Enterprise Modelling and Information Systems Architectures

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Dual Deep Modeling of Business Processes

Special Issue on Multi-Level Modeling Process Challenge

Dual Deep Modeling of Business Processes
A Contribution to the Multi-Level Process Challenge

Bernd Neumayr 2, Christoph G. Schuetz?, Michael Schrefl®

2 Institute of Business Informatics — Data & Knowledge Engineering, Johannes Kepler University Linz

Abstract. Multi-level modeling (MLM) facilitates conceptual modeling at multiple levels, with clabjects as
basic modeling constructs that combine characteristics of metaclasses, classes and objects. Different MLM
approaches differ, among others, in the meaning and structure of levels and clabjects, in the strictness or
[flexibility regarding cross-level relationships, and in the mechanisms for deep characterization by which
clabjects at higher levels describe and constrain clabjects at multiple lower levels. The Multi-level Process
Challenge provides a testbed for MLM approaches to highlight design decisions regarding these aspects. In
this paper we solve the challenge using Dual Deep Modeling (DDM), a MLM approach that features dual
potencies which facilitate high flexibility for cross-level relationships. With relationships with dual potencies,
a single clabject can play multiple roles at different levels of instantiation, thereby DDM facilitates very

compact multi-level models.

Keywords. Deep Instantiation * Clabject ® Business Process Modeling

Communicated by Jodo Paulo A. Almeida, Thomas Kiihne and Marco Montali.

1 Introduction

Multi-level modeling (MLM) facilitates concep-
tual modeling at multiple levels. Each level of a
multi-level model specifies or affects the schema
of the next lower level. Deep characterization
refers to the concept that model elements at one
level not only affect the next lower level but also
affect levels further down. In potency-based ap-
proaches, a natural number (the potency) assigned
to a model element indicates the depth of char-
acterization, that means, broadly speaking, how
many levels down that model element has a direct
impact. We also say the potency indicates how
many lower levels that model element covers or
how many levels down that model element spans.

The clabject is the basic modeling construct of
many MLM approaches and combines character-
istics of object, class, and often also of metaclass.
A clabject is an instance of a clabject, the latter

* Corresponding author.
E-mail. bernd.neumayr@jku.at

acting as its class, at the next higher level and
acts as class for its member clabjects at the next
lower level. With deep characterization, a clabject
not only specifies structure and behavior of its
member clabjects at the next lower level, but also
the structure and behavior of clabjects at levels
further down.

Different MLM approaches differ, among oth-
ers, in the basic modeling constructs, in the prin-
ciples behind levels, and in the mechanisms for
deep characterization. MLM approaches further
differ with respect to the strictness or flexibility
regarding cross-level relationships, i. e., regarding
the question whether and how model elements
at mutually different levels may be connected.
The MULTI Process Challenge (Almeida et al.
2019) provides a testbed for MLM approaches to
highlight their design decisions regarding these
aspects.

In this paper we present our solution to the
MULTI process challenge using Dual Deep Mod-
eling (DDM), a MLM approach that features dual

http://dx.doi.org/10.18417/emisa.17.7
bernd.neumayr@jku.at

International Journal of Conceptual Modeling

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Bernd Neumayr, Christoph G. Schuetz, Michael Schrefl

Special Issue on Multi-Level Modeling Process Challenge

1 1] inverse
— 1 .
ClabjectHierarchy 5 rres hierarchy 7 Property -
rootPotency 1 * | sourcePotency N
ftarget hierarchy I |targetPotency specialization
0..1
* 1 | root
1 source *
class
0.1 Clabject 1 target *

~ | isAbstract

generalization [potency

*

* source

* target

Statement

""" /sourcePotency
/targetPotency

Figure 1: DDM’s linguistic metamodel (Neumayr et al. 2018, p. 237)

potencies which facilitate cross-level relationships.
By assigning dual potencies (consisting of a source
potency and a target potency) to a property, one
separately defines the depth of characterization
with regard to the domain of the property (repre-
sented by its source clabject) and with regard to
the range of the property (represented by its target
clabject). With dual potencies, a single clabject
can play multiple roles at different levels of in-
stantiation. DDM thereby enables very compact
multi-level models.

The remainder of the paper is structured as
follows. Sect. 2 introduces the modeling con-
structs of the DDM approach. Sect. 3 presents
the requirements from the challenge and makes
some additions and clarifications. Sect. 4 presents
and explains in detail our modeling solution to
the challenge. Sect. 5 discusses how the solution
satisfies the requirements. Sect. 6 makes an assess-
ment of the modeling solution discussing choices
made and potential alternative solutions. Sect. 7
discusses related work on multi-level modeling
for business process management and compares
our solution with existing solutions to the pro-
cess challenge. Sect. 8 concludes the paper with
some general observations, lessons learned and
implications for future work.

2 Modeling Approach

We employ dual deep modeling (DDM), a multi-
level data modeling approach based on clabjects
and deep instantiation (Neumayr et al. 2018), for
the representation of business process models. In
the following, we briefly summarize the intuition
of the main modeling concepts and rules in DDM
as far as required for the solution of the multi-level
process challenge.

The linguistic metamodel of DDM (Neumayr
et al. 2018, p. 237) is shown in Fig. 1. Clabject
hierarchies comprise multiple clabjects, with one
root clabject and a root potency. The instantiation
relationship between clabjects determines the hier-
archical order of the clabjects. A clabject may also
specialize multiple other clabjects, which are re-
ferred to as the generalizations of the specializing
clabject. A property links a source clabject with
a target clabject, linking also a source hierarchy
with a (possibly different) target hierarchy. Each
property has a source and a target potency. A
property may specialize multiple other properties.
Each property has an inverse property. A triple
consisting of source clabject, target clabject, and
property constitutes a statement having a derived
source potency and a derived target potency.

In DDM, a clabject hierarchy consists of a
number of instantiation levels, each associated
with a potency. Levels are referred to by their

http://dx.doi.org/10.18417/emisa.17.7

Enterprise Modelling and Information Systems Architectures

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Dual Deep Modeling of Business Processes

Special Issue on Multi-Level Modeling Process Challenge

PMEntityMetatype PMEntityMetatype
3: Metametatype /r\ 3
: instance of
1
TaskType :
TaskType PMEntityMetatype
2: Metatype 4\ 2
E instance of
Coding Coding : TaskType
1: Type ﬁ,\ 1
0: Occurrence | instance of 0
1
- CodingFinanceApp
CodingFinanceApp - Coding

Figure 2: A DDM clabject hierarchy with explicit
‘instance of” relationships and named levels (left) and
its alternative and more compact representation (right).

potency and are ordered from O (bottom) to n (top
or root). Levels may also have a level name for
better understanding, e.g, level 0 in the process
model hierarchy is named Occurrence. Every
clabject belongs to one hierarchy and is situated
at one level of that hierarchy; the level’s potency
determines the clabject’s potency. A clabject’s
level and, consequently, potency derives from
the instantiation relationships; the potency of the
instance with respect to its class is reduced by 1.

Figure 2 shows the ProcessModelHierarchy
of clabjects. At that hierarchy’s top level
(named Metametatype), the root clabject PMEnti-
tyMetatype specifies the hierarchy’s root potency
(3), i.e., the number of instantiation levels be-
low the root clabject. The clabject TaskType
instantiates the hierarchy’s root clabject PMEn-
tityMetatype with a defined potency of 3 and,
therefore, TaskType is situated at the Metatype
level with a potency of 2. The clabject Coding
instantiates the clabject Task Type and, therefore,
Coding is situated at the Type level with a potency
of 1. Finally, the clabject CodingFinanceApp
instantiates the clabject Coding and, therefore
CodingFinanceApp is situated at the Occurrence
level with a potency of 0.

An abstract clabject cannot be instantiated di-
rectly by another clabject, unless the instantiating

Analyst : ActorType

B

SeniorAnalyst : ActorType

Figure 3: Abstract super-clabject and its specialization

clabject is itself abstract. Rather, an abstract
clabject must be specialized before by a concrete
clabject which then can be instantiated; only ab-
stract clabjects can be specialized. Both the ab-
stract clabject and its specialization are within the
same hierarchy and at the same level. An abstract
clabject’s name is written in s/anted font in the dia-
grams. For example, the abstract clabject Analyst
in Fig. 3 is the generalization or super-clabject of
the concrete clabject SeniorAnalyst. Both clab-
jects are at the same level (2 or Metatype) within
the same clabject hierarchy.

The descendants of a clabject are the clabjects
at various levels that are directly or indirectly
attached to that clabject via specialization and
instantiation. For example, metatype TaskType in
Fig. 2 has task type Coding as descendant one level
below and task occurrence CodingFinanceApp as
descendant two levels below. Abstract actor type
Analyst in Fig. 3 has actor type SeniorAnalyst as
descendant at the same level.

1-2
TaskType createdBy ActorType
2
1 Coding : SeniorAnalyst :
TaskType ActorType
0 createdBy”° [~ BobBrown :
SeniorAnalyst

Figure 4: Deep property and property instantiation

A deep property is introduced between a source
clabject and a rarget clabject with a source potency
and a target potency. Dual potencies facilitate
modeling of cross-level relationships. A deep
property can be instantiated between descendants
of the source clabject and descendants of the target
clabject. The source and target potencies specify

http://dx.doi.org/10.18417/emisa.17.7

International Journal of Conceptual Modeling

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Bernd Neumayr, Christoph G. Schuetz, Michael Schrefl

Special Issue on Multi-Level Modeling Process Challenge

the number of levels down the clabject hierar-
chy, starting from the source and target clabject,
respectively, that clabjects can instantiate the prop-
erty. Consider, for example, the deep property
createdBy in Fig. 4 from TaskType to ActorType
with source potency 1 and target potency 2. An
instance of TaskType, e. g., Coding, will assign
a value to the createdBy property, referring to
a descendant of ActorType two levels down the
hierarchy, e. g., BobBrown which is an instance
of SeniorAnalyst, which instantiates ActorType.
In the diagrams, a property is represented as a
connector between the source clabject and the
target clabject, with the property name together
with the superscript dual potency displayed next
to the target clabject. When a property is intro-
duced, it is displayed in boldface to distinguish
the property’s introduction from a mere statement
instantiating that property.

Any property has an implicit inverse property.
For example, the implicit inverse property of creat-
edBy connects ActorType as source clabject with
TaskType as target clabject and has source po-
tency 2 and target potency 1. A property together
with its implicit inverse property represent the two
ends of a binary association as well as a link. In
DDM, everything is a clabject: atomic data types,
values, object classes and objects. Likewise, every
property, in combination with the implicit inverse
property, represents an association over multiple
instantiation levels and a link.

A deep statement restricts the range of a deep
property further down the instantiation hierarchy
for descendants of a particular clabject. For ex-
ample, in Fig. 5, the produces property between
TaskType and Artifact Type has a restricted range
for the Coding clabject: Instances of Coding must
take the assigned value for produces from the
instances of Code. A deep statement not only
restricts the property’s range at lower levels but
is also considered as a property value, e. g., the
artifact type Code is considered as a value at level
1-1 of property produces. We also say that the
statement instantiates the 1-1 level of the pro-
duces property, interpreted as a bi-directional link
between Coding and Code: Code is a value of

property produces of the clabject Coding and Cod-
ing is a value of the inverse of property produces
of the clabject Code.

roduces??
TaskType procu ArtifactType
2
1 1-1
Coding : produces Code :
TaskType ArtifactType

equivalent to: [Coding : TaskType

produces'™ = Code

Figure 5: Deep property (top) and deep statement
(bottom) restricting the property’s range

A deep statement on a deep property’s inverse
restricts the range of the property’s inverse for de-
scendants of a clabject. For example, in Fig. 6, the
inverse of the produces property has a restricted
range for the Code clabject: Instances of Code can
only be the target of produces originating from an
instance of Coding.

d 11
Coding procices Code

Figure 6: Deep statement on property’s inverse

We introduce a shorthand notation — a line
without arrowheads — for bi-directional deep state-
ments (links) on a property and its inverse. For
example, the produces link between Coding and
Code (Fig. 7) represents two statements at once:
for descendants of Coding, a restriction of the
range of produces to descendants of Code, and for
descendants of Code, a restriction of the range of
the inverse of produces to descendants of Coding.

d 1-1
Coding produces Code

Figure 7: Link

A statement ensemble is a set of deep statements
that connect a source clabject with a set of clabjects
as target of the same property at the same target
potency. For example, in Fig. 8, a statement

http://dx.doi.org/10.18417/emisa.17.7

Enterprise Modelling and Information Systems Architectures

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Dual Deep Modeling of Business Processes

Special Issue on Multi-Level Modeling Process Challenge

ensemble for the clabject SoftwareDevelopment
over the task property restricts the range of the task
property for instances of SoftwareDevelopment
to the union of instances of Design and instances
of Coding.

task™! -
SoftwareDevelopment Design

task'"

Coding

equivalent to: SoftwareDevelopment

task™ = {Design,Coding}

Figure 8: Statement ensemble

DDM also allows for the specialization of prop-
erties. For example, in Fig. 9, the initialTask
property refines task. We refer to initial Task as
the sub-property of task and, in turn, we refer to
task as the super-property of initial Task. The sub-
property derives the target and source potencies
from the super-property. A sub-property’s values
are propagated upwards to the super-property, e. g.,
the extension of the task property comprises the
initial Task values. The range refinements on a
super-property via deep statements are inherited
by the sub-properties.

task®?

