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Abstract. This paper presents a solution to the MULTI Process Challenge which was first posed to the
participants of the MULTI workshop at the MODELS conference in 2019 and subsequently adapted for this
special issue of the EMISA Journal. The structure of the paper therefore follows the guidelines laid out in
the Challenge description. The models are represented in the Level-agnostic Modeling Language LML
and the DOCL constraint language using the Melanee deep modeling tool. After first outlining the case
study and documenting which aspects are supported in the LML solution, the paper presents multi-level
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strengths and weaknesses of the approach. The presented model covers all mandatory and optional aspects

of the Challenge case study.
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1 Introduction

The EMISAJ Multi-level Process Challenge (here-
after referred to as “the Challenge”) was initially
defined by the organizers of MULTI 2019 as a
vehicle for evaluating and comparing multi-level
modeling approaches and was subsequently re-
fined for this special edition of the EMISAJ jour-
nal by Almeida et al. (2019). This paper presents
a solution to the challenge developed using the
LML deep modeling language supported by the
Melanee deep modeling tool (Gerbig 2017). This
supports a style of multi-level modeling often re-
ferred to as “deep (meta) modeling” (Atkinson
and Kiihne 2001b) since it is based on the use
of (a) the deep instantiation mechanism (using
potency) to represent ontological classification
relationships (Atkinson and Kiihne 2001b) and (b)
the tenet of strict modeling to define the different
levels within a multi-level model (Atkinson and
Kiihne 2002).
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In any modeling approach there are no set-in-
stone criteria for judging what constitutes a good
model as opposed to a bad model since models
can be optimized for different purposes based
on multiple criteria (e. g., minimality, readabil-
ity, maintainability). The deep models presented
in this paper, which satisfy all mandatory and
optional requirements laid out in the Challenge,
have been optimized to showcase LML features
and thus do not claim to be the best models for a
specific real-world modeling use case.

The structure of the paper broadly follows the
guidelines set out in the Challenge description.
The next section first outlines the technology we
use to develop our solutions including the basic
principles of our modeling approach, the important
concepts in the LML and DOCL languages and the
properties of the supporting Melanee tool. Once
the technology has been described, Sect. 3 starts
the presentation of our solutions by describing the
level-spanning elements of the models, including
the level-spanning linguistic metamodel and the
basic rules by which elements at one level can be


http://dx.doi.org/10.18417/emisa.17.6
lange@informatik.uni-mannheim.de

International Journal of Conceptual Modeling

Vol. 17, No. 6 (2022). DOI:10.18417/emisa.17.6

Arne Lange, Colin Atkinson

Special Issue on Multi-Level Modeling Process Challenge

related to the elements at the level above. Sect. 4
then presents the top level ontological level in our
solution(s) which describes the general purpose
process modeling language which is independent
of any particular domain or example. The use of
this language in the two applications domains is
described in the following two sections. Sect. 5
deals with our solution for the insurance domain
and Sect. 6 for the software engineering domain.
Sect. 7 continues by addressing the mandatory and
optional discussion points outlined in the Chal-
lenge description before Sect. 8 continues with a
deeper discussion of one of the main weaknesses
of our technology and a presentation of some po-
tential solutions. Finally, Sect. 10 concludes with
some closing remarks.

2 Technology - Applied Multi-Level
Modeling Approach

In this section, we characterize the multi-level
modeling approach we used to model our solu-
tions.

2.1 Deep Modeling

Since the basic tenets of Multi-level Modeling
(MLM) approaches were first identified around
two decades ago, a large number of different MLM
languages have been proposed. The common
goal of these languages is to support the repre-
sentation of domain information using multiple
classification levels rather than just the two levels
simultaneously supported in most traditional mod-
eling environments. The variant of multi-level
modeling used in this paper is sometimes known
as “deep modeling” or “deep meta-modeling” (De
Lara et al. 2014a), because one of its four core
principles is referred to as “deep instantiation”
(Atkinson and Kiihne 2001b). The basic ingredi-
ents of deep modeling are:

1. Orthogonal Classification Architecture (OCA)
2. Strict modeling
3. Clabjects

4. Deep instantiation
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Figure 1: Orthogonal Classification Architecture

Orthogonal Classification Architecture
Perhaps the most fundamental principle used in
deep modeling is that all modeling content exists
within two orthogonal classification dimensions
— a linguistic dimension which describes how do-
main concepts are represented, linguistically, and
the ontological dimension which captures what
properties and relationships those domain con-
cepts have. This means that the domain content
within a deep model can have two types, an on-
tological type and a linguistic type, as shown
schematically in Fig. 1.

The model at the L, level is known as the
linguistic model and describes the abstract and
concrete syntax of the language used to represent
all domain content across all ontological levels in
L. In our case, the language is LML. The L, level
of Fig. 1 contains a highly simplified depiction of
the core linguistic concepts of LML, represented
using a UML-like language.

Strict Modeling

The second fundamental ingredient of deep mod-
eling is that the “levels” in the ontological di-
mensions are strictly and exclusively organized by
the classification (i. e., instanceOf) relationship
and that the instances of a model element are al-
ways regarded as occupying the level below that
model element’s level. This can be seen in L of
Fig. 1 which depicts three ontological levels, each
containing one clabject, where SSCodeModule is
an instanceOf CodeModule, which in turn is an
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instanceOf ArtifactType. The instanceOf rela-
tionship is the basis for establishing the ontological
levels in the strict modeling approach. A second
important principle of strict modeling, therefore,
is that instanceOf relationships are the only kind
of relationship that can cross level boundaries.
Different numbering conventions can be cho-
sen to label the ontological levels, depending
on whether the emphasis is on defining a generic
framework intended for reuse in different domains,
with different numbers of derived classification
levels, or whether the emphasis is on defining a
deep model for a fixed domain where the number
of levels is unlikely to change. In the former,
it is more convenient to number the ontological
levels from the most abstract to the most concrete
>i.e., Oy is the top level) while in the latter it is
more convenient to number them from the most
concrete to the most abstract (i. e., Og is the most
concrete). We use the former in our solution.
Note that strict modeling does not require every
model element to have an ontological type, so it is
not necessary for a model element to have a type
at the level above. Strict modeling merely requires
that if a model element has an ontological type,
that ontological type must be at the level above.

Clabjects

The third fundamental ingredient of deep mod-
eling is that, in general, the elements in a deep
model are both types and instances at the same
time, as can be seen in Fig. 1. The model element,
CodeModule, in the middle level is an instance
of the model element, ArtifactType, at the level
above as well as the type of the model element,
SSCodeModule, at the level below. Since UML
typically refers to types as “classes” and instances
as “objects”, to capture this unification of the two
concepts within a single abstraction, model ele-
ments in deep models are often called “clabjects”
(a conflation of Class and Object). Note that since
clabjects do not have to have ontological types,
and types do not have to have any currently exist-
ing instances, clabjects that represent just types or
just instances can exist at any level.

Deep Instantiation
Combining the notions of types and instances
(i.e., classes and objects) into the unified notion
of clabjects has the advantage that model elements
can play both roles, thereby reducing clutter and
unnecessary complexity in models. However,
without additional mechanisms to characterize the
resulting type and instance “facets” of clabjects
it would not be clear to what extent, and how,
individual clabjects can play type and/or instance
roles. The third fundamental ingredient of deep
modeling languages is therefore a mechanism to
represent the “vitality” of clabjects — namely, to
what extent, and how, the type facet of clabjects
influence their direct offspring (i. e., their direct
instances, over multiple classification levels).
Potency: The oldest and most fundamental vi-
tality property in MLM is the so-called “potency”
property of a clabject which is a measure of the
number of classification levels over which a clab-
ject can have direct instances. It is captured as
an integer-valued linguistic attribute (or trait) of a
clabject that adheres to two fundamental rules:

1. the potency of a clabject cannot be less than 0,

2. the potency of a direct instance of a clabject
must be less than the potency of that clabject.

The notion of potency was first introduced as
part of the so-called “deep instantiation” mech-
anism (Atkinson and Kiihne 2002) which distin-
guishes deep modeling from traditional “shallow”
modeling approaches and ultimately gives the
former its name. In its initial form, the deep in-
stantiation mechanism was based on the principle
that the potency of an instance of a clabject must
always be exactly one less than the potency of that
clabject. However, a more relaxed interpretation
of potency (Kiihne 2018) requires only that the
potency of an instance of a clabject be less than
the potency of that clabject (subject to the two
constraints defined above).

The potency trait captures the most fundamen-
tal type characteristics of clabjects — namely, how
many lower levels the clabject can influence by
transitive instantiation chains. However, it does
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not characterize the nature of that influence in
terms of the attributes that those instances can
have and the values those attributes can take. The
LML version of deep modeling used in this pa-
per addresses this question by introducing two
further vitality properties, called “durability” and
“mutability”, which govern the existence of onto-
logical attributes of clabjects and the values of
those attributes, respectively. In previous publi-
cations, these were often referred to as “forms
of potency”. However, to avoid confusion with
the true potency property describe above, we now
prefer to refer to these three linguistic attributes
as vitality properties (Lange and Atkinson 2019).

Durability: Durability is a linguistic property
of the ontological attributes of clabjects which
characterizes their endurance over instantiation
steps. Like potency, it is represented by a non-
negative integer, but unlike potency, an instance of
an attribute must have a durability that is exactly
one less than the durability of that attribute. Thus,
an instance of a clabject that has an attribute of
durability zero need not have an instance of that
attribute.

Mutability: Mutability is a linguistic property
of the ontological attributes of clabjects that char-
acterizes how their values can be changed over
instantiation steps. Like potency and durability,
mutability is a non-negative integer. Moreover,
with one exception, the rules for mutability over
instantiation steps are the same as those for dura-
bility — the mutability of an instance of an attribute
must be one lower than the mutability of that at-
tribute. The exception occurs when the mutability
of the attribute is already zero, in which case the
mutability of instances of the attribute must also
be zero. Zero is a key mutability value of an
attribute, therefore, it means that the instances of
that attribute must have the same value.

2.2 Level-Agnostic Modeling Language

The concrete deep modeling languages we use to
describe our solution are the Level-Agnostic Mod-
eling Language (LML), and deep OCL (DOCL),

both of which are based on OCA. LML was devel-
oped to support the description of domain model
content within L in a way which is:

1. UML-like,
2. level-Agnostic,

3. minimalistic.

The underlying goal of LML’s general purpose
syntax is to support the creation of deep mod-
els which have the basic look-and-feel of UML
models, and thus are intuitive to mainstream mod-
elers and software engineers. However, LML was
designed to achieve this goal in a way that is
level-agnostic and minimalistic. The language is
level-agnostic in the sense that all constructs de-
fined in the linguistic model, which are therefore
available at all ontological levels, are applied and
represented in the same way at all levels. For ex-
ample, in contrast to UML, there is no difference
in the concrete syntax used to represent classes and
objects, which means that clabjects with all possi-
ble combinations of types/instance characteristics
can be represented using the same notation.

