
Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3
Modeling for financial and staff management (Special Issue on Models-at-Work) 1

Modeling Financial, Project and Staff Management
A Case Report from the MaCoCo Project

Arkadii Gerasimova, Peter Letmatheb, Judith Michaela, Lukas Netz*,a, Bernhard
Rumpea

a RWTH Aachen University, Software Engineering, Aachen, Germany
b RWTH Aachen University, Management Accounting, Aachen, Germany

Abstract. To obtain more financial freedom, universities and especially their chairs and institutes have to
establish a well functioning and reliable financial management and accounting system. Currently, chairs
have different technical solutions for these systems, each of which must react individually to external changes
and require a high effort to adapt their reports. Thus, they rely on either commercial accounting software,
which is not tailored to their specific needs, or standard spreadsheet software making use of complex sheets
and cross-references which are error-prone and hard to adapt. We have used domain models and code
synthesis methods to create an enterprise information system. This paper shows how models reflect user
requirements, evolve with changing requirements and how they impact an agile, model-driven engineering
process. The resulting system simplifies the planning of financial management and accounting by university
chairs.

Keywords. Agile Methodology • Generative Methods • Higher Education Reform • Management Cockpit
for Chair Controlling • Model-Based Software Engineering

Communicated by Henderik A. Proper, Giancarlo Guizzardi. Received 2022-04-09. Accepted on 2023-08-02.

1 Introduction

Motivation and relevance. Universities, like any
industry sector, must drive the digital transforma-
tion of their processes. These processes include
teaching, research, acquisition of third-party fund-
ing, and administration. Since the 1990s, German
universities have been facing additional challenges:
They face increased competition due to the modu-
lar bachelor and master system leading to a need
for increased efficiency (Küpper 2007). Further,
the German government began to decentralize
management accounting by delegating it to the
universities themselves. As a result, in order to
obtain more financial freedoms, universities have

* Corresponding author.
E-mail. netz@se-rwth.de
Note: This work is funded by RWTH Aachen University.

to establish a well-functioning management ac-
counting system as well as implement financial
reporting. The last aspect in particular leads to
new challenges for universities and their stake-
holders, which include the central university ad-
ministration, various faculties as well as the chairs
and research institutes. The universities’ central
administration depends on obtaining aggregated fi-
nancial data from all belonging facilities, which is
used to allocate financial resources appropriately.
Further, they are obliged to provide annual reports
including profit and loss accounts as well as bal-
ance sheets. Thus, a reliable software system is a
necessity. Most German universities choose to uti-
lize adapted Enterprise Resource Planning (ERP)
systems, such as SAP (About SAP. 2022). In con-
trast, the management accounting of university
chairs and research institutes entails the develop-
ment of plans for long and short-term spending

http://dx.doi.org/10.18417/emisa.19.3
netz@se-rwth.de


International Journal of Conceptual Modeling
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3

2 Arkadii Gerasimov, Peter Letmathe, Judith Michael, Lukas Netz, Bernhard Rumpe

of, on the one hand, the financial resources pro-
vided by the central administration and, on the
other hand, the necessary acquisition of third-party
funding. Especially the accounting of third-party
funds underlies numerous regulations in regard to
their settlements and spending.

The processes and tools necessary to cope with
chair requirements are not included in universities’
ERP systems as these are only designed to fulfill
governmental requirements and the needs of the
central university administration. Consequently,
chairs and institutes rely on (1) commercial ac-
counting software, which is not tailored to their
specific needs, (2) standard calculation tools such
as Excel which includes complex sheets and cross-
references which are error-prone and hard to adapt
for new employees, or (3) larger chairs have de-
veloped their own software tools which have to
be adapted to new requirements on an ongoing
basis, and (some of which) are too technologically
outdated to be used as a basis for all chairs. To sim-
plify the planning of financial management and
accounting for chairs, a software solution is needed.
This article sheds light on the required software
engineering methodologies needed to develop a
solution that supports the planning, revision, and
governance of management and accounting.