ProcessType TaskType

initial Task/task®?

Figure 9: Property specialization

Deep cardinality constraints consist of source
clabject, deep property, target clabject, multiplic-
ity, and the to-be constrained level of the deep
property indicated by dual potencies. Depending
on the multiplicity, we talk of mandatory constraint
(1..*), functional constraint (0..1), or mandatory
and functional constraint (1..1). For example, in
Fig. 10, a mandatory constraint over level 1-1 of
the in property between Gateway Type and Task-
Type requires each instance of GatewayType to
be related to at least one instance of TaskType via
the in property.

in2-2 (1 “*)1-1

GatewayType TaskType

Figure 10: Deep cardinality constraints

Other multiplicities, e. g., (2..5) to indicate a
minimum cardinality of 2 and a maximum car-
dinality of 5, are also possible but were not con-
sidered in DDM’s original formalization, yet can
easily be added. Since all cardinality constraints
in our solution are value cardinality constraints,
we omit the explicit distinction between value
and range cardinality constraints provided in the
original DDM notation.

3 Case Analysis

In this section, we present and analyze the case
description. In order to make the paper self-
contained we include the rules and requirements
from the case description (Almeida et al. 2019) but
leave out the examples from the insurance domain.
We make additional assumption where necessary.
The rules and requirements taken verbatim from
the challenge description are set in sans serif font.

P1) A process type is defined by the composi-
tion of one or more task types and their
relations.

P2) Ordering constraints between task types
of a process type are established through
gateways, which may be sequencing, and-
split, or-split, and-join and or-join.

We assume that a split gateway has one
incoming task and at least two outgoing
tasks. Similarly, we assume that a join
gateway has at least two incoming tasks
and one outgoing task. A sequence has one
incoming and one outgoing tasks.

P3) A process type has one initial task type
(with which all its executions begin), and
one or more final task types (with which
all its executions end).

We assume that a process occurrence has
exactly one final task occurrence which

http://dx.doi.org/10.18417/emisa.17.7

International Journal of Conceptual Modeling

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Bernd Neumayr, Christoph G. Schuetz, Michael Schrefl

Pa)

P5)

P6)

P7)

P8)

P9)

P10)

P11)

P12)

P13)

P14)

Special Issue on Multi-Level Modeling Process Challenge

must be an occurrence of one of the final
task types.

Each task type is created by an actor,
who will not necessarily perform it.

For each task type, one may stipulate a
set of actor types whose instances are the
only ones that may perform instances of
that task type.

A task type may alternatively be assigned
to a particular set of actors who are au-
thorized.

For each task type one may stipulate the
artifact types which are used and pro-
duced.

Task types have an expected duration
(which is not necessarily respected in par-
ticular occurrences).

Critical task types are those whose in-
stances are critical tasks; each of the lat-
ter must be performed by a senior actor
and the artifacts they produce must be
associated with a validation task.

Each process type may be enacted multi-
ple times.

We assume that every process is an instance
of (i. e., enacts) exactly one process type.

Each process comprises one or more tasks.

Each task has a begin date and an end
date.

Tasks are associated with artifacts used
or produced, along with performing ac-
tors.

Every artifact used or produced in a task
must instantiate one of the artifact types
stipulated for the task type.

P15)

P16)

P17)

P18)

P19)

An actor may have more than one actor
type.

As P15 seems to check whether an approach
supports multiple classification and DDM
does not, we initially assume that every ac-
tor has a single actor type. But, in our opin-
ion, the specific modeling requirement is
best captured by using roles and role types,
which can be incorporated with DDM at
the meta type level, as discussed in Sect. 5.

An artifact may have more than one arti-
fact type.

As for actors we also assume that every
artifact has exactly one artifact type and
refer to Sect. 5 for a discussion of work-
arounds.

An actor who performs a task must be
authorized for that task. Typically, a class
of actors is automatically authorized for
certain classes of tasks.

Actor types may specialize other actor
types in which case all the rules that apply
to instances of the specialized actor type
must apply to instances of the specializing
actor type. For example, if a manager is
allowed to perform tasks of a certain task
type, so is a senior manager.

All modeling elements, at all levels, must
have a last updated value of type time
stamp. This feature should be defined as
few times as possible, ideally only once.
Respective definitions are exempt from
the requirement to have a last updated
value.

Using the generic process modeling language,
the Acme software development process shall be
represented. The initial task of that process is
Requirements Analysis followed by Design and
Test Case Design in parallel. Coding and Test
Design Review follow the completion of Design
and Test Case Design, respectively. The final task,

http://dx.doi.org/10.18417/emisa.17.7

Enterprise Modelling and Information Systems Architectures

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Dual Deep Modeling of Business Processes

Special Issue on Multi-Level Modeling Process Challenge

which follows the completion of both Coding and
Test Design Review, is Testing.

S1) A requirements analysis is performed by
an analyst and produces a requirements
specification.

S2) A test case design produces test cases.

S3) An occurrence of coding is performed
by a developer and produces code. It
must furthermore reference one or more
programming languages employed.

S4) Code must reference the programming
language(s) in which it was written.

S5) Coding in COBOL always produces
COBOL code.

S6) All COBOL code is written in COBOL.

S7) Ann Smith is a developer; she is the only
one allowed to perform coding in COBOL.

S8) Testing is performed by a tester and pro-
duces a test report.

S9) Each tested artifact must be associated
to its test report.

S10) Software engineering artifacts have a re-
sponsible actor and a version number.
This applies to requirements specification,
code, test case, test report, but also to
any future types of software engineering
artifacts.

S11)a) Bob Brown is an analyst and tester.

b) He has created all task types in this
software development process.

We have splitrule (S11) into two rules, (S11-
a) and (S11-b), so that we can discuss their
fulfillment in separation. As stated with
rule (P15), the DDM approach does not
support multiple classification and, there-
fore, rule (S11-a) will not be fulfilled. We
discuss workarounds in Sect. 5 and, in our
main solution, we treat Bob Brown as a
senior analyst.

S12) The expected duration of testing is 9
days.

S13) Designing test cases is a critical task
which must be performed by a senior an-
alyst. Test cases must be validated by a
test design review.

Additional Details

To better illustrate our solution to the challenge, we
supplement the case description with additional
details at the occurrence level. In our solution to
the challenge (Figs. 11-15), we clearly distinguish
between the model elements that relate to the
challenge (shown with bold black lines) and those
model elements that relate only to the additional
details (shown with thin gray lines). The latter
can be ignored when comparing our solution to
other solutions of the challenge. The additional
details are the following:

Al) Lisa Loud is an analyst but not a senior
analyst.

A2) Occurrences of Design may only be per-
formed by Lisa Loud or by Bob Brown.

A3) The development of a new finance appli-
cation (DevelopFinanceApp) is an occur-
rence of the Acme software development
process with task AnalyzeFinaceAppRegs,
an occurrence of ReqgAnalysis, followed
by DesignFinanceApp and DesignTestsFor-
FinanceApp, occurrences of Design and
TestCaseDesign, respectively. Both are fol-
lowed, respectively, by CodingFinanceApp,
an occurrence of Coding, and ReviewFi-
nanceAppTestDesign, an occurrence of Test-
DesignReview. The final task after com-
pletion of those two tasks is then TestFi-
nanceApp, an occurrence of Testing.

A4) The coding of the new finance applica-
tion employs COBOL, is performed by Ann
Smith and produces FinanceAppCode.

http://dx.doi.org/10.18417/emisa.17.7

International Journal of Conceptual Modeling

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Bernd Neumayr, Christoph G. Schuetz, Michael Schrefl

Special Issue on Multi-Level Modeling Process Challenge

AS) The testing of the code is performed by
Peter Parker and produces a test report
having FinanceAppCode as tested artifact.

A6) The design of the new finance app is per-
formed by Lisa Loud.

4 Multi-level Modeling Solution

In this section, we present a multi-level model as a
solution to the challenge. We present our solution
in three steps, each step focusing on a fragment
of the overall multi-level model, covering at each
step all levels, namely the metatype level, the type
level, and the occurrence level. In the first step,
we give an overview of our solution and present
its basic ideas along Fig. 11. We will discuss
modeling limitations related to abstract clabjects
along Fig. 12. In the second step we focus on
processes specified by gateways and tasks at the
metatype level and the type level (Fig. 13), and at
the occurrence level (Fig. 14). In the third step we
focus on actors and artifacts and their relationships
with tasks as shown in Fig. 15.

4.1 Overview and Basic Ideas

We will now present the basic ideas of our solution
by considering only a fragment of the solution
(see Fig. 11). At the type level, we consider only
two task types, namely Design and Coding. At
the metatype level, we model only one gateway
metatype, namely SequenceType. As a further
simplification, for now, we do not model cardinal-
ity constraints.

DDM facilitates the modeling of different clab-
ject hierarchies with different numbers of instanti-
ation levels and with different level names. But for
simplicity’s sake we opted for solving the process
challenge with a single clabject hierarchy.

4.1.1 Clabjects and Instantiation Levels

The multi-level process model hierarchy is rooted
in the PMEntityMetatype (short for ‘process
model entity metatype’) clabject, which has po-
tency 3, meaning that it has three instantiation
levels, namely the Metatype, the Type, and the

Occurrence levels. Clabjects in DDM are un-
derstood as multi-faceted constructs. Clabject
PMEntityMetatype acts as class of process model
entity metatypes at level 2, as class (and meta-
class) of process model entity types at level 1,
and as class (and metaclass and metametaclass)
of process model entity occurrences at level 0.

With regard to these different class facets, clab-
ject PMEntityMetatype has members at level Oc-
currence, such as CodingFinanceApp, members at
level Type, such as Coding, and members at level
Metatype, such as TaskType. Clabject PMEnti-
tyMetatype itself is at level Metametatype and is
the only instance of its singleton class facet.

In turn, clabject TaskType, with potency 2
is an instance of PMEntityMetatype, has two
instantiation levels, namely Type and Occurrence,
and acts as class of task types and as class (and
metaclass) of task occurrences. Clabject Coding,
an instance of TaskType, has one instantiation
level, namely Occurrence, and acts as class of
coding occurrences, with CodingFinanceApp as
instance.

Clabject ProcessType with potency 2 is another
instance of PMEntityMetatype and acts as class
of process types and as class (and metaclass) of
process occurrences.

Note that we call all model entities clabjects
since in DDM every model entity, even one with
potency 0, has at least one class facet; a clabject
always represents a class of which it is the only
member (note that this is different for abstract
clabjects).

4.1.2 Abstract clabjects
DDM adheres to the abstract superclass
rule (Hiirsch 1994) and translates it into the
abstract super-clabject rule. In DDM a general-
ized clabject (or super clabject) is always treated
as an abstract class, i.e., cannot be instantiated
directly, and as an abstract object, i.e., it is
not treated as a proper object with properties
describing itself.

