of testing is 9 days.’
Testing in model acme process instantiates

the expectedDuration integer attribute to 9 to

fulfil this requirement.

S13

‘Designing test cases is a critical task which must
be performed by a senior analyst. Test cases must
be validated by a test design review.’

We instantiate the isCritical Boolean attribute
to true in TestCaseDesign, in model acme pro-
cess. We connect the node SeniorAnalyst to that
instance of Task with an instance of executes.
For the sake of simplicity, we do not relate this
role to any actor, although it would be reasonable
to do so eventually. The fact that TestDesignRe-
view validates TestCaseDesign is represented
by TestDesignReview being of type SEValida-
tionTask and instantiating the validates relation
towards every artefact produced by TestCase-
Design, namely TestCase. The constraint in

Fig. 17 (from P9) ensures that this construction is
enforced.

6 Assessment of the Modelling Solution

In this section, we discuss the advantages and
shortcomings of the choices we made in our solu-
tion to the challenge. We also point out whether we
were forced to make any compromises or whether
our solution presents any deficiencies.

6.1 Basic modelling constructs

MuLTEcoRE is graph-based from a theoretical
point of view, and this fact reflects on the EMF-
based implementation. All models use nodes
and relations as the basic building blocks, which
are contained in models. Attributes are form-
ally nodes, as explained in Macias (2019), but
in practise they behave as commonly expected:
they are defined inside a node and instantiated in
the instances of that node. The rationale for the
separation of these elements in different models
is to make them as independent from each other
as possible, so that they can be connected to each
other only by typing relations. This provides an ad-
vantage when adding and removing intermediate
models. For example, software process could
be removed from our hierarchy, and the types of
the elements in the models below just be replaced
by the type of the removed types, e. g. SEActor
to Actor and responsibleActor to EReference.
To achieve this separation, potency plays an im-
portant role, as discussed later in this section.
Furthermore, combining inheritance with typing
also allows us to choose whichever construction
is more flexible, understandable and aligned with
the requirements, e. g. the composite pattern that
we present for roles.

6.2 Levels

Levels are used as an organisational tool in MuLT-
EcoRrE, as explained in Sect. 2.1. This rationale
entails that the typing relations—from nodes to
nodes and from relations to relations—have the
meaning of my type defines my structure, in the
sense of which relations can be defined and to
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Table 2: Summary of SX requirements

Req. Addressed? Comments

Creating a direct instance of EReference through potency

Addressed in acme process, not in software process

S1 + —

S2 + Enforced by constraint from P9

S3 + —

S4 +

S5 + Addressed in new model acme configuration
S6 + Addressed in new model acme configuration
S7 + Using roles

S8 + —

S9 +

S10 + Addressed in new model software process
S11 + May entail actor duplication

S12 + —

S13 + —

which other nodes, which attributes can be in-
stantiated, which nodes can inherit from which
other nodes, etc. Due to potency, these typing
relations can jump over levels, but still levels serve
as a default organisation of models and the ele-
ments they contain. We also mentioned already in
Sect. 2.1 that these typing relations among levels
do not necessarily adhere to classification with all
its implications, since we prioritise flexibility and
conciseness, but are in general quite aligned with
the concept.

6.3 Number of levels

As stated before, hierarchies in MUuLTECORE are
unbounded, so the hierarchy we present could
grow downwards as much as necessary. We chose
to add an intermediate level for refinements related
to software processes (e. g. SEActor), which could
perhaps have been done with inheritance in model
process. However, this alternative would pollute
the model, which is supposed to be generic and
unaffected by the particularities of any subdomain.
Conversely, we did not force a similar intermediate
level in the insurance branch just to keep the
hierarchy symmetric since it was not necessary,
but of course it could be included if required at
a later point in time. To sum up, we designed
our solution to be as flexible as possible, and

used levels to create, from our perspective, clearly-
defined partitions of the domain: processes in
general, software processes, the software process
of a particular company, and the state of such
process at a specific point in time (and a similar
partition for the insurance subdomain).