2.3 Deep OCL

The deep OCL (DOCL) dialect integrated into
Melanee extends the OCL 2.4 (Object Manage-
ment Group 2021) language specification with ad-
ditional features to write constraints in the context
of deep models. Most importantly it is “level-
aware”, which means that DOCL expressions can
explicitly refer to, and navigate over, the ontolog-
ical as well as the linguistic dimensions. DOCL
also adds additional features such as reflective
queries for specific types over both dimensions.
Normal OCL typing queries can still be used
wherever desired, but additional “level-aware typ-
ing queries”, such as isDeeplnstaceOf{), isDeep-
TypeOf{) or isDeepKindOf{( ), allow typing queries
to transcend multiple classification levels. In com-
parison to standard OCL, where statements are
purely descriptive and have no effect on the model,
DOCL is also able to manipulate models. This can
be done via a derive or init constraint, where the
value of an attribute is changed depending on the
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Figure 2: Melanee Architecture Overview (Gerbig 2017)

state of the model. In fact, this technique is used
to fulfill one of the requirements of the Challenge,
which will be part of the solution description. In
a deep environment the invariant constraints can
be evaluated at modeling time, instead of just at
run time as in a traditional OCL environment.

In order to switch to the linguistic dimension
the ‘#” symbol is used. A subsequent ‘#’ symbol
sets the context back to the “normal” ontological
context. Whenever the linguistic dimension is
queried, attributes and methods from this dimen-
sion (i. e., the linguistic model) can be accessed.

All DOCL constraints have a level “modifier”
that determines the levels at which the constraint
is executed. For example, a constraint defined at
level Og can apply to (i. e., be executed on) level
0 or level O, or both. It is also possible to define
an interval that includes all levels below the level
the constraint is specified at. This is indicated
with brackets behind the context specification of
the constraint. For example, if the execution
interval should involve all levels, the execution
specification has the form *(0,_)’

2.4 Melanee

The concrete tool we used to create our LML mod-
els is the Melanee tool developed at the University
of Mannheim (Gerbig 2017). The tool is based on
the EcLipsE platform (Eclipse Foundation 2021)
and, as illustrated in Fig. 2, uses that platform’s
plugin features to provide a full, multi-level mod-
eling experience that includes access to DOCL

and deep ATL (a deep variant of the well-known
ATL transformation language).

As well as supporting the general-purpose LML
modeling notation used in this paper, Melanee
also allows deep models to be visualized in var-
ious other forms including textual, form-based,
tabular and domain-specific notations. Melanee
also provides numerous reasoning and checking
services for deep models, including the so-called
“emendation” service which checks that clabject
vitality properties are consistent and offers support
for making corrections where necessary. Finally,
although Melanee provides access to the afore-
mentioned features optimized for deep modeling,
since the linguistic model is essentially realized as
an ECore model (i. e., as an instance of the ECore
metamodel underpinning the Eclipse Modeling
Framework (EMF)), the rich set of modeling lan-
guages and tools offered in EMF can be used on
Melanee models, albeit in a level-unaware way.

3 Level-Spanning Artifacts
3.1 Linguistic Model

This section describes all level spanning concepts
underpinning our LML-based solution to the Chal-
lenge. This consists of two parts, the linguistic
model itself, taking the form of a class diagram,
and a set of constraints, taking the form of DOCL
expressions. Each part is described in a dedicated
section below.
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Figure 3: Pan-level model for LML that is used in Melanee

The linguistic model for LML deep models,
describing the abstract syntax for the concepts
explained in the previous section, is depicted in
Fig. 3 in the form of a UML class diagram. This
shows that all the model elements comprising
an LML deep model for a particular Domain are
direct or indirect instances of the abstract class
Element. A deep model, which is an instance
of the class DeepModel, can contain any number
of Level instances and a Level can accommodate
an arbitrary number of OwnedElement instances,
which is the superclass of Clabject, Classification,
Inheritance and Feature. At the heart of the model
is the abstract class, Clabject, which has two sub-
classes, Connection and Entity. Clabject instances
can have zero or more Feature instances which
can either be Attributes and Methods. Note that
clabjects can also contain other clabjects. This is
useful, for example, in component diagrams where
a clabject representing an outer component can

contain clabjects representing inner components,
or in activity diagrams where a clabject represent-
ing a swimlane can contain clabjects representing
activities.

Two kinds of set-theoretic relationships, known
as Correlations can be represented between clab-
jects, Inheritance relationships and Classification
relationships. Inheritance relationships, which
can only exists between clabjects at the same level,
relate clabjects playing Superytpe or Subtype roles.
Classification relationships, in contrast, can only
exist between clabjects in adjacent levels, and in-
dicate that one clabject (the one at the lower level)
is an instance of another clabject (the one at the
higher level).

3.2 Level-Spanning Constraints

In this subsection we present two level spanning
constraints that impose additional rules on the way
the content within one ontological level is derived
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from the content in the level above. These rules
go beyond the basic rules of deep modeling, and
ensure that the concepts defined in one level are
used in a particular way in the level below.

3.2.1 Isonymic Instance Rule

The first rule ensures that all ontological instances
of a clabject are “isonyms” of that clabject. This
means that they must have all the features required
by the clabject, conformant with the durability
values of its features, but no more features (i. €.,
attributes and methods) (Atkinson et al. 2011).
While this constraint is an inherent “paradigm” of
traditional constructive modeling, in deep model-
ing it is not automatically present because clab-
jects can have more features than required by their
ontological type by virtue of the fact that they
also have a linguistic type. Therefore, if this
paradigm is applied in a particular modeling con-
text, such as a solution to the modeling Challenge,
it needs to be explicitly declared, even if only
informally. DOCL’s ability to express level span-
ning constraints allows such fundamental level
usage constraints (i. e., paradigms) to be defined
formally.

The notion of isonymic and hyponymic in-
stances of clabjects was introduced to distinguish
between instances that only have the features re-
quired by the clabject, and no more (i. e., isonyms)
from those that have more features than are strictly
needed to satisfy the intension of the clabject (i. e.,
hyponyms) (Atkinson et al. 2011). The following
two constraints, therefore, enforce our so-called
“isonymic instantiation” rule which requires that
all clabjects within a deep model that have an
ontological type should be isonyms of that type.

context DeepModel(0,_)

inv PAN-1: Clabject —> forAll(select(c|c.#
getFeature ()# —> select(f|f.#
getDurability () #

> 0)) —> size() = c.#getDirectInstances ()#
—> select(cc|cc.#getFeature () #) —> size

0)

The first constraint, called ‘PAN-1’, compares the
size of the attribute collection of the type clabject

and all the direct instances of that clabject. First,
the reflective query obtains the collection of all
clabjects in a deep model and, for each clabject
in the collection, the number of the contained
attributes and methods that have a durability value
greater than zero, including all inherited features,
and states that all direct instances must have the
same number of features.

context DeepModel (0,_)

inv PAN-2: Clabject —> forAll(select(c|c.#
getFeature ()# —> select (f|f.#
getDurability O)# > 0) —>
collect (#name#)) —> includesAll(c.#
getDirectInstances ()# —> select(cc|cc.#
getFeature () #) —> collect (#name#)))

The second constraint called ‘PAN-2’ is very sim-
ilar to the ‘PAN-1’ constraint, but instead of com-
paring the size of the collection of features, this
constraint compares the content of the collections.
Every direct instance of a clabject must not intro-
duce additional features that are not present (with
a durability value greater than zero) in the direct
type. Instead of directly comparing features, we
just compare their linguistic attribute names.

Note that it is also possible, if desired, for a mod-
eler to apply this isonymic instance requirement
more selectively by defining similar constraints at
the scope of individual clabjects rather than for
all clabjects.

3.2.2 No Ontologically-Untyped
Connections Rule

The previous two constraints ensure that if a clab-
ject has an ontological type, it must conform to
that type as an isonymic instance. However, they
do not rule out the possibility that clabjects that
do not have an ontological type can be added to
a lower level. This is possible in deep modeling
because the fundamental form of model elements
is defined by their linguistic type rather than their
ontological type, meaning that the latter is strictly
speaking, optional. However, in many deep mod-
eling scenarios, for example, when an ontological
level is meant to define a strictly applied domain-
specific language, it is desirable to adopt a rule
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(i.e., paradigm) in which every clabject has to
have an ontological type at the level above.

Such a rule could easily be defined in a particu-
lar modeling context to ensure that all clabjects,
except those at the top level, have ontological
types. However, for our purposes, this rule would
be too strict since we need to provide modelers
with the flexibility to introduce some unforeseen
types in a level. In the context of our solution to
the Challenge, the balance between control/flexi-
bility required in the challenge description is best
achieved by a slightly more relaxed modeling rule
—namely that all connections in a deep model (ex-
cept those at the top ontological level) must have
an ontological type. This ensures that applications
of the top level, which defines the basic process
modeling concepts required in the challenge, ad-
here to all domain knowledge/rules captured by
the connections (e. g., the well-formedness of task
composition), but provides the freedom for mod-
elers to introduce new (ontologically untyped)
entity clabjects to reflect the idiosyncrasies of the
scenario of interest.

The following constraint, therefore, enforces the
so-called “no ontologically-untyped connections”
rule which requires that all connections, except
those at the top level, have an ontological type. In
effect, this means that no new connection kinds
can be added to the deep model beyond those in
the top level. The constraint begins by collecting
all Connections present in the deep model, and
then rejecting (i. e., removing) those that reside
at the most abstract level. For all the remaining
connections, the constraint requires that the direct
type of each connection exists. The function calls
that start and end with ‘# retrieve the necessary
information from the linguistic dimension. The
query for all direct types of a connection returns
a set of connections because the scope of this
function is to retrieve a chain of types up to the
most abstract level. It is important, therefore, that
the collection of types must not be empty.

context DeepModel

inv PAN-3: Connection -> reject(c|c.#
getLevel () #.name = "0O0°) —> forAll(c|c.#
getDirectTypes ()# —> size () > 0)

4 General Process Modeling Language

The description of the Challenge presented in
Almeida et al. (2019) encompasses three differ-
ent characterization contexts, some explicitly and
some implicitly. Our solutions for the two scenar-
ios referred to in the Challenge are both comprised
of three ontological levels, with the top level being
shared. This level addresses the most general
and most extensively described characterization
context - that of characterizing (i. e., defining the
concepts appearing in) domain-independent pro-
cess definitions (Sect. 2.2 of Almeida et al. (2019)).
This section presents the common, top (Og level)
model, and associated constraints, which capture
the generic set of process description features
called for in the Challenge description. The LML
model is described in the following subsection,
while the constraints are presented in the subse-
quent section that discusses how each requirement
is fulfilled.