In our solution, GatewayType is an abstract
metatype specialized by concrete metatype Se-
quenceType. Clabject GatewayType also acts as

http://dx.doi.org/10.18417/emisa.17.7

Enterprise Modelling and Information Systems Architectures

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Dual Deep Modeling of Business Processes

Special Issue on Multi-Level Modeling Process Challenge

PMEntityMetatype
Metametatype 3
createdBy'?
task?? TaskType : = ActorType :
| PMEntityMetatype performedBy PMEntityMetatype
ProcessType : Y] 22
PMEntityMetatype n out
| GatewayType : SequenceType :
2 PMEntityMetatype <t PMEntityMetatype
g y Metatype 2
1-1
g.a"tewaL SoftwareDevelopment : task™"| Coding : TaskType | Developer : ActorType
ProcessType performedBy"!
- —
task l out™ Analyst : ActorType
task™ gateway™!
Design : TaskType | in'™! Sequence1 : | A |
SequenceType Analyst_Other : SeniorAnalyst :
ActorType ActorType
Type 1
0-0
ga_t.t.eway DevelopFinanceApp: task®® | CodingFinanceApp : Oceurrence 0
SoftwareDevelopment Coding createdBy°'° BobBrown -
task™® SeniorAnalyst
out™®
task®® gateway®®
0-0
— performedBy AnnSmith : Developer
DesignFinanceApp : in®° : Sequence
Design
performedBy®® LisaLoud :

Analyst_Other

performedBy'?

Figure 11: A fragment of the solution. Connectors ending in °..." indicate additional statements which will be

introduced and described later. Model elements with thin gray lines do not refer to the challenge but to the additional
details introduced in Sect. 3 for illustrative purposes.

http://dx.doi.org/10.18417/emisa.17.7

International Journal of Conceptual Modeling

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

10

Bernd Neumayr, Christoph G. Schuetz, Michael Schrefl

Special Issue on Multi-Level Modeling Process Challenge

class of gateway metatypes, with its concrete spe-
cializations such as SequenceType as members,
as class of gateway types, and as class of gateway
occurrences. There are no gateway types that are
direct instances of metatype GatewayType but
only direct instances of concrete specializations of
Gateway Type, such as of SequenceType. Further-
more, Gateway Type cannot have its own values,
e. g., specifying a ‘last updated’ value, its property
values are propagated to its instances. Not allow-
ing abstract clabjects to have attributes describing
themselves was a compromise in the design of
DDM between simplicity and expressibility where
we chose simplicity.

In order to model a last updated time value
for all modeling elements at all levels, clabject
PMEntityMetatype (see Fig. 12) introduces four
properties with different source potencies, one
for each level. All four ‘last updated’ properties
are introduced with target clabject Timestamp
and target potency 1. Property lastUpdatedMMT
is introduced with source potency 0, meaning
that it is to be instantiated by PMEntityMetatype
itself. Property lastUpdatedMT is introduced
with source potency 1, meaning that it is to be
instantiated one instantiation level below PMEn-
tityMetatype, that is at the metatype level. It
is instantiated by metatypes TaskType and Se-
quenceType. Abstract metatype GatewayType
does not have its own property values and hence
does not have a ‘last updated’ value. If Gate-
way Type specified a value for lastUpdatedMT it
would be shared by (i. e., propagated to) all con-
crete specializations of GatewayType. Property
lastUpdatedT is introduced with source potency 2,
meaning that it is to be instantiated by instances of
instances of PMEntityMetatype, hence by product
model entity types such as Coding or Sequencel.
Property lastUpdatedO is introduced with source
potency 3, meaning that it is to be instantiated
by instances of instances of instance of PMEn-
tityMetatype, or three instantiation levels below
PMEntityMetatype, hence by product model en-
tity occurrences such as CodingFinanceApp or by
the unnamed instance of Sequencel.

PMEntityMetatype

lastUpdatedMMT®" : Timestamp (1..1)™°
lastUpdatedMMT®?® = 20210427083000
lastUpdatedMT"" : Timestamp (1..1)*°
lastUpdatedT?" : Timestamp (1..1)"°
lastUpdatedO®" : Timestamp (1..1)*°

TaskType : PMEntityMetatype
lastUpdatedMT®® = 20210427045000

out??

GatewayType : PMEntityMetatype

i

SequenceType : PMEntityMetatype

lastUpdatedMT®? = 20210427085000

Coding : TaskType
lastUpdated T = 20210427093000

out™

Sequence1 : SequenceType
lastUpdated T*® = 20210427072800

CodingFinanceApp : Coding
lastUpdatedO®? = 20210427022400
out®?

: Sequence1

lastUpdatedO®? = 20210427083010

Figure 12: Modeling lastUpdate properties at the
metametatype, metatype, type, and occurrence level.
Model elements with thin gray lines do not refer to the
challenge but to the additional details introduced in
Sect. 3 for illustrative purposes.

http://dx.doi.org/10.18417/emisa.17.7

Enterprise Modelling and Information Systems Architectures

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Dual Deep Modeling of Business Processes

Special Issue on Multi-Level Modeling Process Challenge

Dual potencies need to be asserted only when
declaring properties. Dual potencies of statements
can be derived, they are shown in the diagrams for
understandability. A statement’s source potency is
derived as the property’s source potency reduced
by the number of instantiation steps between the
property’s source clabject and the statement’s
source clabject. A statement’s target potency is
derived as the property’s target potency reduced
by the number of instantiation steps between the
property’s target clabject and the statement’s target
clabject.

4.1.3 Relationships

Process types consist of task types and gateway
types. Process occurrences consist of task occur-
rences and gateway occurrences. In our solution
this is modeled as follows. Property task between
source clabject ProcessType and target clabject
TaskType has source potency 2 and target po-
tency 2, i.e., dual potencies 2-2. Statements
with property task with source potency 1 and
target potency 1 connect process types, i. €., mem-
bers of clabject ProcessType, with task types,
i. e., members of clabject TaskType; for example,
process type SoftwareDevelopment is connected
to task type Coding. Statements with property
task and source potency O and target potency 0
connect process occurrences, i.e., members of
members of clabject ProcessType, with task oc-
currences, i. e., members of members of clabject
TaskType; for example, process occurrence De-
velopFinanceApp is connected to task occurrence
CodingFinanceApp. Property gateway between
source clabject ProcessType and target clabject
GatewayType is interpreted analogously.

The order of task types within a process type
is modeled by gateway types and their incoming
task types, connected via property in, and their
outgoing task types, connected via property out.
The order of task occurrences has to adhere to the
order specified at the type level. This is accom-
plished by gateway occurrences, i.e., members
of gateway types, which connect incoming and
outgoing task occurrences via properties in and
out, the range of which is specified by the gateway

type. This is modeled by properties in and out
between source clabject Gateway Type and target
clabject Task Type with dual potencies 2-2. State-
ments with properties in and out with potencies
1-1 connect a gateway type with its incoming task
type(s) and its outgoing task type(s), respectively.
For example, gateway type Sequencel connects
Design with Coding. By this, the range of property
in for occurrences of Sequencel is restricted to
occurrences of Design and for property out it is
restricted to occurrences of Coding. Statements
with properties in and out with potencies 0-0
connect a gateway occurrence with its incoming
task occurrence(s) and its outgoing task occur-
rence(s), respectively. For example, unnamed
gateway occurrence :Sequencel connects task oc-
currence DesignFinanceApp with task occurrence
CodingFinanceApp.

Property createdBy connecting source clab-
ject TaskType with target clabject ActorType has
source potency 1 and target potency 2. The ulti-
mate instances of createdBy, i. e., statements with
potencies 0-0, connect task types with individ-
ual actors. For example, task types Coding and
Design were created by BobBrown.

Property performedBy connecting source clab-
ject TaskType with target clabject ActorType has
source potency 2 and target potency 2. An ultimate
instance of performedBy connects a task occur-
rence with the individual actor that performed it.
For example, CodingFinanceApp was performed
by AnnSmith.

Statements at intermediate levels also represent
range restrictions for lower levels. For example,
the performedBy statement between Coding and
Developer restricts the range of performedBy for
occurrences of Coding to actors of type Devel-
opers. The arrowhead indicates the direction of
the range restriction, a developer may perform
other tasks as well, but a Coding task can only be
performed by a developer.

The statement ensemble with source clabject
Design, property performedBy and dual potencies
1-0, restricts for occurrences of Design the range
of performedBy to BobBrown and LisalLoud.

http://dx.doi.org/10.18417/emisa.17.7

International Journal of Conceptual Modeling

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Bernd Neumayr, Christoph G. Schuetz, Michael Schrefl

Special Issue on Multi-Level Modeling Process Challenge

4.2 Processes, Tasks, and Gateways

We will now discuss in detail the modeling of pro-
cesses composed of tasks and ordered by gateways
at the metatype level, the type level, and at the
occurrence level.

4.2.1 Metatype level

In Fig. 13, the inverse of property gateway be-
tween ProcessType and Gateway Type is modeled
with a mandatory and functional constraint for
dual potencies 0-0, meaning that every gateway
occurrence belongs to exactly one process occur-
rence, and a mandatory and functional constraint
for dual potencies 1-1, meaning that every gateway
type belongs to exactly one process type. The
inverse of property task between ProcessType
and TaskType comes with similar cardinality con-
straints.

Property task comes with mandatory con-
straints for potencies 1-1 and for potencies 0-0,
meaning that every process type has at least one
task type, and every process occurrence has at
least one task occurrence. Properties initial Task
and finalTask are modeled as sub-properties of
task. Property initialTask comes with functional
and mandatory constraints for potencies 1-1 and
potencies 0-0, meaning that every process type
has exactly one initial task type, and every process
occurrence has exactly one initial task occurrence.
Property finalTask comes with a mandatory con-
straint for potencies 1-1 and a mandatory and
functional constraint for potencies 0-0, meaning
that every process type has at least one final task
type, and every process occurrence has exactly
one final task occurrence. Cardinality constraints
for properties in and out between Gateway Type
and TaskType are refined with regard to concrete
gateway metatypes.

Properties in and out are introduced with
mandatory constraints for potencies 0-0, meaning
that every gateway occurrence has at least one in-
coming task occurrence and at least one outgoing
task occurrence, and mandatory constraints for
potencies 1-1, meaning that every gateway type
has at least one incoming task type and at least
one outgoing task type. The inverses of properties

in and out come with functional constraints for po-
tencies 0-0 and 1-1, meaning that at the occurrence
level and at the type level a task can be incoming
task of at most one gateway and outgoing task of
at most one gateway.

The concrete gateway metatypes, i.e., Se-
quenceType, AndSplitType, AndJoinType, Or-
SplitType, and OrJoinType, come with refined
cardinality constraints. For example, AndSplit-
Type adds functional constraints for property in
at the type level and at the instance level; and for
property out it adds a minimum cardinality of 2
both at the type and the instance level. Note that
in the published version of DDM one can only
specify functional and mandatory constraints but
not an arbitrary minimum cardinality as used here,
yet this can be easily added.

Clabject TaskType, as source clabject, intro-
duces property expectedDuration with potencies
1-1 and Number as target, together with a manda-
tory and functional constraint for potencies 0-0,
meaning that every task type comes with exactly
one expected duration given as a number. It fur-
ther introduces properties beginDate and endDate
with source potency 2, target potency 1 and target
Date, together with a mandatory and functional
constraint for potencies 0-0, meaning that every
task occurrence comes with exactly one beginDate
and exactly one endDate.

4.2.2 Type Level

Looking at the type level, the ACME SoftwareDe-
velopment process type is connected to its task
types and gateway types via statements with prop-
erties initial Task, task, finalTask, and gateway,
all with dual potencies 1-1.