Actually, any of the models in the intermediate
levels can be considered a DSML which is used
to define the level(s) below it, using the types
they define in a structurally coherent manner and
satisfying the given constraints. The bottom-most
models represent a specific state of the process,
e. g. Ann Smith, who is a COBOL Developer, is us-
ing COBOL version 1.3 to implement version 3.1 of
a particular piece of COBOL code. These bottom-
most models could be used for different purposes,
like logging the different tasks performed by the
actors and the generated artefacts, or for monitor-
ing purposes, by representing the current state of
the process. If the models were enhanced with fur-
ther details, one could even consider the execution
of simulations prior to the actual enactment of the
process in the real world. In such a way, it would
be possible to assess whether the specified pro-
cess, task distribution, workload, etc. are likely to
succeed or will probably lead to time and budget
overruns.
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6.4 Cross-level relationships

Cross-level relations go against modularity, and
therefore would reduce some benefits of our ap-
proach, e. g. flexibility and reusability. Moreover,
they are purposely not supported by our current
formalisation (Wolter et al. 2019). Hence, our
solution does not employ them, but we have not
identified any case in which they are more desir-
able than an alternative construction.

6.5 Cross-level constraints

The expressive power of MCMTs allows us to use
them to define different kinds of semantics, which
have been illustrated in this paper. We can specify
dynamic semantics to describe the behavioural
aspect of the modelled system and also define static
semantics that check the structural correctness of
the multi-level hierarchy. As discussed in Sect. 4.5,
the dynamic semantics are applied following the
traditional in-place model transformations rules
manner where the match of the left-hand side of
the rule leads to the modifications specified on
the right-hand side. The cross-level constraints
would be executed in a so-called check mode where
the left-hand side and the right-hand side specify
two multi-level sub-hierarchy patterns that have
to be found for the constraint to be satisfied (see
Sect. 4.4).

6.6 Integrity mechanisms

This discussion is twofold: integrity mechanisms
which prevent incorrect constructions and repair-
ing mechanisms if such a construction is made.
For the first group, both the formalisation and the
implementation of MuLTEcoRE has mechanisms
to avoid cyclic inheritance, cyclic typing, potency-
violating typing, invalid inheritance, multiplicity
violations for relations and attributes, duplica-
tion of elements and incorrect typing relations
for all kinds of elements. Repairing actions like
the ones required for the co-evolution of models,
metamodels and MTs are not part of MULTECORE.
However, the tool does include some basic repair-
ing mechanisms, e.g. fixing the potency of an
element to 0-0-0 if any of the three values be-
comes 0 or correcting depth of an element to the

depth of its type minus one, if a higher or equal
value is specified. Additionally, more advanced
repair mechanisms are planned in future releases,
such as changing the type of an element to the
type of its type if the former is removed.

6.7 Deep characterisation

Our solution makes intensive use of potency,
with no element using MuLTEcoRE’s default
potency of 1-1-*, except for the supplementary
node TimeStamp. The reasons for this are two-
fold. First, the presented scenario clearly defines a
bottom-most level for model instances (i. e. enact-
ments) of specific processes, and it does not make
sense to create further instances of such models.
Hence, the value of depth is always bounded. And
second, the way in which most elements in the top
models, especially process, are expected to be
used, forces us to use end values higher than 1. In
some cases, even the start value differs from 1 to
prevent them from being instantiated in the level
below, e. g. the performs relation in process.

6.8 Generality

We believe that our solution performs very well
regarding its generality, and the reusability that
it entails. We have managed to create a solu-
tion with minimal redundancy in most cases, the
only exceptions being the potential duplication of
actor in two adjacent levels and the several supple-
mentary typing relations in process to enable the
instantiation of the attribute lastUpdated in all
nodes. Moreover, we illustrated the reusability of
the process model and the related MCMT rules
by modelling the optional insurance domain, and
including an example execution of this process
in our solution. In general, we believe that the
software process model can be used for other
software-related companies that may implement
different processes than Acme. Likewise, the
acme process model one level below could both
be instantiated for other points in time of the same
enactment (as illustrated by our MCMT-based
execution) or enacted differently for other depart-
ments of the same company that adhere to the
same process.
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6.9 Extensibility

Our solution already illustrates how some exten-
sions can be performed when new requirements
appear. For example, the discussions regarding
senior actors and validation tasks in P9. Similar
extensions through inheritance are always avail-
able and simple to perform, since they only add
new information to the models, therefore not com-
promising their integrity or semantics. Moreover,
we have shown how model (or level) insertion can
be performed by introducing an intermediate level
in the software branch (motivated by S11) which
has no counterpart in the insurance branch of our
hierarchy.