4.1 Generic Process Metamodel

The LML ontological metamodel, at the O level,
supporting the aforementioned requirements in
our solution is depicted in Fig. 4. The most ab-
stract concept in this model is the Element clabject
which is the superclass of all clabjects in the model.
Since it can have no direct instances of its own, it
is an abstract class. The clabject that represents
the container for all elements used to describe
processes, ProcessType, is also a subclass of
Element in an application of the composite design
pattern (Gamma et al. 1994). The potency value
of ProcessType is ‘2’ so that it can be instantiated
over two consecutive lower levels. Actor represents
the human-played role responsible for defining in-
stances of a particular kind of Element, TaskType,
at the O level below. Since instances of Actor are
therefore only needed at the O level, the potency
of Actor is ‘1°. The Actor clabject is able to create
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tasks through the createdBy relationship on the
level directly below.

There are five basic kinds of elements that can
be contained in a process type, which are modeled
as subclasses of Element — ControlEventType,
ActorType, TaskType, ArtefactType and
ArtefactKindType. The first three are abstract
classes and therefore have a potency of ‘0’ while
the last two are concrete classes with a potency
of ‘2’. ControlEventType has four subclassses,
two of which are concrete. StartEventType
and FinalEventType have a potency value of
‘2’ and the other two are abstract superclasses,
1.€., SplitEventType and JoinEventType with a
potency of ‘0’. The four concrete subclasses of the
split and join events are AndJoin and AndSplit,
OrJoin and OrSplit. The StartEventType clab-
ject has to be present in every instance of a process
type exactly once and the FinalEventType has to
be present at least once. The split and join events
can participate in the followedBy relationship that
is defined on ProcessElement in combination
with any TaskType.

ActorTypes is specialized by two classes, i. e.,
JuniorActorType and SeniorActorType, while
TaskType has three subclasses — NormalTaskType,
CriticalTaskType and ValidationTaskType.
All of the specialized clabjects have a potency
value of ‘2’. TaskType itself is impotent and
contains three attributes which are expectedDura-
tion of type integer, beginDate of type string and
endDate of type string. The durability value of all
three attributes is ‘2, e. g., they are present in all
instances of subclasses of this clabject. They also
have mutability values of ‘2’ with the exception of
expectedDuration. This attribute has a mutability
value of ‘1’ which means its value can be changed
at the level immediately below but not at the levels
below that. Every task can produce artifacts that
can be of any kind. This is represented by the clab-
jects ArtifactType and ArtifactKindType which
are connected to TaskType by the producedBy and
usedBy connections. It is the kind relationship
that connects the artifact to the specification of
what kind of artifact it is.

4.2 Fulfillment of the Requirements

This subsection describes how each of the require-
ments, defined in the Challenge, are satisfied by
the O¢ level of our solution, with suitable DOCL
constraints being introduced where necessary.

P1) A process type (such as claim handling) is
defined by the composition of one or more
task types (receive claim, assess claim, pay
premium) and their relations:

This is supported by the composition relation-
ship between Element and ProcessType. Every
instance of Element is contained in one in-
stance of ProcessType, and every instance of
ProcessType contains at least three Elements.
The following constraint ensures that at least
one of these contained elements is a TaskType.

context ProcessType(1,2)
inv: self.content —> exists (element]|
element .deepOCLTypeOf( TaskType))

P2) Ordering constraints between task types of a
process type are established through gateways,
which may be sequencing, and-split, or-split,
and-join and or-join:

The sequencing relationships between task
types is achieved by means of the followedBy
relationship between ProcessElements while
the split and join gateways are realized by
dedicated clabjects which are subclasses of
ControlEventType. Instances of TaskType must
be involved in two followedBy connections. One
connection, in which it participates as the target,
is to the ProcessElement that precedes it, and
the other, in which it participates as the source,
is to the ProcessElement that follows it.

context TaskType(1,2)
inv taskFollowedBy: self.source —> size ()
= 1 and self.target —> size() = 1

The instances of StartEventType are not al-
lowed to participate in a followedBy relationship
as the target, and must therefore be the begin-
ning of a process. It must reach exactly one
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element through the followedBy connection,
where it is the source of the connection.

context StartEventType (1,2)
inv start: self.source -> size() = 0 and
self.target —> size() = 1

The instances of FinalEventType are not al-
lowed to have a follower, and must therefore be
the end of a process.

context EndEventType(1,2)
inv end: self.source —-> size() = 1 and
self.target —> size() = 0

No instance of SplitEventType is allowed to
have only one incoming connection but have to
have at least two outgoing connections.

context SplitEventType (1,2)
inv split: self.source —> size() = 1 and
self.target —> size() => 2

For the instances of JoinEventType the rule on
how many outgoing and incoming connections
they can have is exactly the reverse of split
events.

context JoinEventType(1,2)
inv join: self.source -> size() => 2 and
self . target —> size() =1

P3) A process type has one initial task type (with

which all its executions begin), and one or more
final task types (with which all its executions
end):

To simplify the definition of these well-
formedness rules, we avoid the introduction
of dedicated clabjects for initial task types and
final task types, since these would also need
to be distinguished as being normal, critical
and validation tasks, and instead we identify
initial and final tasks by their connection to
start and finish control event types respectively
(i.e., StartEventType and FinalEventType).
A task type is therefore an initial task type if it
is the target in a followedBy connection with an
instance of StartEventType, and is a final task
type if it is the source in a followedBy connec-
tion with an instance of FinalEventType. The
following constraint ensures that a ProcessType
has the correct number of StartEventTypes
and FinalEventTypes.
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context ProcessType(1,2)

inv: self.content —> one(element]|element.
deepOCLTypeOf( StartEventType)) and
self . content —> exists(element|element
.deepOCLTypeOf(FinalEventType))

P4) Each rask type is created by an actor, who
will not necessarily perform it. For example,
Ben Boss created the task type assess claim:

This requirement is supported by the mandatory
createdBy relationship between TaskType and
Actor which has a multiplicity constraint with a
lower bound of ‘1° at the Actor end.

P5) For each task type, one may stipulate a set of
actor types whose instances are the only ones
that may perform instances of that fask type.
For example, in the XSure insurance company,
only a claim handling manager or a financial
officer may authorize payments:

This feature is enabled by the performedBy re-
lationship between TaskType and ActorType
which has 0..* multiplicity and thus is optional.
The specific authorizations applicable in a par-
ticular scenario are established by the instances
of these clabjects.

P6) A task type may alternatively be assigned to

a particular set of actors who are authorized
(e.g., John Smith and Paul Alter may be the
only actors who are allowed to assess claims):

Our approach supports this capability by allow-
ing constraints to be defined at the O level that
control which instances of specific ActorTypes
can enter into performedBy relationships with
specific TaskTypes at the O, level. Such con-
straints therefore effectively declare which in-
dividuals (identified by their names) are autho-
rized to perform which tasks. The constraint
used to meet requirement S7 is an example.

claim uses a claim and produces a claim pay-
ment decision:

This requirement is supported by the usedBy and
producedBy relationships between TaskType
and ArtifactType.

P8) Task types have an expected duration (which

is not necessarily respected in particular occur-
rences):

This is modeled by the expectedDuration fea-
ture which all offspring of TaskType receive by
virtue of the fact that it has durability ‘2°. The
mutability of the expectedDuration is set to ‘1’
so that specific instances of TaskType for a par-
ticular scenario at the O level, can change it to
the appropriate value for that TaskType. How-
ever, because the mutability of the expected-
Duration attributes at O; then become ‘0’, in-
stances of a specific TaskType at the O, level
cannot assign a new value to expectedDuration,
they must retain the value set at O;. The ex-
pectedDuration of TaskType at the O level is
set to undefined.

P9) Critical task types are those whose instances

are critical tasks; each of the latter must be per-
formed by a senior actor and the artifacts they
produce must be associated with a validation
task:

The concept of critical task types and senior ac-
tor types are modeled by the CriticalTaskType
and SeniorActorType subclabjects of TaskType
and ActorType, respectively. The fact that criti-
cal task types can only be performed by senior
actor types is captured by the following con-
straint on the performedBy relationship between
task types and actor types.

context CriticalTaskType(1,2)

inv: self.performer —> forAll(p|p.
deepOCLKindOf( SeniorActorType)) and
self . target.isDeepOCLTypeOf(
ValidationTaskType)

P7) For each task type (such as authorize pay-
ment) one may stipulate the artifact types which P10) Each process type may be enacted multiple
are used and produced. For example, assess times:
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This is supported by the basic mechanics of
the deep modeling approach which allows the
instances of the O¢ level metamodel, at O, to
be instantiated again at O,. The enactment of
a process type is captured by the enactment of
the specific task types it contains, which in turn
is captured by their instantiation at the O, level.

P11) Each process comprises one or more tasks:

The containment relationship multiplicities de-
fine that an instance of ProcessType must con-
tain at least one indirect instance of Element.
But in order to ensure that at least one indirect
instance of TaskType is present in the contain-
ment the following DOCL constraint is needed.

context ProcessType(1,2)
inv: self.content —> select(c|c.
isDeepKindOf (TaskType)) —> size() > 0

P12) Each task has a begin date and an end date.
(e.g., Assessing Claim 123 has begin date 01-
Jan-19 and end date 02-Jan-19):

This requirement is realized by means of the
beginDate and endDate attributes of TaskType
which capture the start and end time of TaskType
instances and their instances, in turn. The dura-
bility and mutability values of these attributes
are set to ‘2’ so that their values can be changed
at any ontological level.

P13) Tasks are associated with artifacts used and
produced, along with performing actors:

This requirement is supported by the usedBy
and producedBy connections between TaskType
and ArtifactType as well as the producedBy
connection between TaskType and ActorType

P14) Every artifact used or produced in a task
must instantiate one of the artifact types stipu-
lated for the task type:

The ability to stipulate artifact types used and
produced by a specific task type is supported
by the usedBy and peformedBy relationships

mentioned above. The actual stipulation for a
particular scenario takes place at the O level.

P15) An actor may have more than one actor type

(e. g., Senior Manager and Project Leader.):

The ability to declare that there are specific
actor types that can perform multiple roles is
supported by the multiple inheritance capability
at the O level.

P16) Likewise, an artifact may have more than

one artifact type:

The ability to declare that a specific artifact
can be regarded as being instances of multi-
ple artifact types is supported by the multiple
inheritance capability at the O level.

P17) An actor who performs a task must be autho-

rized for that task. Typically, a class of actors
is automatically authorized for certain classes
of tasks:

Our strategy for supporting authorization is
described in the discussion for P6 above. This
requirement does not stipulate at which point
(i.e., in which characterization context) the
authorization takes place. We have therefore
adopted the approach that the authorization is
declared at process enactment time (i. e., in the
process enactment characterization content) and
therefore uses an actor’s instanceOf relationship
to an actor type to designate authorization to
perform instances of the task type performed
by that actor type.

P18) Actor types may specialize other actor types

in which case all the rules that apply to in-
stances of the specialized actor type must apply
to instances of the specializing actor type. For
example, if a manager is allowed to perform
tasks of a certain task type, so is a senior man-
ager.

This is naturally supported by the use of the
specialization relationship at the O level.