Sets of statements with the same source clab-
ject, same property and same dual potencies form
a statement ensemble, and restrict, for members
of the source clabject, the range of that property to
members of target clabjects. For example, the set
of task statements connecting SoftwareDevelop-
ment to task types ReqAnalysis, Design, Coding,
TestCaseDesign, TestDesignReview, and Testing,
forms a statement ensemble, restricting, for oc-
currences of SoftwareDevelopment, the range of

http://dx.doi.org/10.18417/emisa.17.7

Enterprise Modelling and Information Systems Architectures

Vol. 17, No.7 (2022). DOI:10.18417/emisa.17.7

Dual Deep Modeling of Business Processes

Special Issue on Multi-Level Modeling Process Challenge

PMEntityMetatype
3 Metametatype
. .y
(1.1)*° ProcessType : (1.1)*°
PMEntityMetatype
gateway®?
1-1 0-0 522 *\1-1 *\0-0
Gatoway Type (0..1)"(0..1) in?2 (1.5 (1. TaskTyps
PMEntityMetatype | (0..1)"(0..1)*° out?2 (1. (1.%)™| PMEntityMetatype
A 22 - oo expectedDuration”’
- in™"(1.1)"7(1.1) : Number (1..1)°
B Pﬁgﬁﬁgﬁ;ﬁt’j@ outt? (1.1)" (1,10 | PeginDate” task®
- = : Date (1..1)*° (1.
|20 qags qi00 | SNODEES (1.0
AndSplitType : in"" (1.1)" (1.)" | :Date (1..1)°°
— PMEntityMetatype out?? (2.5 (2.1)*°
initialTask/task*?
ih2-2 *\1-1 *\0-0]
AndJoinType : i~ (2.1 (2.") (1__1);-;
—__PMEntityMetatype out?? (1..1)"" (1..1)°° (1.10"
i 22 11 0-0
- in““ (1.1 1.1
OrSplitType : (.10 {.1) finalTask/task??
— PMEntityMetatype out?? (2.5 (1..9)*° (1.
(1.1
OrJoinType : in*? 2. (1.9
'— PMEntityMetatype out?? (1..1)" (1..1)*°
2 Metatype
1 Type

SoftwareDevelopment : ProcessType

nitialTask™ ReqAnalysis : TaskType

expectedDuration®® = 14

r,|1-1

1.9
gateway™" (1..1)*? (1)

Split1 : AndSplitType

1.1)° 1.1)°°
out" (1..1)*° (1-1) .1 out™ (1..1)>
Design : TaskType TestCaseDesign : TaskType
task™ (1..1)*° (1.1)*° task™
expectedDuration™® = 21 expectedDuration®® = 7
™ (1.)* (1.1 in'"
T o3 Sequence1 : Sequence2 :
gateway " (1..1)™ SequenceType SequenceType (1..1)"° gateway™
1..1)%° 1..1)>0
out™’ (-1) (-1) out™’
Coding : TaskType TestDesignReview : TaskType —
task™(1..1)"° (1..1)* task
N expectedduration®® = 22 expectedDuration®® = 1
i 11 0-0 i 11 0-0
i ()T (4 qy00 (1.0 | I (1.1)

Join1 : AndJoinType

gateway' (1..1)*° e

out™

> Testing : TaskType
finalTask ™

expectedDuration®? = 9

Figure 13: Modeling processes, tasks, and gateways at the metatype level and at the type level.

http://dx.doi.org/10.18417/emisa.17.7

International Journal of Conceptual Modeling

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Bernd Neumayr, Christoph G. Schuetz, Michael Schrefl

Special Issue on Multi-Level Modeling Process Challenge

Occurrence 0

DevelopFinanceApp :
SoftwareDevelopment
AnalyzeFinanceAppRegs :
initialTask®® RegAnalysis
beginDate®? = 01-Jan-2021
endDate® = 18-Jan-2021
. 0-0
in
g + yo-o
: Split1
out®® out®®
- . . DesignTestsForFinanceApp :
” DesignFinanceApp : Design TestCaseDesign .
task™ task
beginDate’? = 20-Jan-2021 beginDate®® = 19-Jan-2021
endDate®™ = 9-Feb-2021 endDate®® = 25-Jan-2021
inM‘ ‘ in®®
: Sequence1 : Sequence2
gateway®® q g gateway”™®
out™® ‘ ‘ out™®
- . . ReviewFinanceAppTestDesign :
- CodingFinanceApp : Coding TestDesignReview T
beginDate®® = 12-Feb-2021 beginDate®® = 31-Jan-2021
endDate®’ = 10-Mar-2021 endDate”’ = 31-Jan-2021
in®® in®?
: Join1
gateway®?
‘out”"’
TestFinanceApp : Testing

finalTask®?

beginDate®® = 13-Mar-2021
endDate®® = 23-Mar-2021

Figure 14: Modeling an occurrence of the ACME software development process. This is not part of our solution to the
challenge but refers to the additional details introduced in Sect. 3 for illustrative purposes.

http://dx.doi.org/10.18417/emisa.17.7

Enterprise Modelling and Information Systems Architectures

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Dual Deep Modeling of Business Processes

Special Issue on Multi-Level Modeling Process Challenge

property task to occurrences of these task types.
Likewise, the set of gateway statements forms a
statement ensemble restricting the range of gate-
way to occurrences of gateway types Splitl, Se-
quencel, Sequence2, and Joinl. In other words,
an occurrence of SoftwareDevelopment may only
have tasks and gateways that are occurrences of
task types and gateway types associated with the
SoftwareDevelopment process type. A mandatory
and functional constraint for potencies 0-0 ensures
that an occurrence of SoftwareDevelopment has
exactly one occurrence of each of these task and
gateway types.

The cardinality constraints model successfully
finished process, task, and gateway occurrences.
For example, the cardinality constraints specified
with gateway type Splitl should be checked once
an occurrence of that split is completed, or, more
exactly, once the incoming and outgoing task oc-
currences are available in the model. A completed
occurrence of Splitl must be linked to exactly one
occurrence of SoftwareDevelopment, via in to
exactly one occurrence of ReqAnalysis, and via
out to exactly one occurrence of Design and to
exactly one occurrence of TestCaseDesign.

The in and out statements connecting task types
and gateway types restrict the range of in and out
statements for occurrences of the connected types.
For example, gateway type Splitl, an instance of
gateway metatype AndSplitType, has incoming
task type RegAnalysis, and outgoing task types
Design and TestCaseDesign. Occurrences of
Splitl can have only occurrences of ReqAnalysis
as incoming tasks and can only have occurrences
of Design or TestCaseDesign as outgoing tasks.

Cardinality constraints for properties in and out
for potency 0-0, specified at the metatype level
and additionally at the type level, ensure that each
of the in and out statements at the type level is
instantiated exactly once at the occurrence level.
For example, every occurrence of Splitl must
have exactly one occurrence of ReqAnalysis as in-
coming task occurrence (the respective functional
and mandatory is specified at the metatype level
for gateway metatype AndSplitType) and every
occurrence of RegAnalysis must be the incoming

task of a Splitl occurrence (specified at the type
level). Furthermore, cardinality constraints ensure
that there is a one-to-one relationship between oc-
currences of Splitl and Design as well as between
occurrences of Splitl and TestCaseDesign.

As specified at the metatype level, every task
type has a value for property expectedDuration.
For example, TestCaseDesign has an expected
duration of 7.

4.2.3 The Occurrence Level
A model of the DevelopFinanceApp, which is an
occurrence of the ACME SoftwareDevelopment
process type, is shown in Fig. 14. It has exactly
one occurrence for each task and gateway type
specified with the process type. Every task occur-
rence specifies a value for properties beginDate
and endDate. All statements adhere to range re-
strictions and cardinality constraints introduced at
the type and metatype levels.

The implementation of DDM in F-Logic (Neu-
mayr et al. 2018) can be used to check these range
restrictions and constraints at all levels.

4.3 Actors, Artifacts, and Tasks

In this subsection we present the part of the so-
lution concerned with artifacts and actors at the
metatype, type, and occurrence level.

This part of our modeling solution makes heavy
use of clabject generalization and, hence, of ab-
stract clabjects. Clabjects SoftwareEngineeringAr-
tifact, CriticalArtifact, ValidationTask, Critical-
Task, SeniorActor, and Analyst represent abstract
process model entity types and COBOLCode and
CodingInCOBOL represent abstract occurrences.
These abstract clabjects are not treated as objects
in their own right but only as generalization of con-
crete clabjects; they cannot have its own property
values which would describe the abstract clabject
as such and are not counted when checking car-
dinality constraints. Abstract clabjects are used
to make statements and to introduce properties
and constraints that are valid for their concrete
sub-clabjects.

http://dx.doi.org/10.18417/emisa.17.7

International Journal of Conceptual Modeling

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

16

Bernd Neumayr, Christoph G. Schuetz, Michael Schrefl

Special Issue on Multi-Level Modeling Process Challenge

PMEntityMetatype

I Metametatype 3
2:2 performedBy*?
ArtifactType : uses TaskType : ActorType :
] PMEntityMetatype | produces?? (0..1)"(0..1)*°| PMEntityMetatype createdBy'? (1..1)*° | PMEntityMetatype
testedArtifact'? (1..1)"° OtherType : responsibleActor'? | (1..1)"°
a-n PMEntityMetatype P -0
Metatype 2
Type 1
SoftwareEngineeringArtifact :
ArtifactType
versionNo'" (1..1): Number
A — - produces ™ — performedBy ™! -
CriticalArtifact : CriticalTask : » SeniorActor :
ArtifactType validates ™ — TaskType (1.1)%° ActorType
ValidationTask :
A (1.1)°° TaskType A A
A Analyst :
1-1
ReqSpecification : produces ™ RegAnalysis : performedBy » AtorType
ArtifactType TaskType
(1__1)0-0 (1__1)0-0 !!
TestDesign- Analyst_Other :
Review : TaskType ActorType
validates
TestCase : TestCaseDesign : » SeniorAnalyst :
H ArtifactType , = TaskType performedBy ! ActorType
produces
1 1..1)*°
Code : ArtifactType produces (1) Coding : TaskType > Developer :
H performedBy ™! ActorType
1 Programming- -
writtenln™ Language : employs™
(1.0 OtherType (1.700
L TestReport : d 141 1.1)00 Lo » .
ArtifactType produces (1.1) | Testing : TaskType performedBy 1| Tester : ActorType
(0..1)°°
Occurrence 0
COBOLCode : produces *° CodingInCOBOL : performedBy 0-1 AnnSmith :
Code Coding Developer
; " responsibleActor®®
writtenin®?| COBOL : Programming- employs™® P
Language
Flnancgﬁzzcwe : produces CodingFinanceApp : createdBy"'i BobBrown :
Coding » SeniorAnalyst
versionNo®® = 1
testedArtifact **
TestReportFinance- . .
_ roduces *° TestFinanceApp : performedBy 0-0 PeterParker :
App : TestReport | P Testing Tester
versionNo®® = 1

responsibleActor®®

Figure 15: Modeling tasks, actors, and artifacts at the metatype level, type level and the occurrence level. Model
elements with thin gray lines do not refer to the challenge but to the additional details introduced in Sect. 3 for

illustrative purposes.

http://dx.doi.org/10.18417/emisa.17.7

Enterprise Modelling and Information Systems Architectures

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Dual Deep Modeling of Business Processes

Special Issue on Multi-Level Modeling Process Challenge

4.3.1 Artifacts

Metatype Artifact Type has artifact types as mem-
bers which in turn have artifact occurrences (also
called ‘individual artifacts’) as members. Arti-
factType is instantiated by concrete artifact types
ReqgSpecification, TestCase, Code, and TestRe-
port which are generalized by abstract artifact type
SoftwareEngineeringArtifact.

FinanceAppCode is an individual Code artifact
and TestReportFinanceApp is an individual ar-
tifact of type TestReport. For the other artifact
types we have not modeled any occurrences.

COBOLCode is an abstract individual artifact.
It is modeled at the occurrence level as a general-
ization of all individual Code artifacts written in
COBOL. Currently, FinanceAppCode is the only
concrete individual COBOLCode artifact.

Abstract artifact type SoftwareEngineeringAr-
tifact generalizes artifact types ReqSpecification,
TestCase, Code, and TestReport (further artifact
types may be added later). It introduces property
versionNo with potencies 1-1 and functional and
mandatory constraints for potencies 0-0, speci-
fying that every individual software engineering
artifact has such a version number. For exam-
ple FinanceAppCode and TestReportFinanceApp
both have versionNo 1.

4.3.2 Tasks

Clabject TaskType is instantiated by task
types ReqAnalysis, TestDesignReview, Test-
CaseDesign, Coding, and Testing. Validation-
Task is an abstract task type with currently only
one concrete validation task type, namely TestDe-
signReview. CriticalTask is another abstract task
type; currently there is only one concrete critical
task type, namely TestCaseDesign.

Abstract clabject CodingInCobol represents an
abstract occurrence of Coding generalizing occur-
rences of Coding that employ COBOL. Concrete
clabject CodingFinanceApp represents a concrete
occurrence of CodinglnCOBOL.

4.3.3 Actors
The ActorType metatype has actor types as mem-
bers which in turn have actor occurrences, also

referred to as individual actors, as members.
Metatype Actor Type is instantiated by actor types
SeniorAnalyst, Analyst_ Other, Developer, and
Tester. Clabjects SeniorActor and Analyst repre-
sent abstract actor types. Because DDM adheres
to the abstract superclass rule, Analyst has to be
modeled as an abstract clabject, yet to be able to
model analysts that are not senior analysts we in-
troduce clabject Analyst_ Other. Analyst_ Other
and SeniorAnalyst are concrete Analyst types with
SeniorAnalyst being also a SeniorActor type.