We finalise this section by discussing two of
the topics that are recommended in the challenge
description.

First, we would like to remark that MuLT-
EcoRre is not only the supporting tool for our
approach that we have used to fully create the
models and MTs presented in this challenge. The
approach also includes a detailed formalisation
based on Graph Theory and Category Theory
which provides a framework of reference for the
tool’s behaviour (Wolter et al. 2019).

And second, although we already stated that
the verification of our models can be performed
through integrity mechanisms (Sect. 6.6), there
are additional checks. For example, the stand-
ard validators of EMF for Ecore models and their
XMI instances can be still used with MULTECORE,
since the tool reflects multi-level changes on both
facets of the models in each level, using a mech-
anism called sliding window presented in Macias
(2019, Sect. 4.1). This validator can be used to
check that obligatory attributes are correctly in-
stantiated or that the multiplicities of relations are
respected, among others. However, these checks
have some caveats due to the way in which multi-
level aspects are represented in those models, so a
full integration that does not display multi-level
constructions as errors is still a matter of future
work.

7 Related Work

The MULTI challenge has received several re-
sponses by the community in order to bring in-
sights on how MLM can be applied to solve the
suggested scenarios. We first discuss other solu-
tions related to the Process Challenge in 2019 (Al-
meida et al. 2019).

Jeusfeld’s solution (see Jeusfeld (2019b)) is
implemented in pEepTELOS (Jeusfeld 2019a;
Jeusfeld and Neumayr 2016) that extends TELOS
and that allows hierarchies of level objects (called
most-general instances) to be defined. DEEPTE-
Los is developed by just creating the DEEPTELOS
objects with additional rules/constraints in Con-
cepTBAsE (Jarke et al. 1995). Note that the core
idea of DEEPTELOS is to exploit the powertype
pattern (Odell 1994) and therefore is a level-blind
approach (Henderson-Sellers et al. 2013), which
means that it does not express an explicit notion
of level, even though they are intuitively derived
by analysing the solution implementation. This
powertype-based solution allows them to naturally
deal with cross-level relationships, feature that we
do not support in MuLTEcoRrE. On the other hand,
Jeusfeld argue that certain requirements, such as
P17 cannot be completely fulfilled as they would
have to extend their specification by TELOSs rules.
Conversely, our multi-level transformation lan-
guage (MCMTs) allows us to specify multi-level
constraints. The most-general instances idea re-
places the well-known potency mechanism present
in level-adjuvant approaches. In particular, our
three-value potency specification allows us to be
both generic and precise depending on the partic-
ular needs. It is unclear to us how such a level
of precision could be achieved using the solution
in Jeusfeld (2019b), where they also have to make
the explicit separation between Task and Task-
Type, which we deem unnecessary in a multi-level
context.

Somogyi et al. (Somogyi et al. 2019) also con-
tributed with their solution by using their tool
pMLA (Theisz et al. 2019; Urbdn et al. 2018).
DMLA is a self-validating metamodelling formal-
ism relying on gradual model constraining through
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its interpretation of the classical instantiation rela-
tion. pMmLA is self-described, and it also provides
so-called fluid metamodelling, which means that it
is not required to instantiate all entities of a model
at once. Models in pMLA are stored in tuples,
referencing each other, and thus, forming an en-
tity graph. It is also a level-blind approach that
naturally supports the specification of cross-level
relationships. Being a level-blind approach where
all entities can reference any other entity (the fluid
nature), it is easier for the modeller to construct
invalid models, which is more difficult in other ap-
proaches where the hierarchy of models is clearly
constructed, like ours. Furthermore, the sanity
checks facilitated by potency allow the modeller to
always be sure that the model under construction
is correct. Also, pMLA does not explicitly support
some features, such as inheritance (even though
the authors argue that it can be simulated). While
MuLrTEcoRE naturally supports inheritance, So-
mogyi et al. had to simulate inheritance which
resulted in an artificial workaround to solve some
of the requirements.