P19) All modeling elements, at all levels, must

have a last updated value of type timestamp.
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This feature should be defined as few times as
possible, ideally only once. Respective defini-
tions are exempt from the requirement to have
a last updated value:

The existence of this value for modeling ele-
ments is captured by the lastUpdated String
attribute of the Element class at the root of the
inheritance hierarchy, which has durability and
mutability of ‘2’. This, in turn, means every
model element in the deep model has this at-
tribute and can set it to any value. The actual
mechanism for arranging for this attribute to
obtain the correct value, automatically, when an
update event occurs is the oclGetCurrentDate
operation of DOCL which returns the current
date as a String. Melanee can be configured
to trigger such an update whenever a model
element is edited which automatically sets the
correct timestamp as the value of this attribute,
but this is beyond the scope of the paper.

4.3 Domain-specific Notation

Although the challenge description does not ex-
plicitly require support for the ability to visualize
models using domain specific concrete syntax,
this capability has a significant effect on the under-
standability of a model, especially in the process
modeling domain where the ordering constraints
between task types need to be visualized as clearly
as possible. The value of domain specific nota-
tions for achieving this is conveyed explicitly in
the Challenge description by its use of an intu-
itive, domain-specific process modeling notation
to represent the basic form of the example soft-
ware engineering process — the ACME software
engineering process, as shown below.

The OCA modeling architecture that underpins
the deep modeling approach used in our solutions
provides a highly flexible and extensible basis
for supporting the definition and use of domain
specific notations (i. e., concrete syntaxes), and
their co-use with the underlying general purpose
syntax. This flexibility stems from the fact that
model elements, in general, have two classifiers,
an ontological one and a linguistic one, both of

!

Reqwrements AnaIy5|s

o

(Demg ) (Test Case De5|gn

(Codmg) (Test Design Review)

®

Figure 5: Domain specific notation shown in the pro-
cess challenge description

which can be used to associate concrete symbols
with the model element.

Fig. 6 shows, schematically, how the Melanee
tool used to define our solutions allows elements
in the O¢ process metamodel in Fig. 4 to be
augmented with domain-specific concrete syntax
(i. e., symbol definitions) facilitating the domain
specific visualization of their instance at O;. The
details of how concrete syntax symbols are defined
and associated with clabjects and their elements
is beyond the scope of this paper! , but the basic
idea is that a modeler can supply one or more
alternative symbols by which clabjects and their
deep instances can be visualized. By making the
domain symbol assignments depicted in Fig. 6
by means of the cloud symbol, instances of the
generic process metamodel shown in Fig. 4 can be

1 Further details are available in Gerbig (2017)
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Figure 6: Visualizers for the domain specific notation

visualized in the notation used in the Challenge
description, reproduced in Fig. 5.

5 Archisurance Application

The Challenge invites authors to apply the general
process modeling language defined in the previ-
ous section in two alternative scenarios, one in
the software engineering domain and the other
in the insurance domain, with the focus on the
former. Although it is not mandatory, in this sec-
tion, we include an example from the insurance
domain to show how the aforementioned general
process modeling language can be instantiated
and used in multiple domains. The main goal of
the insurance example is to illustrate the Melanee
tool’s flexible support for the definition and use
of domain-specific concrete syntax.

In order to make the example as realistic
as possible, we show how a process from the
Archisurance example (Jonkers et al. 2012), which
is used to illustrate the use of the ArchiMate lan-
guage (Lankhorst et al. 2009) for Enterprise Ar-
chitecure Modeling (EAM), can be modeled using
our approach. Although fictitious, care has been
taken to make the Archisurance example as realis-
tic as possible so that it can be used in accredited
ArchiMate training courses in the context of the
TOGAF framework (The Open Group 2021). The

@

process that we focus on in this paper is the han-
dle claim process whose original depiction in the
ArchiMate language is reproduced in Fig. 7.

5.1 Handle Claim Process Description

The Archisurance Handle Claim process describes
how the company processes insurance claims
made by policy holders. When a claim is received,
the first task to be performed is the Capture In-
formation task in which all relevant information
about the triggering incident is obtained. This
is followed by the Notify Additional Stakeholders
task in which all parties involved in the incident,
as well as the owners of the artifacts involved,
are informed. The next task is the Validate task
which checks whether the claim is compatible
with (i. e., supported by) the policy against which
the claim is being made. This is then followed
by the Investigate task in which the veracity of
the events and damage described in the claim are
confirmed. Finally, once all these steps have been
completed a decision is made about whether to
accept or reject the claims. If the claim is accepted,
the corresponding payment is made to the policy
holder, and if not, the claim is rejected.

The ArchiMate description of the Archisurance
Handle claim process shown in Fig. 7 follows
many of the same basic principles described in
Sect. 2.2 of the process challenge and embodied in
the model described in the previous section. The
flow between the task types, which are the focus
of the model, are described using sequencing and
or-split ordering constraints, and events are used to
start and finish the process. Finally, all the process
model elements are contained within a container
bearing the name of the process. Even the con-
crete syntax is quite similar to the domain-specific
notation utilized in the Challenge description. Dif-
ferent symbols are used for start and finish events
and or-split events, and the symbol for task types
has a small arrow icon in the corner, but other
than that the notations are quite similar.

Nevertheless, the ArchiMate model in Fig. 7
does not adhere to all the rules defined in the
general process modeling language described in
the previous section. More specifically:
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Claim rejected

Handle Claim

Claim received
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. Notify Additional ,
Capture Information Stakeholders Validate

=
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Figure 7: ArchiMate Handle Claim Process

* the start event Claim received and final event
Claim rejected are not contained by the task
type, Handle Claim,

* there is no task type between the or-split event
and the Claim rejected event,

* the Pay task type is not followed by another
process element as it should be because it is not
a final event,

* none of the task types have associated actor
types,

* Investigation is a critical task type but is not
followed by a validation task.

Fig. 8 illustrates a slightly modified represen-
tation of the Archisurance Handle Claim process
type which is modeled by, and thus conforms
to, our general process modeling language. The
model, therefore, represents an instance of our O
ontological model at the O level. The model is
depicted using a mixture of LML general purpose
notation and the domain specific notation defined
in Sect. 4.3, and contains the minimum number of
changes requires to make it conform to the general
process ontological metamodel:

* the start event Claim received is now contained
by Handle Claim and is represented using our
domain-specific notation for start events,

* the final event Claim rejected is now contained
by Handle Claim and is represented using our
domain-specific notation for final events,

* the or-split event is now represented using our
domain specific notation,

* the task type Reject Claim has now been added
between the or-split event and final event Claim
rejected,

¢ the FinancialOfficer actor has been added to
perform the Pay task,

* InvestigationReport has been added as the arti-
fact type producedBy the Investigate task type,

» WrittenReport has been added as the the artifact
kind type of the InvestigationReport artifact
type,

* the task type InvestigationValidation has been
added after the Investigate task type to satisfy
the corresponding rule,

* the TaskDesigner Actor has been added as the
designer of all of the task types defined in the
model.

5.2 Domain Specific Notation

In Fig. 8, our version of the Handle Claim process
is represented using a mix of the standard LML
concrete syntax and the domain specific-notation
defined in Fig. 6. The optimal mix depends on the
goals and skills of the stakeholders who need to
work with the model, and can range from exclu-
sively LML concrete syntax to the maximum use
of domain-specific notation (e. g., by representing
the task types using the available domain-specific
symbols as well). The advantage of handling con-
crete syntax in a “deep” way, as well as the abstract
syntax, is that any part of a model (ranging from
a single model element to the whole model) can
be “toggled” between the general purpose and
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Figure 8: ArchiSurance Handle Claim Process

the domain specific notation(s) at the touch of a
button. Also, new domain specific symbols can
be added as needed at any ontological level.

In the case of Archisurance process types such
as Handle Claim, it is likely that employees of
Archisurance may sometimes wish to view process
type descriptions using the ArchiMate concrete
syntax illustrated in Fig. 7. Obviously, one way
of achieving this would be to simply change the

domain specific symbols assigned to the general
process modeling language at O to those of the
ArchiMate concrete syntax (i. e., to change Fig. 6
to contain the ArchiMate symbols). However, this
would change the domain specific symbols avail-
able to all users of the general process modeling
language at O (e. g., the ACME software engi-
neering company in the second scenario) which
is probably not desired. Many metamodels serve
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as normative standards, and therefore users of
the standard do not usually have the freedom to
change the domain specific notation defined at the
Oy level to their own preference.

The advantage of the deep approach to domain
specific concrete syntax definition, which exploits
the underlying OCA, is that domain specific sym-
bols can be added at any ontological level and
are immediately available for visualization at that
level or any level below. Moreover, the inheritance
hierarchy structure can be used to avoid assigning
the symbol multiple times. Fig. 8 provides an
example of the use of this feature, where Archi-
Mate modelers have assigned ArchiMate-specific
concrete syntax to certain elements in the Handle
Claim process model. Since these assignments
are performed at the O level, they are local to the
Archisurance context and do not affect the ability
of other users of the Oy model to use the more
general concrete syntax defined in Fig. 6. After
these new ArchiMate-specific symbols have been
assigned to specific model elements of the Handle
Claim process model, not only can they be used
immediately to visualize those elements at the O
level, they are available to visualize instances of
those model elements at the level below.

5.3 A Handle Claim Process Enactment

To complete the Archisurance Handle Claim ex-
ample, in this section we show how a specific
enactment of the Handle Claim process type, that
processes a specific claim, can be represented at
the O, level using the various concrete syntax
options available (i. e., the general purpose LML
syntax, the domain-specific process modeling lan-
guage syntax defined at O¢ and the ArchiMate
syntax defined at O). Since the Archisurance
example does not contain any instances (i. e., en-
actments) of the Handle Claim process (since it
cannot model them) we have created our own
fictitious example for a particular claim (Claim
26152).

Fig. 9 shows the Claim 26152 enactment of
the Handle Claim process depicted using a mix
of the standard LML notation and the Oy domain-
specific notation, while Fig. 10 shows the same
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Figure 9: Handle Claim Process Enactment - LML
and general DSL Syntax

process instance using the standard LML notation
and the O; ArchiMate syntax added in Fig. 8.

6 ACME Application

This section considers the mandatory domain ex-
ample from the Challenge for which additional
domain-specific requirements are defined. The
goal of this scenario is to define a concrete soft-
ware engineering process for a fictitious software
engineering company, the ACME Software Engi-
neering Company, based on the general process
modeling language defined in Sect. 4. As in that
section, we first present the LML model and then
discuss the domain specific requirements defined
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eeeeeeeeee FredFil 1. FinancialOffi
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Figure 10: Handle Claim Process Enactment - LML
and ArchiMate Syntax

by the Challenge along with the additional DOCL
constraints needed to support them.