AnnSmith is a developer, BobBrown a senior
analyst, and PeterParker a tester.

4.3.4 Performed By

Property performedBy with dual potencies 2-2
models that task occurrences are performed by
individual actors.

Statements (or statement ensembles) with prop-
erty performedBy and dual potencies 1-1 at the
type level specify that only actors of the given actor
types are authorized to perform occurrences of the
given task type. For example, the statement « Test-
CaseDesign is performedBy SeniorAnalyst»with
potencies 1-1 models that only senior analysts are
authorized to perform occurrences of test case de-
sign. The arrowhead indicates that the statement
only restricts the range in one direction, and senior
analysts may be authorized to perform also occur-
rences of other task types, such as requirements
analysis.

The abstract statement «ReqAnalysis is per-
formedBy Analyst» models that senior analysts as
well as analysts that are not senior analysts (repre-
sented by class Analyst_ Other) are authorized to
perform occurrences of requirement analysis.

The abstract statement «CriticalTask is per-
formedBy SeniorActor» together with a manda-
tory and functional constraint for potencies 0-0
models that every occurrence of a critical task
type is performed by exactly one senior actor.

Statements (and statement ensembles) with
property performedBy and dual potencies 1-0
connect task types with individual actors to model
that only these actors are authorized to perform oc-
currences of the respective task type. For example,

http://dx.doi.org/10.18417/emisa.17.7

International Journal of Conceptual Modeling

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Bernd Neumayr, Christoph G. Schuetz, Michael Schrefl

Special Issue on Multi-Level Modeling Process Challenge

see Fig. 11, Design is connected by performedBy
statements to BobBrown and Lisaloud, to model
that only these two actors are authorized to per-
form occurrences of Design.

Statements with abstract source clabjects are
propagated to their concrete specializations. Ab-
stract task occurrence CodingInCOBOL is con-
nected by a performedBy statement to developer
AnnSmith. The system derives the statement
«CodingFinanceApp is performedBy AnnSmith».

4.3.5 Created By

Property createdBy introduced with metatype
TaskType as source clabject, target clabject Ac-
torType, potencies 1-2 and functional and manda-
tory constraints for potencies 0-0, models that
every task type is created by exactly one individ-
ual actor. For example, the Coding task type is
createdBy by individual actor BobBrown. Simi-
larly, task types ReqAnalysis, TestDesignReview,
TestCaseDesign, and Testing are createdBy Bob-
Brown. Each of these level-crossing relationships
with potencies 0-0 links a clabject at the type level
to a clabject at the occurrence level.

4.3.6 Responsible Actor

Abstract artifact type SoftwareEngineeringArti-
fact as source clabject introduces property re-
sponsibleActor with target clabject ActorType,
potencies 1-2 and a mandatory and functional
constraint for potencies 0-0, meaning that every
individual software engineering artifact is linked
to exactly one individual responsible actor.

This level-crossing relationship associates a
clabject at the type level with a clabject at the
metatype level, yet its ultimate instances (the
statements with property responsibleActor and
potencies 0-0) connect clabjects at the same level,
namely at the occurrence level. For example,
artifact occurrence TestReportFinanceApp has
PeterParker as responsibleActor, and FinanceAp-
pCode has AnnSmith as responsibleActor.

4.3.7 Tested Artifacts

Artifact type TestReport, as source clabject, in-
troduces a property testedArtifact with target
clabject ArtifactType at the metatype level. The

potencies 1-2 indicate that the ultimate instances
link TestReport occurrences to individual arti-
facts, i. e., members of members of ArtifactType,
with the latter in the role of tested artifacts. The car-
dinality constraints specify that every test report
is linked to exactly one tested artifact occurrence
and every artifact occurrence is linked to at most
one test report occurrence.

4.3.8 Used and Produced Artifacts
Property uses introduced with metatype Task-
Type, target clabject Artifact Type and potencies
2-2, models that task occurrences can use artifact
occurrences (note, this property is not further used
in the solution).

Property produces introduced with source clab-
ject TaskType, target clabject ArtifactType and
potencies 2-2, models that artifact occurrences
are produced by task occurrences. Statements
with property produces and potencies 1-1 connect
artifact types to task types to specify which tasks
can produce which artifacts.

4.3.9 Programming Language

Clabject ProgramminglLanguage is an instance of
metatype OtherType. The latter is introduced at
the metatype level, to flexibly introduce additional
clabjects at the type level.

Artifact type Code introduces property writ-
tenln and task type Coding introduces property em-
ploys both with potencies 1-1 and with Program-
minglLanguage as target clabject. The mandatory
constraints indicate that each occurrence of Code
and each occurrence of Coding is linked via prop-
erty writtenln or via property employs, respec-
tively, to at least one programming language.

At the occurrence level, programming language
COBOL islinked to abstract clabject COBOLCode
and to abstract clabject CodingInCOBOL repre-
senting shared statements propagated to every
COBOLCode occurrence as well as every Coding-
InCOBOL occurrence, respectively, so that they
are linked to COBOL without the need to explicitly
represent this link.

http://dx.doi.org/10.18417/emisa.17.7

Enterprise Modelling and Information Systems Architectures

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Dual Deep Modeling of Business Processes

Special Issue on Multi-Level Modeling Process Challenge

5 Satisfaction of Requirements

In this section, we evaluate the presented solution

with respect to the case’s requirements presented
in Sect. 3. An overview is given in Tab. 1.

Requirement (P1) is fulfilled by clabjects Pro-
cess Type and TaskType at the metatype level
which have process types and task types (clabjects
at the type level) as their members. A process
type is related to its task types by statements with
property task with potencies 1-1. Property task is
introduced at the metatype level with a mandatory
and functional constraint for potencies 1-1 for its
inverse property which ensures that every task
type belongs exclusively to one process type.

Requirement (P2) is fulfilled through abstract
metatype GatewayType, its properties in and out
with dual potencies 2-2, and its concrete special-
izations SequenceType, AndSplitType, AndJoin-
Type, OrSplitType, OrJoinType.

Task types are ordered through gateway types,
i. e., members of clabject GatewayType at the type
level, and in- and out-statements at the type level
which are further instantiated at the occurrence
level. For every gateway type, the in and out
statements restrict the range of in and out for
occurrences of that gateway type. This enforces
at the occurrence level the order specified at the
type level.

To ensure a correct process execution also con-
sidering the begin and end dates, one would have
to set a deep constraint (not directly supported
in DDM) in Gateway Type that for each gateway
occurrence (i. e. descendants of Gateway Type at
level Occurrence) the value of the property be-
ginDate for each outgoing task occurrence (i. e.
descendants of TaskType at level Occurrence
connected to the gateway occurrence via out) is
greater than or equal to the value of the property
endDate of each incoming task occurrence.

Requirement (P3) is fulfilled through proper-
ties initial Task and final Task which are specializa-
tions of property task and are used to model initial
and final task types of process types as well as
initial and final task occurrences of process occur-
rences. The initial Task- and final Task-statements

at the type level restrict the range for initial Task
and finalTask at the occurrence level so that only
occurrences of the initial and final task types may
act as initial and final tasks. A mandatory and
functional constraint ensures that every process
type has exactly one initial task type. A mandatory
constraint ensures that every process type has at
least one final task type.

Requirement (P4) is fulfilled through property
createdBy introduced between metatypes Task-
Type and ActorType, yet with source potency 1
and target potency 2, so that the ultimate instances
of createdBy are cross-level links connecting task
types with individual actors.

Requirement (P5) is fulfilled through property
performedBy introduced at the metatype level
with potencies 2-2 between clabjects Task Type
and ActorType. At the type level, statements
with property performedBy connect task types
with actor types and thereby restrict the range
of performedBy for the occurrence level. Occur-
rences of a task type may only be performed by
an occurrence of an actor type when there is a
corresponding statement at the type level.

A set of actor types may be authorized for one
task type by a statement ensemble, that is, multiple
performedBy statements with the same task type
as source and different actor types as targets.

Requirement (P6) is fulfilled by a statement en-
semble with property performedBy and potencies
1-0, connecting a task type to a set of individual
actors, restricting for occurrences of that task type
the range of performedBy. Occurrences of that
task type may then only be performed by one or
more of these individual actors. This is exempli-
fied by task type Design, the occurrences of which
may only be performed by BobBrown or LisalLoud
(see Fig. 11).

Requirement (P7) is fulfilled through proper-
ties uses and produces introduced at the metatype
level between clabjects TaskType and Artifact-
Type and potencies 2-2, meaning that these prop-
erties cover both the type level and the occurrence
level. Statements at the type level restrict the prop-
erties’ range at the occurrence level. For example,

http://dx.doi.org/10.18417/emisa.17.7

International Journal of Conceptual Modeling

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Bernd Neumayr, Christoph G. Schuetz, Michael Schrefl

Special Issue on Multi-Level Modeling Process Challenge

task type Coding is associated with artifact type
Code using property produces with potencies 1-1.

Requirement (P8) is fulfilled through property
expectedDuration introduced between metatype
TaskType and type Number with source potency 1
and target potency 1 (see Fig. 13). Together with a
mandatory and functional constraint this specifies
that every task type has exactly one numeric value
for expectedDuration.

Requirement (P9) is fulfilled at the type level
through abstract clabjects CriticalTask, Senio-
rActor, CriticalArtifact, ValidationTask, property
validated introduced between ValidationTask and
CriticalArtifact, the performedBy statement be-
tween Critical Task and SeniorActor, and the pro-
duces statement between CriticalTask and Crit-
icalArtifact. A functional and mandatory con-
straint on the inverse of validates for potencies
0-0 ensures that every critical artifact occurrence
is validated by exactly one validation task occur-
rence. These statements and constraints express
that every artifact produced by a critical task must
be a critical artifact and as such must be validated
by a validation task and that each critical task must
be performed by a senior actor.

Requirement (P10) is fulfilled through clabject
ProcessType at the metatype level (i. e., with po-
tency 2) which represents both the class of process
types and the class of process occurrences. Every
process type, i. e., every instance of ProcessType,
also acts as a class of process occurrences and
can have arbitrary many process occurrences as
members, in other words, the process type can be
enacted multiple times.

Requirement (P11) is fulfilled through clab-
jects ProcessType and TaskType related through
property task with potencies 2-2 at the metatype
level which have process occurrences and task
occurrences (clabjects at the occurrences level)
as members of their members related by task-
statements with potencies 0-0.

Requirement (P12) is fulfilled through prop-
erties beginDate and endDate introduced at the
metatype level with source clabject Task Type and
target clabject Date and with potencies 2-1 which

means that the ultimate instances of these proper-
ties link task occurrences with particular dates. A
mandatory and functional constraint for potencies
0-0 ensures that every task occurrence has exactly
one start date and exactly one end date.

Requirement (P13) is fulfilled through proper-
ties uses, produces, and performedBy, which are
introduced at the metatype level with potencies
2-2, meaning that their ultimate instances link
task occurrences with artifact occurrences and
individual actors, respectively.

Requirement (P14) is fulfilled by virtue of
the semantics of statement ensembles in DDM.
Multiple statements with property produces (or
uses) with the same task type as source clabject and
different artifact types as target clabjects restrict
the range of produces (or uses) for occurrences
of that task type to occurrences of those artifact
types.

Requirement (P15) is not directly covered in
the sense that DDM does not support multiple
classification. In DDM, every concrete clabject
at some lower level is instance of exactly one
concrete clabject at the higher level.

In the absence of multiple classification, a typi-
cal workaround in two-level models it to use mul-
tiple inheritance at the type level by (i) defining
a supertype for every actor type and (ii) defin-
ing a subtype for every permitted combination of
permitted types. Using this approach in DDM,
one would model actor types such as Designer
and Tester first as abstract clabjects and then
model all relevant combinations of actor types
as concrete clabjects, e. g., concrete clabject De-
signerAndTester specializing Designer and Tester,
concrete clabject DesignerOnly specializing De-
signer. But such an approach is cumbersome as it
entails a combinatorial explosion of types.

The given modeling situation is, however, in
our opinion best supported by using roles as a
modeling primitive. Roles (Gottlob et al. 1996)
provide for dynamically adding and removing new
instances of role types for an entity type, while
at the same time supporting role-identity next
to entity-identity, and allow for checking entity-
equivalence of two roles of an entity. Roles can

http://dx.doi.org/10.18417/emisa.17.7

Enterprise Modelling and Information Systems Architectures

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Dual Deep Modeling of Business Processes

Special Issue on Multi-Level Modeling Process Challenge

be added as modeling primitive to a data model
at the meta level if the data model supports deep
properties, i. e., properties that are introduced at
meta-types (or meta-classes) and are instantiated
(by using the modeling primitive) at the type-level
and are instantiated, recursively, at the instance
level. This approach for data model tailoring
using meta classes describing their classes and the
instances of their classes has been shown for roles

by (Klas and Schrefl 1995) and by (Dahchour et al.