The two solutions discussed above were the
only ones published along with our MULTECORE
response in 2019. However, in 2018 there has
been another challenge case, namely the Bicycle
Challenge?’ , it is interesting to discuss the work
presented by Lange and Atkinson (Lange and
Atkinson 2018). Note that Mezei et al. (Mezei
et al. 2018) also presented a solution using DmMLA,
for which we do not enter into more details as the
relevant aspects have already been discussed in
the previous paragraph.

Lange and Atkinson’s solution (Lange and
Atkinson 2018) was constructed using the ma-
ture tool MELANEE (Atkinson and Gerbig 2016).
MELANEE is one of the most advanced tools based
in OCA (Atkinson and Kiihne 2005) for deep mod-
elling which supports modelling through deep,
multi-format, multi-notation, user-defined lan-
guages. The MELANEE solution is closer to what

5 Bicycle Challenge 2018: https://www.wi-inf.
uni-duisburg-essen.de/MULTI2018/wp-content/uploads/
2018/03/MULTI2018-BicycleChallenge.pdf

our solution with MuLTEcoRE looks like as it
is a level-adjuvant approach that also distributes
models according to the ontological classifica-
tion of its elements and uses (a different form of)
potency. Like in MULTECORE, MELANEE does
not allow cross-level relationships so models are
organised into clear abstraction levels. While this
has some advantages, it also has some drawbacks,
for instance, the creation of additional nodes in
certain levels to make the connections. An ex-
ample reflected in our solution is the fact that
an actor may appear in two different abstraction
levels. If we take as a reference the right branch of
the multi-level hierarchy depicted in Fig. 2, while
an actor can create tasks in level 3 of this branch
(see, for example, BobBrown on the right side
of Fig. 6) it can also perform concrete tasks such
as CodingCOBOL, performed by AnnSmith (see
bottom right of Fig. 7).

Finally, regarding our own submission to the
challenge in 2019 (see Rodriguez and Macias
2019) we have made improvements and exten-
sions both to the solution and to the MULTECORE
tool. The multi-level hierarchy presented in the
previous work was modelled so it was symmetric,
i. e., both branches (insurance and software engin-
eering) had the same length. This forced us to
include an intermediate model for the insurance
domain that did not really capture any of the re-
quirements stated in the challenge description. In
the current version presented in this article this
model has been avoided, which helped us demon-
strate a flexibility aspect of MULTECORE where
the different domains do not need to have the same
length as they are fully independent from each
other. Moreover, as demonstrated, the MCMT
rules are still applicable to both domains due to
their vertical and horizontal flexibility (for more
details on this, we refer the reader to Rodriguez
et al. 2019a, Sect. 4.2). The composite pattern
was already implemented for roles in the solution
submitted in 2019. MuLTECcoRE’s facilities such
as the use of inheritance and the potency cus-
tomisation capabilities allowed us to exploit such
a pattern within the multi-level context. Thus,
we have also used this construction to discuss


http://dx.doi.org/10.18417/emisa.17.8
https://www.wi-inf.uni-duisburg-essen.de/MULTI2018/wp-content/uploads/2018/03/MULTI2018-BicycleChallenge.pdf
https://www.wi-inf.uni-duisburg-essen.de/MULTI2018/wp-content/uploads/2018/03/MULTI2018-BicycleChallenge.pdf
https://www.wi-inf.uni-duisburg-essen.de/MULTI2018/wp-content/uploads/2018/03/MULTI2018-BicycleChallenge.pdf

International Journal of Conceptual Modeling

Vol. 17, No. 8 (2022). DOI:10.18417/emisa.17.8

Alejandro Rodriguez, Fernando Macias

Special Issue on Multi-Level Modeling Process Challenge

how to model the artefact situation (P16), and
the scenario on Fig. 18. Furthermore, we ex-
plore in this paper the operational semantics of
process challenge. We have shown in Sect. 4.5
how we can execute models and evolve them by
applying MCMT rules that describe the behaviour.
This part was not examined in our submission
in Rodriguez and Macias (2019). We have also
included some minor enhancements which we
previously overlooked, like the values of some
potencies or making the node Gateway abstract.
Finally, we have improved the way in which supple-
mentary attributes can be instantiated to develop
a nearly-optimal solution for requirement P19.