Addressing these challenges, this paper is
guided by the following research question:

• What concepts are relevant to reflect the man-
agement domain of organizational units of uni-
versities?

Contribution. The main contributions of this
article are (1) the description of the process from
requirements elicitation to iteratively changing
and growing domain models, (2) the domain mod-
els themselves, and (3) the system generated from
them. Within the MaCoCo project at RWTH
Aachen University, we are developing a system
for the chairs’ financial management accounting
and planning since 2016. We apply a Model-
Driven Software Engineering (MDSE) approach
using the language workbench and code generation
framework MontiCore (Krahn et al. 2010, Höll-
dobler and Rumpe 2017). This allows us to reduce

the effort of creating and changing handwritten
code by using models and code synthesis for con-
tinuous regeneration. The used domain models
are created with UML/P (Rumpe 2016) inspired
Domain-Specific Languages (DSLs), which is a
language family better tailored for programming.
Moreover, we use agile development methods to
handle changing requirements. This case report is
authored by the main developers of the MaCoCo
application.

Structure. The next section motivates the need
for chair financial management accounting and
planning systems and presents the current financial
structure of RWTH Aachen University. Sect. 3
introduces the MaCoCo project, relevant stake-
holders, and the development process. Sect. 4
presents the DSLs used in MaCoCo and the gen-
erator used to create the resulting system. Sect. 5
describes the domain models as well as the pro-
cess towards these models and design decisions.
Sect. 6 describes the resulting application and
Sect. 7 discusses the return on modelling effort
and lessons learned. The last section concludes.

2 Motivation

Universities and especially chairs are facing chal-
lenges regarding the digital transformation of their
financial management (Brdesee 2021; Küpper
2007). In the following, we show what influences
them and provide insights into the personnel and
funding structure of the German university that
raises the most third-party funding.

2.1 Challenges for Universities
Küpper summarizes the innovations and chal-
lenges German universities have been facing since
the beginning of the 1990s as the “second German
higher education reform” (Küpper 2007, p. 82).
He identifies three central objectives driving the
changes, namely: (1) strengthening the efficiency
of German universities, (2) increasing the compe-
tition between universities and (3) decentralizing
its economic governance and controlling systems
(Küpper 2009, p. 54).

http://dx.doi.org/10.18417/emisa.19.3


Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3
Modeling for financial and staff management (Special Issue on Models-at-Work) 3

Various changes have been implemented to
meet these challenges. These include the intro-
duction of global budgets in order to grant more
autonomy to the universities (Ambrosy et al. 1997,
p. 204). By cutting back the basic governmental
funding and fostering the acquisition of third-party
funding within the framework of the “Pact for Re-
search and Innovation” university chairs should in
addition be motivated to raise their research funds
(Hornbostel 2001, p. 527 ff.).

Furthermore, the courses of study were adapted
to international standards by introducing the Bach-
elor’s and Master’s systems. The modular struc-
ture of the system provides universities the op-
portunity to individually determine the focus of
their courses of study and thus, personalize them.
In combination with the introduction of tuition
fees, competition between individual universities
is stimulated (Müller-Bromley 2011, p. 1f).

In order to be able to meet the new challenges
and international competition universities must
innovate and acquire suitable instruments, in par-
ticular systems for information processing and
management accounting (Küpper 2007, p. 82).
Information systems which support the planning,
revision, and governance of management pro-
cesses and further offer tools for cost accounting
are considered most necessary (Ambrosy et al.
1997, p. 204). Moreover, the higher education
autonomy act of the state North Rhine-Westphalia
(HFG)1 grants universities free choice of the un-
derlying accounting standards. Universities can
either retain the traditional German fiscal account-
ing standards called cameralistic standards, or
implement the business accounting standards of
private enterprises. In return for utilizing business
accounting standards which grant more freedom
and flexibility, universities have to manage their
budgets based on integrated management and ac-
counting, as well as planning and implementing
their economic management (HFG §5 Sec. 2).