2004). It can be used 1:1 in DDM to introduce
roles at the meta type level and to model P15 at
the type level.

PMEntityMetatype
3
OtherType : ActorType :
PMEntityMetatype r—1 PMEntityMetatype
2
Designer :
ActorType
Person : roleOf 21
OtherType
(1.1)*° Tester : ActorType
1
0
BobBrownDesigner
0-0 : Designer
BobBrown : Person M
roleOf °° BobB.r:Ic_)wnTester
: Tester

Figure 16: Modeling actors as roles played by persons

Alternatively, one can introduce roles for the
single modeling situation of P15 as follows using
DDM. Actors are modeled as reified roles played
by a person (see Fig. 16). Person is modeled
as first-order clabject. Metatype ActorType as
source clabject introduces property roleOf with
target clabject Person and source potency 2 and
target potency 1. A mandatory and functional
constraint for potencies 0-0 ensures that every

actor occurrence is the role of exactly one person.

The person BobBrown plays two roles, namely

BobBrownDesigner, a member of actor type De-
signer, and BobBrownTester, a member of actor
type Tester.

Requirement (P16) is not directly covered by
DDM and would require a workaround in analogy
to one of the workarounds described above.

Requirement (P17) is fulfilled through prop-
erty performedBy introduced at the metatype level
with potency 2-2, hence covering the type level
as well as the occurrence level. Statements with
property performedBy and potencies 1-1 relating
task types with actor types restrict the range of
performedBy, hence act as authorization for actors
of these actor types.

Requirement (P18) is fulfilled through the
possibility to generalize clabjects to abstract super-
clabjects. In contrast to the example given with
(P18), DDM supports covariant specialization
meaning that the range of performedBy becomes
smaller in sub-clabjects and not broader.

Requirement (P19) is partially fulfilled
through introducing with clabject PMEntity-
Metatype four ‘last updated’ properties (see
Fig. 12) with source potencies ranging from 0 to
3, that is, one property for each instantiation level.
Mandatory and functional constraints ensure that
at every level every concrete clabject has a ‘last
updated’ timestamp. Abstract clabjects, however,
are not covered. An abstract clabject cannot
have a property value that describes the abstract
clabject itself.

Requirement (S1) is fulfilled at the type level
through clabject ReqAnalysis associated to Ana-
lyst by a performedBy statement and by RegAnal-
ysis associated to ReqSpecification by a produces
statement, both with potencies 1-1 (see Fig. 15).
Cardinality constraints ensure that each occur-
rence produces only exactly one requirements
specification and vice versa each specification is
produced by exactly one occurrence of require-
ment analysis.

Requirement (S2) is fulfilled at the type level
through clabject TestCaseDesign associated with
SeniorAnalyst and TestCase by statements with
properties performedBy and produces, respec-
tively.

http://dx.doi.org/10.18417/emisa.17.7

International Journal of Conceptual Modeling

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Bernd Neumayr, Christoph G. Schuetz, Michael Schrefl

Special Issue on Multi-Level Modeling Process Challenge

Requirement (S3) is fulfilled at the type level
through task type Coding associated to artifact
type Code by a produces statement and to actor
type Developer by a performedBy statement. Fur-
thermore, property employs is introduced with
task type Coding as source clabject and Program-
minglLanguage as target clabject. Cardinality
constraints ensure that every Code occurrence is
linked to exactly one Coding occurrence, and ev-
ery Coding occurrence is linked to one or more
programming languages.

Requirement (S4) is fulfilled at the type level
by property writtenln introduced with artifact type
Code as source clabject and ProgramminglLan-
guage as target clabject. A cardinality constraint
ensures that every Code occurrence is written in
at least one programming language.

Requirement (S5) is fulfilled at the occurrence
level through abstract task occurrence Codingln-
COBOL linked to programming language COBOL
by a shared employs statement with potency 0-0
which is propagated to concrete CodingInCOBOL
occurrences such as CodingFinanceApp.

Requirement (S6) is fulfilled at the occurrence
level by abstract artifact occurrence COBOLCode
linked to programming language COBOL by a
shared writtenln statement with potency 0-0 which
is propagated to concrete COBOLCode occur-
rences such as FinanceAppCode.

Requirement (S7) is fulfilled at the occurrence
level by abstract task occurrence CodinglnCOBOL
linked to developer AnnSmith by a shared per-
formedBy statement which not only restricts the
range of performedBy for concrete Codingln-
COBOL occurrences such as CodingFinanceApp
but is also propagated to them.

Requirement (S8) is fulfilled at the type level
by task type Testing associated to artifact type
TestReport by a produces statement.

Requirement (S9) is fulfilled by introducing
property testedArtifact with source potency 1 and
target potency 2 between artifact type TestReport
as source clabject and metatype ArtifactType
as target clabject. The dual potencies express
that the ultimate instances of testedArtifact are
at the occurrence level linking occurrences of

TestReport with individual artifacts in their role
as testedArtifact.

Requirement (S10) is fulfilled at the type
level through abstract artifact type SoftwareEngi-
neeringArtifact which introduces properties ver-
sionNo with potencies 1-1 and property responsi-
bleActor with potencies 1-2. The latter associates
clabject SoftwareEngineeringArtifact at the type
level with clabject ActorType at the metatype
level, yet the source potency 1 together with tar-
get potency 2 models that ultimate instances of
responsibleActor link artifact occurrences to in-
dividual actors. Cardinality constraints ensure
that every individual software engineering artifact
has exactly one version number and exactly one
responsible actor.

Requirement (S11-a) is not fulfilled by our so-
lution. In DDM every concrete clabject at a lower
level must be instance of exactly one concrete
clabject at the next higher level. A workaround
is sketched above in the discussion of fulfillment
of requirement (P15). With this workaround, in-
dividual actor BobBrown would be modeled as
an instance of clabject DesignerAndTester. Alter-
natively, as shown in Fig. 16, the different actor
roles played by BobBrown are reified.

Requirement (S11-b) is fulfilled by linking
type-level clabjects RegAnalysis, TestCaseDesign,
Coding and Testing with occurrence-level clabject
BobBrown by createdBy statements.

Requirement (S12) is fulfilled at the type level
by clabject Testing which has expectedDuration
9. Since expectedDuration is introduced by Task-
Type at the metatype level with potencies 1-1, its
ultimate instances link task types with individual
numbers.

Requirement (S13) is fulfilled at the type level
by concrete task type TestCaseDesign which is a
specialization of abstract task type Critical Task.
TestCaseDesign is associated by a performedBy-
statement with potency 1-1 to actor type Senio-
rAnalyst, which is a specialization of abstract
actor types Analyst and SeniorActor. Task type
TestDesignReview, which is a specialization of
ValidationTask, is associated with artifact type

http://dx.doi.org/10.18417/emisa.17.7

Enterprise Modelling and Information Systems Architectures

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Dual Deep Modeling of Business Processes

Special Issue on Multi-Level Modeling Process Challenge

TestCase, which is a specialization of CriticalAr-
tifact, via a validates statement with potency 1-1.
This, together with a cardinality constraint on the
inverse of validates between CriticalArtifact and
ValidationTask ensures that every test case occur-
rence is validated by exactly one occurrence of
TestDesignReview.

6 Assessment of Modeling Solution

In this section we discuss the modeling solution
from various directions with regard to different
aspects of multi-level modeling. We also highlight
different facets of DDM’s modeling constructs,
also with regard to related work.

6.1 Basic Modeling Constructs

DDM’s basic modeling constructs are explained
in Sect. 2. Let us now discuss some core charac-
teristics of model elements in DDM.

The outstanding specific feature of DDM is
that each domain concept, for example 7ask or
performed by, is introduced only once in the multi-
level model. The different incarnations of these
concepts at different levels, for example task oc-
currence and task type, or, respectively, ‘task
occurrence performed by individual actor’ and
‘task type performed by actor type’ and also ‘task
type performed by individual actors’, are repre-
sented implicitly. These different incarnations of
the concept at different levels—we also refer to
them as facets of model elements—in turn have
different facets, for example the instances of ‘task
type performed by actor type’ can be regarded as
simple links but also as schema statements that
impose constraints on statements on lower levels,
such as on the allowed instances of ‘task occur-
rence performed by individual actor’. By virtue
of dual potencies these originally implicit facets
of model elements can be explicitly addressed,
for example, performedBy with dual potencies
1-0 represents facet ‘task type performed by indi-
vidual actors’. This characteristic of multi-level
modeling elements is, of course, already partially
realized in classical approaches to potency-based
MLM (Atkinson and Kiihne 2001) and more so

with extensions to the basic approach (Lara et al.
2014), but it is only with dual potencies that this
characteristic of multi-level model elements is
fully realized.

This characteristic of DDM (and of other ap-
proaches to potency-based deep modeling) is also
sometimes seen as a drawback hampering concep-
tual clarity. One may argue that what above we
referred to as incarnations of domain concepts at
different levels are actual domain concepts. For
example, one may argue that the actual domain
concepts are fask type and task (the latter in the
sense of task occurrence) which are level-specific
and that there is no point in representing these
two concepts as a single model element. We note,
however, that in potency-based deep modeling
approaches, explicitly defining both task type and
task is possible if the modeler determines such
constructs to be useful, but “one is not forced to
do so” (Atkinson and Kiihne 2008, p. 357). There
are different MLM approaches in this direction
based on power types (Carvalho and Almeida
2018; Jeusfeld and Neumayr 2016) where these
level-specific domain concepts (or different incar-
nations of a domain concept at different levels)
are explicitly represented as model elements at
different levels connected by dependencies such
as partitions or is most general instance of.

6.2 Levels

In DDM, in contrast to other potency-based MLM
approaches, the level, the order, and the potency of
a clabject always match. For example, a 2nd-order
clabject must be at level 2 and must have potency
2. In essence, one of the three terms would suffice
for DDM, but for historical reasons, we stick with
this terminology and use the three terms basically
synonymously.

Clabjects in a clabject hierarchy are organized
into levels simply based on the number of instanti-
ation steps they are away from the root clabject of
that hierarchy. In addition to their potency number,
levels have level names which can be used together
with clabject names to refer to the different kinds
of clabjects at the different levels. ‘Instance-of’ is
the only level-determining relationship and every

http://dx.doi.org/10.18417/emisa.17.7

International Journal of Conceptual Modeling

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Bernd Neumayr, Christoph G. Schuetz, Michael Schrefl

Special Issue on Multi-Level Modeling Process Challenge

Table 1: Fulfillment of rules and requirements by
the presented modeling solution. Dual deep model-
ing supports most of the required features out of the
box (V') while others require language extensions and
workarounds (~) .

Req. Status Remark

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
Slla
S11b
S12
S13

NN N N N N N NENENENENEN

1

covariant specialization
without abstract clabjects

SN N N N N NN NENENE

SNENENE

clabject except for the clabjects in the highest level
have exactly one ‘instance-of” relationship to a
clabject in the next higher level.

In some MLM approaches a level of a multi-
level model is a self-contained model or a kind
of module within the multi-level model. This is
not the case for DDM. In DDM, a level simply
collects clabjects of the same order.

A characteristic of DDM is perhaps the flexi-
bility and openness with which we deal with such
central concepts such as ‘instantiation’ and ‘in-
stantiation level’ and concepts derived from them
such as ‘potency’ and ‘order’. In our solution
to the process challenge we used conventional
instantiation levels labeled occurrence, type, and
metatype but DDM is open to other flavors of
instantiation, sometimes also referred to as con-
cretization (Frank and T6pel 2020; Neumayr et
al. 2009), giving rise to, for example, levels in a
product hierarchy labeled category, model, and
physical entity. Yet, independent of the flavors of
instantiation, DDM clabject hierarchies are always
to be interpreted in a multi-faceted manner. For
example, every clabject at level 2, e. g., product
category Car, has an object facet, e. g., describing
the product category itself, a class facet, e. g., rep-
resenting the class of car models, and a metaclass
facet, e. g., representing the class of individual
physical cars partitioned by car model.