6.1 ACME SE Process Description

The ACME Software Engineering (SE) Process is
represented as an instance of the O level general
process modeling language defined in Sect. 4. Ac-
cording to the rules of deep modeling, therefore,
it occupies the lower (in our case O ) ontological
level, and satisfies all the rules (i. e., requirements)
that it defines (i.e., according to the Challenge
description). Although the description of the pro-
cess takes the form of a single, coherent model, for
clarity purposes, we portray it using two separate
views shown in Figures 11 and 12. The majority
of clabjects appearing in the former also appear in

the latter, but in both cases, classes with the same
name represent the same model element. This
follows the well-established UML convention that
identically-named model elements, of the same
kind (i. e., instantiated from the same metamodel
element), represent the same model element. It
would be possible to show the information in Fig-
ures 11 and 12 in one figure, but this would be
much more cluttered.

Fig. 11 focuses on the specific ArtifactTypes
and ActorTypes comprising the ACME SE Pro-
cess and describes their relationships in terms
of generalization sets. The generalization set
for ACMEActor shows that there are five specific
ActorTypes in the process, Developer, Reviewer,
Analyst, Tester and Tester&Analyst, and that the
latter is a specialization of both Analyst and Tester.
This means that an instance of Tester&Analyst
can serve as (i.e., play the role of) an instance
of Analyst or Tester. The generalization set for
ACMEArtifact, which shows that there are five
specific Artifact Types in the process, Review, Re-
quirementSpecification, TestCaseDesignReport,
CodeModule and TestReport, plays two important
roles. First, it clarifies that all specific Artifact-
Types in the model have a version attribute and
second, it allows the power type pattern to be
applied. In other words, it allows ActorType to be
declared as the powertype of ACMEActor. As ex-
plained in Sect. 6.2 below, this is how the ACME
SE Process ensures that any ActorType added in
the future must have the same properties as the
current ActorTypes represented in the model.

Fig. 12 focuses on describing the structure of
the ACME SE Process in terms of the ordering
constraints between the specific Task Types ap-
pearing in the process, as well as their relationship
to all specific Actor Types and Artifact Types
shown in Fig. 11. It also shows the specific Actor
responsible for their design. This follows the basic
structure of the process illustrated in Fig. 5 of the
process Challenge. The process starts with the Re-
quirementsAnaysis task type and then splits up the
enactment of the process with an instance of And-
Split. The left hand side of the separated flow takes
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Figure 12: Task Type Flow in the ACME SE Process

care of the Design and the Coding tasks of the pro- the Design task and Coding is performed by one or

cess. One or more instances of Designer perform more Developers. The right hand side introduces
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the TestCaseDesign as a which is performed by a
SeniorAnalyst which in turn is an instance of Se-
niorActorType. It also produces a TestCaseDesign-
Report which is used in the TestCaseReview task
which follows the TestCaseDesign as an instance
of ValidationTaskType. This task is performed
by a Reviewer. The AndJoin that re-connects the
flow of the process is followed by the Testing
task which produces a TestReport artifact and is
performed by a Tester. The TestReport artifact
is then associated with another artifact which is
CodeModule. Due to the fact that the Coding task
can produce multiple CodeModules, the multiplic-
ity constraint on the associatedWith connection
is ‘1’ on the TestReport end and ‘1..*’ on the
CodeModule end. Every CodeModule has to ref-
erence the programming language it is written
in which is captured by the ArtifactKindType
instance, ProgrammingLanguage, with the kind
attribute. All instances of TaskType are created
by the TaskDesigner whose name is“Bob Brown”.
This is an instance of Actor at level Oy.

6.2 Fulfillment of the Requirements

The authors of the Challenge formulated 13
domain-specific requirements for the ACME soft-
ware engineering process. However, one require-
ment, S2, is explicitly flagged as being overridden
by another requirement, S13, leaving only 12 ac-
tive requirements. In this section, we explain
how these requirements have been fulfilled and
introduce the required DOCL constraints where
necessary.

In order to enforce the powertype pattern for any
future instances of ArtifactType and ActorType
we have made use of the DOCL capability to define
constraints on any level of a deep model. Con-
straint powerArtifact ensures that every instance
of ArtifactType at the level O of the ACME
SE Process application has to be connected via an
inheritance relationship to ACMEAtrtifact as a sub-
class. In combination with the invariant constraint
called powerACMEArtifact, where ACMEAtrtifact
is used as the context to make sure that every
subclass has to be of type ArtifactType, this
prevents any untyped or wrongly typed clabject

participating as a subclass in this generalization
set.

context O1(1,1)

inv powerArtifact: Clabject —> select(c|c.
isDeepTypeOf ( ArtifactType)) —> forAll(c|
c.#getSupertypes ()# —> includes (
ACMEArtifact))

context ACMEArtifact(1,1)

inv powerACMEArtifact: self.#getSubtypes ()#
—> forAll(c|c.isDeepTypeOf( ArtifactType)
)

The invariant constraints powerActor and pow-
erACMEActor deal with the same problem as the
constraints introduced for the ActorType power
type pattern but instead of using the isDeepTypeOf
operation, these constraints use the isDeepKinfOf
operation since ActorType is an impotent clabject
and is not able to produce direct offspring.

context OI(1,1)

inv powerActor: Clabject -> select(c]|c.
isDeepKindOf (ActorType)) —> forAll(c|c.#
getSupertypes ()# —> includes (ACMEActor))

context ACMEActor(1,1)
inv powerACMEActor: self.#getSubtypes()# —>
forAll(c|c.isDeepKindOf(ActorType))

S1) A requirements analysis is performed by an
analyst and produces a requirements specifica-
tion:

This requirement is captured by the per-
formedBy connection between Requirements-
Analysis and Analyst as well as the producedBy
relationship between RequirementsAnalysis and
RequirementsSpecification. The multiplicity
constraint on the connection ensures that a Re-
quirementAnalysis is only performed by one or
more Analysts.

S2) Overridden.
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S3) An occurrence of coding is performed by
a developer and produces code. It must fur-
thermore reference one or more programming
languages employed:

The first part of this requirement is fulfilled by
the performedBy connection between Coding
and Developer as well as the producedBy rela-
tionship between CodeModule and Coding. The
second part is fulfilled by the kind relationship
between CodeModule and ProgramminglLan-
guage with a multiplicity constraint of ‘1’ on
both connection ends.

S4) Code must reference the programming lan-
guage(s) in which it was written:

This is fulfilled by the kind connection between
CodeModule and ProgrammingLanguage.

S5) Coding in COBOL always produces COBOL
code:

context Developer(1,1)
inv AnnSmith: self.alllnstances () —>
exists(d|d.name = *Ann Smith”)

The second part of this statement says that if
a coding task exists that uses ‘COBOL’ as the
programming language the only actor that can
perform this task is Ann Smith which has to
be a Developer. The fact that Ann Smith, as a
Devloper, can only be connected with tasks that
are instances of Coding tasks is ensured by the
performedBy connection.

context ProgramminglLanguage (2,2)

inv: self.kind = COBOL’ implies self.
CodingModule . Coding . performer = "Ann
Smith”’

The constraint defined in ProgrammingLan-
guage is only evaluated at level O».

S8) Testing is performed by a tester and produces

This requirement only makes sense for a cod-
ing task that only involves one programming
language. If the CodeModule is connected to
a ProgramminglLanguage via the kind relation-
ship and it references COBOL then the language

a test report:

This requirement is again fulfilled by the
performedBy connection between Testing and
Tester and between Testing and TestReport.

of the CodeModule is COBOL. S9) Each tested artifact must be associated to its

S6) All COBOL code is written in COBOL.:

This requirement is again fulfilled by the kind
connection between CodeModule and Program-
mingLanguage. By reifying the notion of pro-
gramming language, and representing the lan-
guage in which a programming language is
written by means of a connection to a program-
ming language object rather than by a String
attribute, this requirement is automatically ful-
filled by the creation of the connection.

S7) Ann Smith is a developer; she is the only one
allowed to perform coding in COBOL.:

The first part of this constraint says that Ann
Smith is a Developer which means that at level
O, an instance of Developer has to exist with
the name Ann Smith. This is captured by the
following constraint

test report:

This requirement is fulfilled by the associat-
edWith connection between CodeModule and
TestReport

S10) Software engineering artifacts have a re-

sponsible actor and a version number. This
applies to requirements specification, code, test
case, test report, but also to any future types of
software engineering artifacts:

The first part of this requirement is fulfilled by
assigning actors to the respective tasks they can
perform. Due to the general typing restrictions
on connections, it is impossible to introduce
new connections that connect a Developer to
TestCaseDesign, for example. From the pro-
duced artifact that is connected to the task that,
in turn, is connected to the actor that performs
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the task, we can determine the responsible actor
implicitly.

The second part of this requirement is fulfilled
by including the generalization sets for ACME-
Actor and ACMEArtifcat and using these to in-
dicate, through inheritance, that all specific
ArtifactTypes have a version attribute and all
ACMEACctors have a name.

The third part of this requirement, stipulating
that new artifact types added to future versions
of the ACME SE Process must also satisfy
the first part of the requirement, is fulfilled
by declaring the clabject TaskType at the Oy
level to be the powertype of ACMEArtifact at
the O level. This ensures that every future
instance of TaskType is a subclass of ACMEArti-
fact and thus has the required version attribute
and connection to ACMEActor. The constraint
to enforce this power type pattern was defined
at the beginning of Sect. 6.2.

S11) Bob Brown is an analyst and tester. He has
created all task types in this software develop-
ment process.

The first part of this requirement is fulfilled by
the following constraint.

context Tester&Analyst(1,1)
inv BobBrown: self.alllnstances () —>
exists(d|d.name = Bob Brown’)

The second part is fulfilled by the createdBy
relationship between TaskDesigner and all the
instances of TaskType in the model.

S12) The expected duration of testing is 9 days:

This requirement is fulfilled by the fact that
the value of the attribute expectedDuration in
Testing at level O is set to ‘9’ (which means
9 days) and the fact that the vitality property
‘Mutability’ is set to the value ‘0’. This means
that the expectedDuration attribute of instances
of Testing must have that same value.

S13) Designing test cases is a critical task that
must be performed by a senior analyst. Test
cases must be validated by a test design review:

This requirement is captured by the fact
that the clabject TestCaseDesign is an in-
stance of CriticalTaskType, and by the per-
formedBy connection between TestCaseDesign
and SeniorAnalyst which is an instance of
SeniorActorType.

6.3 An ACME SE Process Enactment

The Challenge requests that an example enactment
of the ACME SE process should be included to
illustrate how they would be handled, but does not
define any particular requirements that have to be
fulfilled. In this section, we, therefore, present
an example enactment of the ACME SE process
called Simple System to indicate that it was used to
generate a software system of the same name. This
enactment, illustrated in Fig. 13, is an instance
of the previously presented ACME SE process
model, and, therefore, occupies the O, level of
the deep model according to the rules of strict
modeling.

Since the ACME SE process has no or-splits
nor or-joins, the basic content and layout of the
model is similar to the O level. Basically, every
task type in the O level has an instance at the O,
level with the corresponding followedBy connec-
tion. The main difference is that this enactment
model identifies the actual indirect instances of
ACMEActor that carried out each task. For exam-
ple, Ann Smith performed the Coding task called
SSCoding. This also compels every instance to
have a name attribute. Every indirect ACMEArti-
fact instance also has to have a version attribute
due to the power type pattern enforced at the level
above (01).