1 Hochschulfreiheitsgesetz (HFG) des Landes NRW from 31.
Oktober 2006. https://recht.nrw.de/lmi/owa/br_vbl_detail_
text?anw_nr=6&vd_id=1460&vd_back=N

This ensures that the continuous fulfillment of
their tasks is manageable.

Research on management accounting in Ger-
man universities mainly concerned itself with
two relationships and governance levels: Firstly,
the relation between states and universities. Sec-
ondly, the relationship between universities and
their faculties. In both cases research focused
on the distribution of monetary resources either
from the government to the universities or from
the universities’ board to their faculties (Küpper
2009, p.51). Some studies further focus on the
distribution of the faculty’s monetary resources
to their belonging chairs. Whereas concepts for
the management accounting of universities and
the above-mentioned allocation problems have
been developed since 2007, only little attention
has been paid to the chairs and research institutes
that acquire the desired third-party funding and
execute research projects. This research gap is
worth addressing as these entities and their needs
can be compared to small and medium-sized enter-
prises considering the number of employees and
financial resources invested in them. Furthermore,
as they play a significant role in the universities’
total liquidity due to their project acquisition, they
play a crucial role in education and research.

2.2 Financial Structure of RWTH Aachen
University

RWTH Aachen University (Rheinisch-
Westfälische Technische Hochschule Aachen) was
founded in 1870 and comprises 8 faculties plus
the faculty for medicine which is linked to the
university’s medical center. In winter semester
2020/20212 , 47.269 students are enrolled. The
students choose from 170 courses of study offered
by 553 professors. RWTH Aachen University
employed 10.156 annual full-time equivalent staff
including 553 professors, 4.734 academic and
technical staff paid with governmental resources,
537 trainees, 3.826 staff financed by third-party

2 Figures and Facts provided by RWTH Aachen Uni-
versity: https://www.rwth-aachen.de/cms/root/Die-RWTH/
Profil/~enw/Daten-Fakten/lidx/1

http://dx.doi.org/10.18417/emisa.19.3
https://recht.nrw.de/lmi/owa/br_vbl_detail_text?anw_nr=6&vd_id=1460&vd_back=N
https://recht.nrw.de/lmi/owa/br_vbl_detail_text?anw_nr=6&vd_id=1460&vd_back=N
https://www.rwth-aachen.de/cms/root/Die-RWTH/Profil/~enw/Daten-Fakten/lidx/1
https://www.rwth-aachen.de/cms/root/Die-RWTH/Profil/~enw/Daten-Fakten/lidx/1


International Journal of Conceptual Modeling
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3

4 Arkadii Gerasimov, Peter Letmathe, Judith Michael, Lukas Netz, Bernhard Rumpe

funding and 506 from special funding. Addi-
tionally, 3.092 students and research assistants
are employed. Considering the total budget
of the university, including the administration
departments, but excluding the affiliated institutes,
404 million euros from a total of 1049 million
euros were acquired via third- party funding. This
leads to a third-party funding ratio of 38.51 %.
According to the latest report of the Federal Office
of Statistics 3 , RWTH Aachen University acquired
in comparison to other German universities the
most third-party resources in total (331 million
euros) and per professorship (985.000 euro).

RWTH Aachen University integrated the ERP
System SAP in order to replace the former camer-
alistic management accounting system HIS. The
SARA project, which deals with the transition
from the HIS system to the SAP system, began in
2012. After the commissioning of the software in
January 2015, it became clear, that there is a gap
between the needs of the university’s administra-
tion and those of the chairs and research institutes.
An exploratory study comprising interviews with
chairs confirmed this and led to the start of the
MaCoCo project.