6.3 Number of Levels

Our solution to the modeling challenge comes
with four levels with the top-most level, the
metametatype level with potency 3, only con-
taining PMEntityMetatype as root clabject of the
hierarchy.

An alternative solution would be a hierar-
chy with only three levels with PMEntity Type
as abstract 2nd-order clabject generalizing clab-
jects TaskType, ProcessType, Gateway Type, Ac-
torType and OtherType. Apart from adapt-
ing PMEntityMetatype to PMEntity Type and
replacing instantiation relationships to PMEnti-
tyMetatype with specialization relationships to
PMEntity Type, this would not entail any further
changes to the solution.

http://dx.doi.org/10.18417/emisa.17.7

Enterprise Modelling and Information Systems Architectures

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Dual Deep Modeling of Business Processes

Special Issue on Multi-Level Modeling Process Challenge

Another alternative solution would comprise
separate clabject hierarchies for tasks, actors, gate-
ways, artifacts, each with three levels and with
TaskType, ActorType, Gateway Typ, and Artifact-
Type as root clabject of their respective hierar-
chy. When modeling in this flavor, programming
languages would be modeled in a separate two-
level clabject hierarchy with first-order clabject
Programminglanguage as root clabject. Such
a solution would make obsolete the third-order
clabject PMEntityMetatype and the second-order
clabject OtherType. Apart from that, this alterna-
tive solution would not entail any further changes,
the properties and statements would be exactly the
same.

Another intuitive solution in DDM would be to
model processes, tasks, and gateways in one clab-
ject hierarchy with PMEntityMetatype as root
clabject, and to model the other parts in separate
hierarchies, one with root clabject ArtifactType,
another one with root clabject ActorType, and yet
another one with root clabject ProgrammingLan-
guage. For these other clabject hierarchies we
would give a different name to the 0-level, namely
‘Individual’ instead of the more process-specific
‘Occurrence’.

The choice for one of the three variants has
hardly any serious advantages and disadvantages.
We assume, however, that experienced DDM mod-
elers would rather choose the latter variant with
multiple clabject hierarchies, since then classes
and metaclasses like OtherType are no longer nec-
essary and levels can be named more accurately
per hierarchy.

Since we treat atomic data types and values
also as clabjects, our solution assumes another
clabject hierarchy with clabject SimpleData as
root clabject and instantiation levels named Type
and Value.

6.4 Cross-Level Relationships

In DDM, relationships (associations and links) can
cross level boundaries without generic restrictions.
A relationship can connect source and target clab-
jects of different orders (i. e., clabjects at different
levels) and can come with different source and

target potencies. The only restriction is that the
source potency is not higher than the order of the
source clabject and that the target potency is not
higher than the order of the target clabject.

When introducing a property, the source clab-
ject and source potency together with the target
clabject and target potency specify which clab-
jects can be linked by ultimate instances of the
property. For example, the ultimate instances of
property createdBy, which is introduced between
source clabject Task Type with source potency 1
and target clabject ActorType with target potency
2. TaskType is a second-order clabject respre-
senting task types as well as task occurrence, but
because of source potency 1, property createdBy
can only be instantiated down to task types and an
ultimate instance of createdBy links a task type
to an individual actor.

A somehow different kind of cross-level rela-
tionships is exemplified by properties testedArti-
fact and responsibleActor which are introduced
between source and target clabjects at different
levels but by virtue of source and target potencies
their ultimate instances are at the same level. For
example, property testedArtifact is introduced be-
tween first-order source clabject TestReport and
second-order target clabject ArtifactType with
source potency 1 and target potency 2 so that
ultimate instances of property testedArtifact link
occurrences of TestReport with individual arti-
facts, the latter without restriction to a specific
artifact type.

Another somehow different kind of cross-level
relationships are intermediate cross-level relation-
ships exemplified by the performedBy statement
ensemble with source potency 1 and target po-
tency O of first-order source clabject Design (see
Fig. 11) which restricts the range of performedBy
of occurrences of Design to the set of BobBrown
and Lisaloud.

6.5 Cross-Level Constraints

Properties and statements with potencies above 1
naturally span multiple levels, that is why we also
call them deep properties and deep statements in
DDM. Every statement with a property connecting

http://dx.doi.org/10.18417/emisa.17.7

International Journal of Conceptual Modeling

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Bernd Neumayr, Christoph G. Schuetz, Michael Schrefl

Special Issue on Multi-Level Modeling Process Challenge

clabjects at a higher levels constrains the range of
this property for descendant clabjects at all lower
levels spanned by the property. Cardinality con-
straints are specified together with dual potencies
to indicate the facet of the property which should
be constrained.

6.6 Integrity Mechanisms

The DDM approach comes with an implementa-
tion in F-Logic (see Neumayr et al. 2018), the
main application of which is to check explicit
(such as cardinality constraints) and implicit (such
as range restrictions) integrity constraints.

6.7 Deep Characterization

In DDM, the source and target potencies of a
property or statement indicate the depth of char-
acterization. A property or statement with source
potency 2 and target potency 3 spans the next
two lower levels below the source clabject and the
next three lower levels below the target clabject.
Design choices made at higher levels cannot be
overridden at lower intermediate levels.

6.8 Generality

DDM facilitates the modeling of highly domain-
specific multi-level hierarchies with different num-
ber of levels and different level names for different
hierarchies (as exemplified in Neumayr et al. 2018).
Yet for solving the process challenge we opted for
a more general level structure with a single clab-
ject hierarchy with a uniform set of levels named
Metametatype, Metatype, Type, and Occurrence.
This level structure is mostly domain-independent.
With regard to the generality of the solution for
the process modeling domain, one could say that
the metatype part of the solution —especially clab-
jects ProcessType, TaskType, and Gateway Type
with their deep properties— embodies invariant
principles of the process modeling domain with
minimal redundancy covering both the modeling
of process types as well as process occurrences.

6.9 Extensibility

It is straightforward to extend the solution with
further task types and actor types and to relate
these. They can be introduced without abstract
types as generalizations or as specializations of
abstract task types such as CriticalTask or Vali-
dationTask or as specialization of abstract actor
types SeniorActor or Analyst.

In DDM, when the need of specializing a con-
crete clabject C' arises, one always has the choice
between introducing abstract clabjects (which are
modeled as abstract instances of C) at the next
lower level or by refactoring C' into an abstract
clabject and introduce the specializations of C' as
concrete sub-clabjects.

6.10 Formalization and Tool Support

The structure and semantics of DDM is for-
mally defined in F-Logic by a vocabulary, de-
ductive rules, and constraints (see Neumayr et
al. 2018). Together with an F-Logic engine like
Flora-2/ErgoAl this formalization can be used
for checking the integrity of and for querying a
multi-level model.

Future work will focus on formulating the chal-
lenge solution in terms of DDM’s F-Logic formal-
ization. We will also include counter examples
violating integrity constraints. We will then use
the F-Logic engine to query and to check the in-
tegrity of the multi-level process model hierarchy.
That formalization of our modeling solution in
F-Logic together with performance reports and
validation results will be made available open
source.

7 Related Work

We first discuss the presented solution in the con-
text of multi-level modeling in general. We then
compare our DDM solution to the multi-level
process challenge with solutions to the MULTI
2019 process challenge (Almeida et al. 2019). An
overview of the comparison is given in Tab. 2.

http://dx.doi.org/10.18417/emisa.17.7

Enterprise Modelling and Information Systems Architectures

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Dual Deep Modeling of Business Processes

Special Issue on Multi-Level Modeling Process Challenge

7.1 Multi-Level Modeling

The DDM approach relies on the Orthogonal Clas-
sification Architecture (OCA) and the notion of
clabject in connection with potency-based deep
instantiation. The OCA distinguishes between a
linguistic classification dimension and an ontolog-
ical classification dimension (Atkinson and Kiihne
2003). The elements of the multi-level process
model are linguistic instances of Clabject. The
clabject ProcessType, for example, is an ontologi-
cal instance of PMEntityMetatype. In this regard,
the notion of clabject is central (Atkinson 1997):
A clabject has a class facet and an object facet.
Unlike traditional deep instantiation (Atkinson
and Kiihne 2001), DDM distinguishes between a
source potency and a target potency.

An important further difference of DDM to
the traditional OCA is that DDM is flexible with
regard to the level-segregation principle, see the
discussion in Sect. 6.2. One can use DDM not only
for modeling multi-level classification hierarchies
but also for modeling concretization hierarchies as
featured by the m-object approach (Neumayr et al.
2009) and by FMML? (Frank 2014). DDM’s mul-
tifaceted interpretation of clabjects, see Sect. 4.1.1,
is equally suited to classification and concretiza-
tion hierarchies. In addition, DDM offers a spe-
cific naming scheme that is especially suitable for
concretization hierarchies. In this paper, however,
for solving the process challenge, we opted for
using classification as level-segregation principle
and did not make use of DDM’s specific naming
scheme.

A multi-level object (m-object) describes a
hierarchy of objects at multiple levels of abstrac-
tion (Neumayr et al. 2009). A concretization mech-
anism allows for the refinement of the data model.
The concept of multi-level business artifact (MBA)
extends the notion of m-object for artifact-centric
business process modeling (Schuetz 2015). The
artifact-centric (or data-centric) approach to busi-
ness process modeling focuses on the data objects
and the life cycles of those objects. An MBA is
an m-object that comprises a life cycle model for
each level of abstraction. More specific levels may

specialize life-cycle models via the mechanism
of behavior-consistent specialization (Schrefl and
Stumptner 2002), leading to the notion of hetero-
homogeneous business process models.

7.2 Contributions to the Multi-Level
Process Challenge

Rodriguez and Macias (2019) employ MultEcore,
an extension of the Eclipse Modeling Framework
for multi-level modeling (Macias et al. 2016), to
solve the multi-level process challenge. The Mult-
Ecore solution distinguishes between an applica-
tion hierarchy and two supplementary hierarchies.
The application hierarchy has four levels: general
process model elements, domain-specific process,
enterprise-specific process, and process instances,
which is similar to our solution in DDM. The
supplementary hierarchies consist of language
supplementary hierarchy and technology supple-
mentary hierarchy, which are orthogonal to the
application hierarchy and serve for aspect-oriented
modeling.

Like DDM, MultEcore is a potency-based multi-
level modeling approach. There are, however,
several key differences between MultEcore and
DDM regarding the use of potencies. MultEcore
models specify a minimum potency and a maximum
potency for elements, relationships, and attributes.
In addition, for elements and relationships, Mult-
Ecore models specify a depth. The minimum and
maximum potencies define the first and last level,
respectively, where an element, relationship, or
attribute can be instantiated. The depth defines at
how many levels below the element or relationship
can be instantiated.

The MultEcore solution employs Multilevel
Coupled Model Transformations (MCMTs) for
the specification of cross-level constraints. In
particular, an MCMT realizes the requirement
that an actor must be authorized to execute a
certain task (P17). The DDM solution realizes
that constraint using deep statements.

Somogyi et al. (2019) employ the dynamic
multi-layer algebra (DMLA)! to provide a solu-
tion to the multi-level process challenge. Unlike

L http://www.aut.bme.hu/Pages/Research/ VMTS/DMLA

http://dx.doi.org/10.18417/emisa.17.7
http://www.aut.bme.hu/Pages/Research/VMTS/DMLA

International Journal of Conceptual Modeling

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Bernd Neumayr, Christoph G. Schuetz, Michael Schrefl

Special Issue on Multi-Level Modeling Process Challenge

Table 2: Comparison of the characteristics of the different multi-level modeling approaches used in solutions for the

multi-level process challenge

Solution Levels Potencies Constr. Lang. Tool

MultEcore Explicit Min/Max MCMT EMF Extension
DMLA None None Imperative MLM Playground
DeepTelos Implicit None (Powertype) Datalog-based ConceptBase
DDM Explicit Source/Target None (F-Logic) Flora-2/ErgoAl

the MultEcore and the DDM solutions, DMLA
does not have explicit levels. DMLA has a flex-
ible instantiation mechanism, which resembles
refinement from traditional two-level modeling.

The DMLA solution to the multi-level pro-
cess challenge distinguishes between structural in-
stantiation and specifying-instantiation, although
specifying-instantiation is not directly supported
by the DMLA solution.

The DMLA solution employs an imperative
constraint language for enforcement of certain
rules. For example, the requirement that COBOL
code is written in the COBOL language is realized
using a simple imperative constraint.