7 Discussion

The solutions presented in this paper fulfill all
the mandatory requirements in the sense that all
the required expressivity is enabled, and all the
prohibited expressions are forbidden. However,
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Figure 13: Level O,

not all the explicit or implied non-functional re-
quirements may have been solved optimally or
in precisely the way implied. In this section, we
discuss these issues and address all the discussion
points (mandatory and optional) defined in the
Challenge.

7.1 Mandatory Discussion Points

This subsection first addresses the mandatory dis-
cussion points.

Basic Modeling Constructs

The basic modeling constructs used in the solu-
tion were explained in the introduction to LML
and the deep modeling approach it supports in
Sect. 2. As mentioned there, LML was designed
with the goal of supporting the look-and-feel of the
UML class diagram notation using the smallest
possible number of level-agnostic concepts (i. €.,

abstract syntax elements) and notational symbols
(i.e., concrete syntax elements). For example,
as well as the unified representation of clabjects,
there are no representational differences between
attribute definitions and attribute instances (cf.
slots), since these are regarded as special cases
of the more general notion of “deep attributes”.
In other words, the LML takes every opportunity
to obviate superfluous UML modeling features
which add additional notational complexity with-
out enhancing the language’s expressive power.
Examples include:

* obviating stereotypes, tags/tagged values, exten-
sions and related concepts, since the same infor-
mation can be expressed more succinctly using
specialization relationships, deep attributes and
vitality properties,
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* obviating association classes and the complex
“end” structures of associations by combining
associations/links into the unifying concept of
“connections”. Connections are clabjects that
have a level agnostic structure/notation and,
when desired, can be treated as classes/objects
in their own right (like association classes/in-
stances),

* obviating the need for special labels for model
elements with specific kinds of type/instance
properties using the vitality properties, espe-
cially potency. For example, abstract classes are
represented as superclasses with potency zero,
while dependencies are represented as impotent
(i. e., potency zero) connections between potent
(i. e., potency one or higher) entity clabjects.

Levels

Since the LML modeling language is based on the
tenets of strict modeling, the levels in our solution
are determined by classification levels. Thus, all
the ontological instances of the top O level reside
at O and all the instances of O; reside at O,
in both scenarios (i. e., software engineering pro-
cesses and insurance claim handling processes).
However, in contrast to some multi-level model-
ing approaches, there is no requirement that the
potencies of clabjects match their level. This is
the case, for example, in the MetaDepth approach
(De Lara and Guerra 2010), where the potencies
of clabjects are always the same as the level they
occupy. This is possible because MetaDepth, like
most MLM approaches, adopts the UML infras-
tructure’s numbering scheme in which the most
concrete classification level is assigned the num-
ber zero, and the level containing the types of the
bottom level is assigned level one and so on. In
LML models, including the example deep models
in this paper, all of the vitality properties (potency,
durability, and mutability) are only related to the
level number in one way — they cannot be larger
than the total number of ontological levels in the
deep model.

Number of Levels

Both solutions presented in this paper are com-
prised of three levels. This reflects the fact that
the Challenge description essentially defines three
different characterization contexts for each appli-
cation:

* the context of characterizing (i. e., defining the
concepts appearing in) the general domain of
modeling processes. This is common to both
application domains,

* the context of characterizing (i. e., defining the
concepts appearing in) process enactments in
a specific application of the aforementioned
context - one in the domain of software engi-
neering and one in the domain of insurance
claim handling,

* the context of representing concrete process
enactments of the aforementioned context for
each of the two examples.

Each of these contexts maps naturally to an in-
dependent level, with each (except the first) adding
relevant information based on the constraints and
expression possibilities introduced by the preced-
ing context. Had the challenge added additional,
intermediate characterization contexts, such as
describing the general properties of all software
engineering processes, for example, these could
have been mapped to additional intermediate lev-
els.

Cross-Level Relationships

As mentioned in Section 2.1, strict modeling al-
lows only one kind of relationship to cross levels,
the classification relationship, also known as the
instanceOf relationships. This is simultaneously
one of the biggest strengths and weaknesses of the
strict modeling tenet upon which the presented
solutions are based. It is a strength because it
provides concrete guidance about what levels are
needed to fully characterize a domain and what
content those levels should have, and in many sit-
uations is relatively simple and straightforward to
apply. Itis a weakness, however, because in certain
situations, namely when a domain involves two or
more characterization chains (i. e., classification
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backbones) which do not naturally align, superflu-
ous model elements and/or inelegant workarounds
are needed to maintain strictness. Potential ways
of addressing this issue are discussed in Sect. 8.

Deep Characterization

The main way LML itself supports deep character-
ization is by means of its three vitality properties -
potency, durability, and mutability. The potency
value of ‘2’ for many of the concrete clabjects in
the O level ensures that the concepts they capture
may be instantiated not only at the O; level but
also at the O, level. When combined with suitable
constraints, as discussed below, it is also possi-
ble to require certain instances to exist at certain
specific levels below.

Durability captures a similar notion to potency,
but for the features of a clabject (i. e., attributes and
methods) rather than the clabjects themselves. Sev-
eral examples of durability ‘1’ and durability ‘2’
attributes can be seen in the O level model, such
as the lastUpdated attribute of Element, which
has a durability of ‘2’. This is higher than the
potency of the clabject, which at first sight might
seem counterintuitive. However, note that the
lastUpdated attribute is inherited by the concrete
subclasses of Element, and so is able to deeply
characterize its indirect instances.

In contrast to potency and durability, mutabil-
ity places no requirements on the existence of
clabjects and attributes at a lower level, it places
constraints on where (i.e., at what levels) the
values of attributes that do exist can be changed.
For example, all the TaskType clabjects in the
model of the ArchiSurance Handle Claim Process
in Fig. 8 have an expectedDuration attribute with
a durability of ‘1°, a mutability of ‘0’ and a value
of ‘6’. This means that all instances of these
task types also have to have an expectedDuration
attribute with the value ‘6’.

Cross-Level Constraints

The DOCL extension to OCL used in the presented
solutions was explicitly designed to support the
definition of constraints that can recognize, and
operate over, both classification dimensions, and

in the case of the ontological dimension, over
an unlimited range of levels. For example, the
majority of the constraints defined in Sect. 4.2 have
a context modifier that ends with the expression
(1,2). One of the constraints of this form from
Sect. 4.2, which helps to fulfill Requirement P2,
is shown below.

context TaskType(1,2)
inv taskFollowedBy: self.source -> size() =
1 and self.target —> size() = 1

The basic purpose of this constraint is to ensure
that instances of TaskType must be involved in
two followedBy connections, one in which it plays
the role of the source and one in which it plays
the role of the target. The effect of the expres-
sion (1,2) after the name of context clabject (i.e.,
TaskType) is to ensure that not only immediate
instances of TaskType have to satisfy this require-
ment, but also the instances of those instances.
The taskFollowedBy constraint is, therefore, a
“deep” constraint which applies to, and is checked
at, the two levels immediately below the context
clabject.

Integrity Mechanisms
The Melanee tool used to model the solutions
presented in this paper offers two automated in-
tegrity checking mechanisms. The first, and most
powerful, is the DOCL dialect which is integrated
into the Melanee tool. This can be invoked at
any time to check whether the deep model as a
whole adheres to all DOCL invariant constraints.
For example, when asked to check the above deep
DOCL invariant the tool will visit all deep in-
stances of TaskType at both the O and O, levels
to ensure that they have the required number of
followedBy connections in which they participate
in the correct roles. Because the constraint is a
deep constraint which applies to the two levels
below that in which it is defined, all instances of
TaskType at both the O and O, levels will be
checked.

The second integrity mechanism is the so-called
emendation service which checks whether the
vitality properties of the clabjects in a deep model


http://dx.doi.org/10.18417/emisa.17.6

International Journal of Conceptual Modeling

Vol. 17, No. 6 (2022). DOI:10.18417/emisa.17.6

Arne Lange, Colin Atkinson

Special Issue on Multi-Level Modeling Process Challenge

are all consistent with one another and satisfy the
rules. The mechanism is automatically invoked
whenever a change is made to a deep model,
at any ontological level. If the tool detects an
inconsistency, it flags the issue and offers the
modeler some options for correcting the problem.

Generality

Both solutions for both of the example applica-
tions have been carefully designed so that the
requirements and properties defined in the differ-
ent characterization contexts of the Challenge are
separated and handled at different levels. Thus, all
the rules and requirements defined in Sect. 2.2 of
the Challenge description that relate to the generic
properties of process models, including domain
specific concrete syntax, are captured completely
and exclusively in the Og level LML model and
the accompanying DOCL constraints (Sect. 4).
Similarly, all the rules and requirements for the ex-
ample processes for the two application domains,
including domain specific concrete syntax in the
Archisurance case, are captured completely and
exclusively in their respective O level models
(Sect. 5 and 6). Finally, all the properties and in-
formation about the example enactments of these
two processes are captured completely and exclu-
sively in their respective O; level models (Sect. 5.3
and 6.3).

The separation of concerns in this way means
that the description of each characterization con-
text is as general and reusable as possible. In
particular, since the description of the generic
rules are self contained at the O level, this level
can be reused (i. e., instantiated) as many times
as desired without each new instance (i. e., appli-
cation) affecting any of the existing applications.
Similarly, since the descriptions of the example
processes in the two application domains are self
contained at the O; level, they can be enacted
(i. e., instantiated) as many times as desired with-
out each new instance (i. e., enactment) affecting
any of the existing enactments.

Extensibility

Melanee is a fully data (i. e., model)-driven tool
which treats all ontological levels equally and al-
lows any model element at any level to be changed
at any time, with the changes taking immediate
effect. Moreover, since it is built around the time
honored object-oriented modeling mechanisms of
inheritance and instantiation, any model at any
level can be extended with more subclasses and/or
instances. Fundamentally, therefore, LML models
created using Melanee are highly extensible. The
key challenge is controlling all the possibilities for
making extensions.

Although it has not been mentioned thus far in
the paper, Melanee supports another time honored
object-oriented modeling feature for controlling
and organizing extensions — packages. Packages
are restricted to containing elements within a given
ontological level, but otherwise, they can be used
just like UML packages to group related model
elements. As mentioned previously, dependencies
between packages can be modeled as impotent
connections. The other important mechanism for
ensuring that extensions are controlled is the abil-
ity to explicitly enforce the use of the powertype
pattern through DOCL constraints, as shown in
Sect. 6.2. This can be used to ensure that new
model elements added to a particular ontological
level in the future must have certain properties and
relationships. For example, the use of the power-
type pattern in the ACME SE process ensures all
ACME actors added in the future must be instances
of the Oy level ActorTypes clabject, and that all
instances of ActorTypes added in the future must
be subclasses of the O level ACMEActor clabject.

7.2 Recommended Discussion Points

This section briefly addresses the two recom-
mended, but not mandatory, discussion points.