8 Conclusions and Future work

In this paper, we have presented an extended solu-
tion based on our initial contribution (Rodriguez
and Macias 2019) to the Process Challenge pro-
posed at the MULTI workshop (Almeida et al.
2021). Our multi-level modelling hierarchy has a
total of five abstraction levels, two branches and 7
models (more if we take into account all the model
states generated during the execution, shown in
Sect. 4.5). Such hierarchical distribution covers
the generic domain of process description and
its refinement for the software engineering and
the insurance domains. Each level can be under-
stood as a potential candidate for the generation
of software artefacts, like domain-specific edit-
ors (graphical and/or textual) to specify processes
at any level of abstraction, or for the simulation
of processes through model transformations at
the bottom levels. Our solution is based on the
MuLtEcoRE tool and the infrastructure that con-
nects it to MAUDE which allows us to perform
simulation/execution. MULTECORE is built on
top of EMF which allows us to use all the EMF
capabilities boosted with multi-level capabilities.
For instance, this facilitates the usage of the rich
ecosystem of EMF such as using editors with
Sirius for graphical results and XTExT for custom
specification languages.

From a more conceptual standpoint, one of our
ambitions with respect to MULTECORE is to make

it an approach that enhances flexibility and reusab-
ility. This has allowed us to create an elegant,
concise and correct multi-level hierarchy for the
given domain of process modelling where, for
example, the branches are independent and their
lengths are different. We believe that this solution
can be an interesting contribution for the challenge
and be used to foster fruitful discussions within
the MLM community. Furthermore, we have gone
one step further by exploring behavioural aspects,
and we believe that including this dimension as
part of future challenge proposals would bring
engaging results from the MLM community.

We have presented preliminary results regard-
ing execution by showing some examples of model
evolution by applying operational semantics via
MCMT rules. Currently, we are actively work-
ing on MULTECORE-MAUDE infrastructure to
improve the execution and further verification of
the specified multi-level hierarchies. Also, we are
studying how to improve the MCMTs flexibility,
by taking advantage of inheritance to reuse some
MCMT rules with common behaviour. While
MCMTs are flexible with respect to horizontal
and vertical extensions, we identify a key point of
improvement as being able to reuse META levels
on MCMTs into other rules. Another important as-
pect that we plan to work on, is the implementation
in MAUDE and the integration into MULTECORE
of the check mode of MCMTs for the validation of
the multi-level hierarchy with respect to structural
constraints (as shown in Sect. 4.4).

We conclude this paper by answering the ques-
tions that the challenge description explicitly asks
respondents to address.

‘Does the submission address the established
domain as described in Sect. 2 and demonstrate
the use of multi-level features?” We believe that
our solution contains all the required concepts and
constructions required in the challenge descrip-
tion. In most cases, these constructions do not
require workarounds or additional concepts, and
we discuss and justify our choices in the few cases
where we need them. Furthermore, our solution
prominently makes use of multiple levels, three-
valued potency specification and double typing
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(through a supplementary hierarchy). All of these
concepts are important multi-level features that
this submission showcases.

‘Does it evaluate/discuss the proposed mod-
eling solution against the criteria presented in
Sect. 37’ The whole Sect. 6 in this paper is dedic-
ated precisely to the discussion of those criteria,
in the same order in which they are enumerated
in Almeida et al. (2019), so that we can make
sure that this question is properly addressed. We
also included the recommended discussion aspects
suggested by the challenge description.

‘Does it discuss the merits and limitations of the
applied MLM technique in the context of the chal-
lenge? Authors may suggest further requirements
that clearly demonstrate the utility of their chosen
approach.” We have thoroughly discussed the
advantages of MuLTECORE and the few scenarios
where we found limitations throughout Sects. 2,
5, 6 and 7. We have also suggested including new
requirements regarding the operational semantics
of the challenge’s domain for upcoming editions
in Sect. 4.5.
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