Jeusfeld (2019) proposes a solution to the multi-
level process challenge using DeepTelos (Jeusfeld
and Neumayr 2016), an extension of Telos for
multi-level modeling based on powertypes (Odell
1998). Telos (Koubarakis et al. 2021) is a knowl-
edge representation language that serves as the fun-
damental for the ConceptBase deductive database
system (Jarke et al. 1995). In Telos, every ob-
ject can instantiate any other object and, in turn,
be instantiated by any other object. Dual deep
instantiation, the precursor of DDM, which we
employ in this paper, also has an implementation
in ConceptBase.

The DeepTelos solution to the multi-level pro-
cess challenge does not explicitly model levels.
While not explicitly modeled, however, levels can
still be identified. The Omega level comprises the
Proposition object, which is the most fundamental
concept in Telos; the core semantics of DeepTe-
los are defined over Proposition. The M3 level
comprises the basic elements for the representa-
tion of graph-based models, i. e., NodeOrLink and

its specialization Node, which the elements of
process models are specializations of. The M2
level comprises general concepts for process mod-
eling; the DeepTelos solution reuses a definition
in Telos of the BPMN language (see OMG 2013
for more information on BPMN). The M1 level
comprises the specification of the Acme software
development process. The MO level comprises
instantiations of specific process models.

Instead of potencies, which are employed in
DDM, DeepTelos has the concept of most-general
instances, which realizes the ‘powertype’ concept.
For example, the DeepTelos solution comprises
ProcessType with most-general instance Process,
ProcessElementType with ProcessElement, Task-
Type with Task, ActorType with Actor, and Arti-
factType with Artifact.

The DeepTelos solution also employs declara-
tive constraints based on Datalog to realize cross-
level constraints for specification of authorization
of actors for certain tasks. In the DDM solution,
those constraints are implicitly covered by the
instantiation and specialization mechanisms, al-
though using the F-Logic formalization, DDM
models could be complemented by F-Logic rules.

8 Conclusions

We have presented a solution to the multi-level pro-
cess challenge using DDM. The solution demon-
strates the strength of DDM, namely the compact
modeling of domains that span multiple instantia-
tion levels and require level-crossing relationships.
We conclude the paper with lessons learned and
implications for future work.

http://dx.doi.org/10.18417/emisa.17.7

Enterprise Modelling and Information Systems Architectures

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Dual Deep Modeling of Business Processes

29

Special Issue on Multi-Level Modeling Process Challenge

* When looking for a solution for requirement
(P19) we missed a language feature to model
properties that should be instantiated indepen-
dently of instantiation levels and independently
of the distinction between abstract and concrete
clabjects.

In future work, we will investigate how to extend
DDM with such level-independent properties.
We are thinking of either a mix-in mechanism
for metadata or of extending DDM’s linguistic
metamodel accordingly.

* Looking at the type level of the solution (see
Fig. 13), we see a lot of mandatory and func-
tional constraints, especially at both ends of
all in and out statements. What we missed
when developing the solution was a language
feature to specify at the metatype level, that
every concrete in statement and every concrete
out statement at the type level comes with such
constraints.

In future work, we will investigate how to ex-
tend DDM with generic constraints. What we
are thinking of is a flexible mechanism that lets
the modeler specify with a property a generic
constraint (such as a mandatory constraint for
potencies 0-0) together with dual potencies
indicating the intermediate levels at which state-
ments of that property should be supplemented
with constraints based on that generic constraint.
In this respect, the mechanisms for deep multi-
plicities (Atkinson et al. 2015) are very promis-
ing and we will investigate how they can be
combined with dual potencies.

* Requirements (P15) and (P16) highlighted
DDM’s lack of a mechanism for multiple clas-
sification. The restriction that a clabject has at
most one clabject as its class is an integral part
of DDM’s linguistic metamodel and contributes
to DDM’s overall simplicity.

We will investigate in future work the impact
of lifting this restriction and alternatively pro-
vide solutions based on data model tailoring as
sketched in Sect. 5.

References

Almeida J. P. A., Rutle A., Wimmer M., Kiihne
T. (2019) The MULTI Process Challenge. In:
Burgueiio L., Pretschner A., Voss S., Chaudron
M., Kienzle J., Volter M., Gérard S., Zahedi M.,
Bousse E., Rensink A., Polack F., Engels G., Kap-
pel G. (eds.) 22nd ACM/IEEE International Con-
ference on Model Driven Engineering Languages
and Systems Companion, MODELS Companion
2019, pp. 164-167

Atkinson C. (1997) Meta-modelling for distributed
object environments. In: Proceedings First Inter-
national Enterprise Distributed Object Computing
Workshop, pp. 90-101

Atkinson C., Gerbig R., Kiihne T. (2015) A uni-
fying approach to connections for multi-level
modeling. In: Lethbridge T., Cabot J., Egyed A.
(eds.) 18th ACM/IEEE International Conference
on Model Driven Engineering Languages and
Systems, MoDELS 2015, Ottawa, ON, Canada,
September 30 - October 2, 2015. IEEE Computer
Society, pp. 216-225

Atkinson C., Kiihne T. (2001) The Essence of Mul-
tilevel Metamodeling. In: Gogolla M., Kobryn C.
(eds.) «UML» 2001 - The Unified Modeling Lan-
guage, Modeling Languages, Concepts, and Tools,
4th International Conference, Toronto, Canada,
October 1-5, 2001, Proceedings. Lecture Notes in
Computer Science Vol. 2185. Springer, pp. 19-33

Atkinson C., Kiihne T. (2003) Model-driven de-
velopment: A metamodeling foundation. In: IEEE
software 20(5), pp. 3641

Atkinson C., Kiihne T. (2008) Reducing accidental
complexity in domain models. In: Software &
Systems Modeling 7(3), pp. 345-359

de Carvalho V. A., Almeida J. P. A. (2018) Toward
a well-founded theory for multi-level conceptual
modeling. In: Softw. Syst. Model. 17(1), pp. 205—
231

Dahchour M., Pirotte A., Zimanyi E. (2004) A
role model and its metaclass implementation. In:
Inf. Syst. 29(3), pp. 235-270

http://dx.doi.org/10.18417/emisa.17.7

International Journal of Conceptual Modeling

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Bernd Neumayr, Christoph G. Schuetz, Michael Schrefl

Special Issue on Multi-Level Modeling Process Challenge

Frank U. (2014) Multilevel Modeling - Toward
a New Paradigm of Conceptual Modeling and

Information Systems Design. In: Bus. Inf. Syst.
Eng. 6(6), pp. 319-337

Frank U., Tépel D. (2020) Contingent level classes:
Motivation, conceptualization, modeling guide-
lines, and implications for model management.
In: Guerra E., Iovino L. (eds.) MODELS ’20:
ACM/IEEE 23rd International Conference on
Model Driven Engineering Languages and Sys-
tems, Virtual Event, Canada, 18-23 October, 2020,
Companion Proceedings. ACM, 86:1-86:10

Gottlob G., Schrefl M., Rock B. (1996) Extending
Object-Oriented Systems with Roles. In: ACM
Trans. Inf. Syst. 14(3), pp. 268-296

Hiirsch W. L. (1994) Should Superclasses be Ab-
stract? In: Tokoro M., Pareschi R. (eds.) Object-
Oriented Programming, Proceedings of the 8th
European Conference, ECOOP ’94, Bologna, Italy,
July 4-8, 1994. Lecture Notes in Computer Science
Vol. 821. Springer, pp. 12-31

Jarke M., Gallersdorfer R., Jeusfeld M. A., Staudt
M. (1995) ConceptBase - A Deductive Object
Base for Meta Data Management. In: Journal of
Intelligent Information Systems 4(2), pp. 167-192

Jeusfeld M. A. (2019) DeepTelos for ConceptBase:
A Contribution to the MULTTI Process Challenge.
In: Burguefio L., Pretschner A., Voss S., Chau-
dron M., Kienzle J., Volter M., Gérard S., Zahedi
M., Bousse E., Rensink A., Polack F., Engels
G., Kappel G. (eds.) 22nd ACM/IEEE Interna-
tional Conference on Model Driven Engineering
Languages and Systems Companion, MODELS
Companion 2019, pp. 6677

Jeusfeld M. A., Neumayr B. (2016) DeepTelos:
Multi-level Modeling with Most General Instances.
In: Comyn-Wattiau I., Tanaka K., Song 1., Ya-
mamoto S., Saeki M. (eds.) ER 2016. LNCS
Vol. 9974, pp. 198-211

Klas W., Schrefl M. (1995) Metaclasses and Their
Applications, Data Model Tailoring and Database
Integration. Lecture Notes in Computer Science
Vol. 943. Springer

Koubarakis M., Borgida A., Constantopoulos P.,
Doerr M., Jarke M., Jeusfeld M. A., Mylopoulos J.,
Plexousakis D. (2021) A retrospective on Telos
as a metamodeling language for requirements
engineering. In: Requirements Engineering 26(1),
pp- 1-23

de Lara J., Guerra E., Cobos R., Moreno-Llorena
J. (2014) Extending Deep Meta-Modelling for
Practical Model-Driven Engineering. In: Comput.
J. 57(1), pp. 36-58

Macias F., Rutle A., Stolz V. (2016) MultEcore:
Combining the Best of Fixed-Level and Multi-
level Metamodelling. In: Atkinson C., Grossmann
G., Clark T. (eds.) Proceedings of the 3rd In-
ternational Workshop on Multi-Level Modelling.
CEUR Workshop Proceedings Vol. 1722. CEUR-
WS.org, pp. 66-75 http://ceur-ws.org/Vol-
1722/p6.pdf

Neumayr B., Griin K., Schrefl M. (2009) Multi-
Level Domain Modeling with M-Objects and M-
Relationships. In: Kirchberg M., Link S. (eds.)
Proc. Sixth Asia-Pacific Conference on Concep-
tual Modelling (APCCM 2009). CRPIT Vol. 96.
Australian Computer Society, pp. 107-116 http:
/ /crpit.scem.westernsydney.edu.au/abstracts/
CRPITV96Neumayr.html

Neumayr B., Schuetz C. G., Jeusfeld M. A., Schrefl
M. (2018) Dual deep modeling: Multi-level mod-
eling with dual potencies and its formalization
in F-Logic. In: Software and Systems Modeling
17(1), pp. 233-268

Odell J. J. (1998) Power Types In: Advanced
Object-Oriented Analysis and Design Using UML
Cambridge University Press

OMG (2013) Business Process Model and Nota-
tion (BPMN) — Version 2.0.2 https://www.omg.
org/spec/BPMN/

Rodriguez A., Macias F. (2019) Multilevel Mod-
elling with MultEcore: A Contribution to the
MULTI Process Challenge. In: Burguefio L.,
Pretschner A., Voss S., Chaudron M., Kienzle
J., Volter M., Gérard S., Zahedi M., Bousse E.,
Rensink A., Polack F., Engels G., Kappel G. (eds.)

http://dx.doi.org/10.18417/emisa.17.7
http://ceur-ws.org/Vol-1722/p6.pdf
http://ceur-ws.org/Vol-1722/p6.pdf
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV96Neumayr.html
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV96Neumayr.html
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV96Neumayr.html
https://www.omg.org/spec/BPMN/
https://www.omg.org/spec/BPMN/

Enterprise Modelling and Information Systems Architectures

Vol. 17, No. 7 (2022). DOI:10.18417/emisa.17.7

Dual Deep Modeling of Business Processes

31

Special Issue on Multi-Level Modeling Process Challenge

22nd ACM/IEEE International Conference on
Model Driven Engineering Languages and Sys-
tems Companion, MODELS Companion 2019,
pp. 152-163

Schrefl M., Stumptner M. (2002) Behavior-
Consistent Specialization of Object Life Cycles.
In: ACM Transactions on Software Engineering
and Methodology 11(1), pp. 92—-148

Schuetz C. G. (2015) Multilevel Business Pro-
cesses — Modeling and Data Analysis. Springer

Somogyi F. A., Mezei G., Urban D., Theisz Z.,
Bacsi S., Palatinszky D. (2019) Multi-level Mod-
eling with DMLA - A Contribution to the MULTI
Process Challenge. In: Burguefio L., Pretschner
A., Voss S., Chaudron M., Kienzle J., Volter
M., Gérard S., Zahedi M., Bousse E., Rensink
A., Polack F., Engels G., Kappel G. (eds.) 22nd
ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Com-
panion, MODELS Companion 2019, pp. 119-127

http://dx.doi.org/10.18417/emisa.17.7