Formalisms

A set-theoretic semantics for the core concepts
underpinning LML’s flavor of deep modeling was
defined by Kennel (2012), while the semantics of
DOCL is based on first-order logic like the OCL
language it extends. As with OCL, DOCL can
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not be used as a standalone modeling language
but has to be used in combination with an un-
derlying modeling language (in our case, LML).
Like OCL, DOCL constraints are used to enhance
the precision of models with extra information.
However, in contrast to standard OCL which is
purely declarative, DOCL constraints are also exe-
cuted on models in order to calculate values for
attributes enhanced with a derive or init constraint
or to check if the current status of a model violates
any invariants.

Verification
As mentioned previously, one of the main integrity
checking mechanisms supported by the Melanee
tool is the DOCL constraint checking engine which
is an extension of the OCL. In other words, DOCL
supports the full range of OCL features within,
and over, ontological levels, and provides the
aforementioned extensions to generalize them over
multiple levels. Moreover, since Melanee is based
on the Eclipse Modeling Framework (EMF), the
full range of EMF language and tools can be used
on LML models, albeit in a level-unaware way.
To assess our solution quantitatively, we ap-
plied the ‘Control Capacity’ metrics described
in Kiihne and Lange (2020) to the ‘ACME Soft-
ware Engineering Process’ solution. This metric
is used to describe the level of control the type
levels excerpts over the instances created in the
levels below. It indicates a certain degree of well-
formedness of a model and ensures that types are
actually used at the level below to ensure that it has
the intended structure. There are two dimensions
to this metric, the subtyping dimension, and the
classification dimension. These are the only ways
clabjects can assert control over other clabjects.

Z ansc_s(e)

ecCs L
+

few *Z ansc_t(e)

ecCyL

1

CC=———
|C| = (1 + tew)

The expressions inside the bracket calculate the
number of ancestors in the subtyping and classifi-
cation dimension and aggregate their respective

values. The term fcw is a weight value to balance
the influence of the subtyping versus the classi-
fication dimension, which is then incremented
and multiplied by the number of clabjects in the
model.

When evaluated on our ACME SE Process
solution this equation gives a control value of
0,956 which is very high. To ensure this level of
control is actually maintained, the equation can be
translated into an invariant DOCL constraint on a
deep model (i. e., the context of the constraint is
the DeepModel).

8 Systematically Relaxing Strictness

As mentioned previously, the principle of strict
modeling is both a strength and a weakness of
multi-level modeling approaches. It is a strength
because it provides a basic structuring principle
for multi-level models without which the notion
of well-defined levels starts to dissolve, and it is a
weakness because many domains have concepts
and relationships that cannot all be modeled in
the most natural way within a strict modeling
scheme. The role of strict modeling is therefore
one of the most discussed aspects of multi-level
modeling (Eriksson et al. 2013) and many of the
features of multi-level modeling approaches have
been proposed to try to overcome its restrictions.
Examples include leap potency (De Lara and
Guerra 2010), dual deep potency(Neumayr et al.
2018) and join potency (Theisz et al. 2020).

The version of deep modeling supported by
LML and Melanee is one of the few MLM ap-
proaches that still applies the principles of strict
modeling. The price, however, is that some-
times scenarios in a domain of interest cannot
be modeled in the most natural way, and spe-
cial workarounds have to be used to reconcile
them with strict modeling. Our solution to the
ACME software engineering process uses such a
workaround to align the characterization hierarchy
of actors with the characterization hierarchy of
tasks, which are created and performed by actors.
While this does not invalidate the claim that the so-
lutions fulfill all requirements, it does detract from
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the approach’s overall goal of intuitiveness and
reducing accidental complexity, which is a weak-
ness. In this section, we, therefore, describe the
problem in more detail, explain the workaround
used to address it in our solution, and discuss ways
in which better solutions could be provided in the
future.

8.1 Aligning Incongruent Classification
Hierarchies

It is not by accident that the Challenge includes
a situation in which a single human actor, in this
case, Bob Brown, plays different roles in relation to
two clabjects that naturally occupy different levels
in the deep model. In the Challenge requirements,
Bob Brown is on the one hand described as being
the designer for all the task types in the ACME
Software Engineering process, and on the other
hand as being the tester/analysts responsible for
performing specific instances of those task types
(e. g., testing and analysis tasks). This immediately
creates a conundrum about the location of the
model element representing Bob Brown since it
is directly related to two clabjects that occupy
different levels in the deep model.

Fig. 14 highlights the nature of this conundrum
and how it was addressed in our solution. The
classification hierarchy on the right-hand side of
Fig. 14 shows the “task” classification hierarchy
that forms the main backbone of the deep model, in
which all the clabjects involved, NormalTaskType,
Testing and SS7esting, have their natural position
from a strict modeling point of view. The rest
of the model shows the essential nature of the
problem and the workaround we used to avoid it
in our solution.

In the description of the ACME SE process,
Bob Brown plays two explicit roles — the role of the
designer of all the tasks (i. e., TaskType instances),
such as a Testing, which occupy the O; level,
and the role of a tester and analyst who performs
instances of specific tasks, such as the SS7esting
instance of the Testing task. If Bob Brown were
represented most naturally as a single clabject in
the model, it would have to have connections to
two clabjects, Testing and SS7esting, that occupy

different levels. The latter is in fact an instance
of the former. This is not allowed in the strict
modeling approach since one of the connections
would have to cross a level boundary.

The workaround we use in our solution to get
around this problem is to avoid modeling Bob
Brown directly as a single clabject, but instead
to model the roles that he plays (i.e., TaskDe-
signer and SS7ester roles) and to relate them to
Bob Brown in an indirect way using their name
attribute. As shown by the two clabjects with a red
boundary in Fig. 14, this essentially means that
Bob Brown is actually being represented twice in
the model, once in his role as task designer and
once in his role as tester and analyst. The use of this
“trick” is unlikely to cause confusion with software
engineers and provides all the information needed
to build a system that fulfills the requirements,
so it technically fulfills the Challenge. However,
as highlighted by Fig. 14, many modelers would
regard this as an unnatural way of modeling this
situation for at least two reasons. Not only are
there two clabjects in the model which represent
the same real-world object, the natural intention
behind the use of the terms Actor and ActorType in
the Challenge description is that the occurrences
of the former are intended to be instances of the
latter. In other words, Bob Brown, in his role as
TaskDesigner is naturally an instance of the clab-
ject SeniorActorType in the top left of the figure,
rather than an instance of the class Actor which we
have added to serve as the type of TaskDesigner.
The use of the workaround, therefore, involves
two modeling choices that most experienced UML
modelers would probably consider unnatural.

8.2 Accommodating Different Multiple
Modeling Spaces

The underlying cause of this problem, and many
others like it, is that deep models sometimes have
multiple “backbone” classification hierarchies, or
dimensions of concern, where clabjects in one hi-
erarchy are related to multiple clabjects at different
levels of another hierarchy. Atkinson and Kiihne
(2001a) referred to these different classification
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SeniorActorType Actor NormalTaskType
0o
Tester&Analyst:SeniorActorType TaskDesigner:Actor ﬂ{Testing:NormalTaskType
name : String name : String = "BobBrown"
01
SSTesterAnalyst:Tester&Analyst performedBy ;
| SSTesting:Testing
name : String = "BobBrown"
02

Figure 14: Workaround Used in the ACME SE Process Solution

“backbones” as metamodeling spaces and recog-
nized that a potential way of balancing the goals of
strictness and flexibility was to systematically and
explicitly separate these metamodeling spaces?
and handle the relationships between them in a
special way. Fig. 15 shows, schematically, how
this could be achieved in the case of the Bob Brown
scenario.

Essentially, Fig. 15 separates the “task” classifi-
cation hierarchy on the right-hand side of Fig. 14
from the rest of the model and places the clabjects
it contains into their own modeling space called
“Task Space”. The rest of the model focuses on
describing the “actor” classification hierarchy, but
in a “natural” way that does not have to worry
about the level-crossing connections described
above. Freed from the “task” classification hier-
archy, in the “Actor Space”, Bob Brown can be
represented as a single clabject that is an instance
of the clabject Person, and all the different actor
types can be placed in a natural hierarchy based
on their ontological instantiation relationship to
SeniorActorType. Having separated the two main
classification backbones (the Actor Space and
the Task Space) into their own modeling spaces,
the relationships between clabjects in different

2 In the rest of this paper we use the term “modeling space”
rather than “metamodeling space” since the classification
hierarchies concerned contain multiple ontological classifi-
cation levels, not just the meta ontological level.

spaces can be represented as needed using spe-
cial dimension-crossing relationships which do
not have to worry about ontological classification
levels. Thus, as shown in Fig. 15, TaskDesigner
can be connected to NormalTaskType as the de-
signer of its instances, Tester&Analyst can be con-
nected to Testing as the performer of its instances,
SSTaskDesigner can be connected to Testing as
its designer and SSTester can be connected to
SSTesting as its performer. Each of these connec-
tions, which are represented in blue in Fig. 15, is
a dimension-spanning connection that does not
have to adhere to any notion of strictness. Within
a modeling space (i. e., dimension), however, the
rules of strictness have to be respected as before.
This approach, therefore, provides a balance be-
tween complete strictness, where every model
element in the whole model has to respect the
rules of strictness and zero strictness, where no
model elements of any kind have to respect the
rules of strictness.

8.2.1 Interconnected Deep Models

Although the modeling spaces concept has been
present before (Atkinson and Kiihne 2001a), to
our knowledge it has yet to be mapped to a set
of pragmatic modeling features in a concrete tool.
The 3D representations shown in Fig. 15 or in
(Atkinson and Kiihne 2001a) are helpful for vi-
sualizing the concept of modeling spaces, but
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Figure 15: Schematic Representation of Modeling Spaces

they are not pragmatic solutions for a concrete
modeling tool.

The Melanee environment used to model the
solution presented in this paper does, however,
potentially provide the foundation for a pragmatic
way of allowing modelers to work with modeling
spaces because it treats deep models, which are
essentially modeling spaces, as first classes citi-
zens of the linguistic metamodel. This can be seen
in the top left-hand corner of Fig. 3, the linguis-
tic metamodel underpinning the solution, where
DeepModel is explicitly modeled as a class. The
rationale for doing this in Melanee is that there
should only be one deep model for a particular
project or domain and that this deep model should
be the top level container for all the levels which
in turn are the containers of all the clabjects. How-
ever, it would be relatively straightforward to allow
multiple deep models to be created for a given
domain of interest, and to allow them to be nested
within a higher level container, such as packages,
which are also supported as first-class citizens in
Melanee. If adapted in this way, the modeling
space solution depicted schematically in Fig. 15
could be modeled concretely in the way shown in

Fig. 16. This has the same basic arrangement of
clabjects as in Fig. 15, but is represented much
more pragmatically in terms of two deep models
contained within a package. The benefit of such
an approach is that the rules of strictness only have
to be adhered to by the clabjects and connections
within each deep model, but connections between
deep models, which are now clearly distinguish-
able, would be governed by much more relaxed
rules, if any. The “solution” for the fragment
of the Challenge depicted in Fig. 16 manages to
systematically represent the required relationships
between the two metamodeling spaces at the same
time as modeling the Actor Space in a way that is
both natural and conformant to the rules of strict
modeling.

8.3 Deep, View-Based Modeling

The approach shown in Fig. 16 essentially manages
to relax the strict modeling rules in a systematic
way by abandoning them at the “global” level
while still enforcing them at a “local” level. How-
ever, modelers still have to identify the modeling
spaces required and make rigid decisions about
the locations of the clabjects within them. Perhaps
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the most powerful and flexible way of achieving
a balance between global strictness rules and lo-
cal strictness rules, therefore, is to move towards
a fully view-based approach in which (locally)
strict portrayals of clabjects are regarded as sim-
ply views of a larger, underlying pool of clabjects
— a Single Underlying Model (SUM) — which is
globally non-strict. Tunjic (2021) has developed
such a deep, view-based modeling environment
in which deep views are projected on demand
from a deep SUM, but not for the goal of relaxing
strictness rules systematically.

This approach is depicted in Fig. 17. The
dashed oval in the top left of the figure represents
the SUM for the domain (i. e., the application in
our case) which captures all relevant information
about the domain in a non-strict, but nevertheless
in a disciplined way. For illustrative purposes,
Fig. 17 simply shows the SUM as containing all
the clabjects from Fig. 16, but without the mod-
eling spaces. However, the notion of modeling
spaces would no longer be needed. The rectangles
surrounding this SUM represent views that are
projected from the SUM, on-demand, to display
a certain subset of the content of the SUM in a
strict way. Again, for illustration purposes, one of
the illustrated views, the “Task Hierarchy” view
has been made to resemble the task modeling

space from Fig. 16, but there is no need for the
contents of views to be designed according to the
modeling space concept. The only requirement is
that the information within them be portrayed in a
(locally) strict way. The “Player Hierarchy” view
is similar to the “Task Hierarchy” but focuses on
Bob Brown’s classification hierarchy. Finally, the
two remaining views show the two roles that Bob
Brown plays in the process. The “TestingDesigner
Player” view shows that Bob Brown played the
role of the designer of the Testing task, while
the “SSTester Player” view shows that Bob Brown
played the role of the SSTester in the Simple System
enactment of the ACME SE Process.

Note that Bob Brown is represented by a sin-
gle clabject in the SUM, but appears in various
views to show his relationship to other clabjects
as needed. Each appearance of Bob Brown in a
view is consistent with the rules of strict model-
ing, although the network of connections the Bob
Brown model element is involved in inside the
SUM is not. This approach, therefore, satisfies the
goal of relaxing strictness in the overall, global
model (the SUM) while enforcing it locally within
each view. The SUM does have to adhere to some
rules, however. More specifically, for such an
approach to work, the SUM would have to be free
of metacycles (Atkinson and Kiihne 2001a).


http://dx.doi.org/10.18417/emisa.17.6

International Journal of Conceptual Modeling

Vol. 17, No. 6 (2022). DOI:10.18417/emisa.17.6

32

Arne Lange, Colin Atkinson

Special Issue on Multi-Level Modeling Process Challenge

’ a Playeday A A

] ‘ Person : RolePlayar ACMEActor | i
] ¥ Playeday A

H n T
\
. BobBrown : Persan &Desigy
N playeday
N
~
~  —
~ SSTester : Testar®Analyst

~ playedBy

Player Hierarchy View

RalerPlayer

TestingDesigner Player View

N Task Hierarchy View

A
\ NormalTaskType
Iy

\

]

} Testing : NormaTaskType
| ry

1

1

1

ssTester Player View

SeniorActorType

TestarBAnalyst: SeniorActarType

Person RolePlayer

o SenioractorType

BobBrown : Person H
[

0, ‘T tingDesi Type I
ol

yeday L

BobBrown : Person |

o;

Figure 17: View-Based Attainment of Local Strictness

9 Related Work

The first modeling tools that treated ontological
classification relationships as first classes citizens
of models, and thus allowed rudimentary multi-
levels models to be created, appeared in the early
1990s, such as ConceptBase (Jarke et al. 1995),
Telos (Mylopoulos et al. 1990), and Ptolemy (Eker
et al. 2003). However, these tools did not try to
impose any rules on the kinds of ontological clas-
sification graphs that could be created, nor try to
support a mainstream modeling notation such as
the UML. The new generation of multi-level mod-
eling tools and approaches, which are the focus of
the MULTI workshop series and the Challenge this
paper presents a response to, can be traced back
to the turn of the Millennium when notions such
as the orthogonal classification architecture, strict
modeling, clabjects, and potency were proposed
to ease UML modelers’ struggles with linguistic
meta modeling, profiles, powertypes and the ap-
plication of the type-instance pattern (De Lara
et al. 2014b). From these roots, a large variety
of different multi-level modeling approaches have

emerged, with a large variety of different features
and abstraction mechanisms (Frank 2018). Nev-
ertheless, they shared the basic goal of allowing
ontological classification to be exploited in a more
flexible yet controlled way (De Lara et al. 2014b).

A feature based categorization published at
the MULTI 2016 workshop (Igamberdiev et al.
2016) identified 21 different multi-level model
approaches. These range from strategies for using
existing languages like the UML in a multi-level
way (e. g., Power type metamodeling (Gonzalez-
Perez and Henderson-Sellers 2006), VPM (Varré
and Pataricza 2003), VMTS (Levendovszky et
al. 2005)) or extending existing modeling plat-
forms/tools to support MLM features (e. g., DPF
Workbench (Lamo et al. 2012), Melanee (Atkinson
and Gerbig 2016), OMME (Volz and Jablonski
2010)), to new tools/languages that support MLM
from “the ground up” (e. g., MetaDepth (De Lara
and Guerra 2010), XModeler (Clark and Frank
2020)) or apply MLM concepts in the context of an
underlying formal system (e. g., MLT(Carvalho et
al. 2015), M-Objects (Neumayr et al. 2009), Nivel
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(Asikainen and Ménnisto 2009), Dual Deep Mod-
eling (Neumayr et al. 2018) and FOML (Balaban
et al. 2018)).

Furthermore, since that comparative study was
published, several more MLM approaches have
been described in the literature, such as Mul-
tEcore (Macias etal. 2018), FMMLx (Frank 2014),
ML2(Fonseca et al. 2018), MLT-Telos (Jeusfeld
et al. 2020), and DMLA (Somogyi et al. 2019).
It is beyond the scope of this paper to attempt to
compare all of these approaches and characterize
the full range of concepts they support. Ideally,
each of these approaches should be used to model
the same scenario, such as this process Challenge
or the MULTI 2018 Bicycle Challenge (Clark et al.
2018), to compare their respective pros and cons.

Recently an article was published (Kiihne 2022)
that introduced the mechanism of ‘orthogonal on-
tological classification’ which takes the idea of
interconnected modeling spaces further. This new
classification allows different multi-level models
from different domains to interconnect ontologi-
cally.

10 Conclusion

In the literature, the main claimed advantage of
multi-level modeling over traditional modeling
approaches is reducing “accidental complexity”.
Fred Brooks, to which the notion of accidental
complexity is usually attributed, also identified
the basic property that a well-designed language
should possess to facilitate this goal — “concep-
tual integrity” (Brooks Jr 1995). According to
Brooks, conceptual integrity is characterized by
“simplicity and straightforwardness” and must en-
sure “unity of design” in which “every part must
reflect the same philosophies and the same bal-
ancing of desiderata”. Marc Lankhorst, one of
the designers of the ArchiMate Enterprise Ar-
chitecture Modeling language, elaborated on this
concept by identifying the four basic design princi-
ples entailed by the notion of conceptual integrity
(Proper et al. 2005):

* orthogonality - do not link what is independent,

* generality - do not introduce multiple functions
that are slightly divergent,

* economy (a.k.a parsimony) - do not introduce
what is irrelevant,

* propriety - do not restrict what is inherent.

The solutions to the Challenge presented in this
paper demonstrates that, overall, the LML /DOCL
modeling approach successfully applies these prin-
ciples in a way that naturally leads to models with
high conceptual integrity. First, the OCA architec-
ture underpinning LML models directly applies the
orthogonality design principles (in name as well
as substance) for the express purpose of separating
the independent notions of linguistic and ontolog-
ical classification. Second, LML’s principle of
combining different facets of a single underlying
concept into a single model element (e. g., clab-
jects, connections, deep attributes) rather than
separate model elements (e. g., classes/objects, as-
sociations/links, attributes/slots), directly applies
the second design principle of generality by obviat-
ing the need to use multiple highly-specific model
elements to represent a concept when fewer, more
general model elements will suffice. Third, LML’s
fundamental notion of level-agnosticness and the
avoidance of unnecessary modeling constructs di-
rectly applies the design principle of economy. For
example, the three vitality attributes can, between
them, represent the same information as a large
array of modeling concepts in UML (i. e., abstract
class labels, tags, tagged values, static variables,
etc.), while the basic ability to change and extend
metamodels on-the-fly through inheritance avoids
the need for all the UML modeling concepts as-
sociated with extensions (stereotypes, extension,
etc.). Finally, by allowing multiple classification
levels to be directly reflected in models, as well as
the deep characterization control applied by gen-
eral concepts over their more concrete offspring,
LML directly applies the fourth design principle
of propriety. This allows complex, deep charac-
terizations scenarios in real-world domains to be
represented without the usual array of patterns
and workarounds needed when using traditional
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two-level modeling approaches (De Lara et al.
2014b).

The efficacy of LML’s approach is evidenced by
the way it can support complete solutions to the
two Challenge scenarios that (a) basically provide
the full look-and-feel of UML class diagrams using
an extremely small underlying (meta)model (i. e.,
the linguistic metamodel shown in Fig. 3), and
(b) are extremely concise and minimalist, both in
terms of the total number of model elements used,
and the number of different kinds of modeling
constructs involved.

Nevertheless, as pointed out in Sect. 7, and
elaborated in Sect. 8, the basic problem of recon-
ciling strict modeling with the need to naturally
represent different modeling spaces has yet to be
addressed, at least in a pragmatic way, and is
arguably the Achilles heal of LML’s version of
deep modeling. This problem forced us to use
an unnatural “trick” (i. e., workaround) to capture
misaligned classification hierarchies in the ACME
SE process example, which detracts from our solu-
tions’ claim to conceptual integrity. In this paper,
we have therefore discussed various pragmatic
ways of overcoming this misalignment problem in
the context of our solution to the Challenge, and
identified a deep, SUM-based modeling approach
as potentially offering the most effective balance
between the various “forces” at play. At this point
it has to be mentioned that the non-strict SUM
approach we presented as part of an alternative
solution to misalignment problem does not yet
have tool support and we have not yet set the rules
that control how the locally strict views interact
with a non-strict SUM. In our future work, we
therefore plan to explore this approach further.
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