3 The MaCoCo Project

The MaCoCo (Management Cockpit for Univer-
sity Chair Management and Controlling) project
started in 2016 with the goal to develop an Enter-
prise Information System (EIS) for the planning,
revision, and governance of management pro-
cesses as well as the cost accounting of small and
medium-sized chairs at RWTH Aachen University.
It is a joint project by the chair of Management Ac-
counting from the Faculty of Economics and the
chair of Software Engineering from Informatics.

In the first step, the developed software so-
lution was tailored to the needs of small and
middle- sized chairs at the university. The phrase
small and middle-sized does not relate to a certain
amount of funding, staff, or accounts (there are

3 Statistisches Bundesamt Destatis, Figures from 2019:
https://www.destatis.de/DE/Presse/Pressemitteilungen/
2021/09/PD21_418_213.html

no technical restrictions on this level) but to their
organizational structure. In contrast, large chairs
often have further administrative structures, are
more workflow-oriented, and have other needs
regarding their financial affairs. They already use
systems for accounting and sometimes even work-
flow systems similar to companies in the private
sector. Beyond small and middle-sized, the first
large chairs are currently also in the process of
transitioning to using MaCoCo which results in
a set of additional requirements, e. g., to cover
hierarchical structures.

The capabilities and skills to be developed in
the EIS are represented by the universities staff.
Thus, their expertise and competency need to be
continuously included in the development and
testing processes. Consequently, an agile soft-
ware development paradigm was chosen, which
strongly involves future users in the conceptual-
ization process.

3.1 User Groups
Following a user-centered approach, two groups of
people were included in the development process
of MaCoCo: (1) A group of lead users gave
input and helped developing concepts and system
functions. (2) The steering committee supervised
and evaluated the concepts and project progress.

Lead Users. The faculties of the university
differ not only regarding their research but also
in terms of financial instruments and accounting
modalities needed. The resulting diverse func-
tionalities require a broad spectrum of lead users
covering different perspectives and needs. There-
fore, the circle of users consists of representatives
from the eight faculties for whom MaCoCo is
designed. Further, small to medium-sized chairs
and institutes as well as deaneries are selected.
Taking the strategic and operational planning as
well as the administrative level into account entails
the inclusion of people occupying administrative,
secretary positions or those in leadership, such as
professors or deans. In order to efficiently involve
users in the development process, we kept the
group size small. To ensure that we had involved
a broad range of perspectives, we made sure that

http://dx.doi.org/10.18417/emisa.19.3
https://www.destatis.de/DE/Presse/Pressemitteilungen/2021/09/PD21_418_213.html
https://www.destatis.de/DE/Presse/Pressemitteilungen/2021/09/PD21_418_213.html


Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3
Modeling for financial and staff management (Special Issue on Models-at-Work) 5

users were spread across different chairs and insti-
tutes of varying sizes, faculties, and roles at the
institutes.

Moreover, this group can change over the years:
When functionalities are completed and new func-
tionalities are developed, new perspectives are
needed, for which we attract other roles and chairs,
e. g., not only small and medium-sized chairs but
also large ones.

Additionally, as MaCoCo is being developed
in-house and the created application is also used
by the developing chairs, feedback from our own
colleagues is also constantly flowing in.

Steering Committee. The MaCoCo steering
committee is commissioned to monitor the project
from diverse perspectives. Each member is en-
titled to represent values, rules or interests of
a group of people. From a financial point of
view, the project is supervised by the universities
chancellor’s representative and the head of the
Department for finances. The values and rights of
the employees are protected by the two personnel
councils and the head of the Department for per-
sonnel. In cooperation with the data protection
officer the collected personnel data is reviewed in
regard to data security and its permitted analysis
and display methods. Further, the information col-
lected by the system during the usage of MaCoCo
should not allow tracking activities of a certain
user or to evaluate his or her work performance.
Considering the fact that MaCoCo is hosted on
the server infrastructure of the IT Center and has
an aspired interface to the ERP system SAP used
by the university administration both, the ITC
and SARA project (internal project, which adapts
SAP for the university), are represented in the
steering committee. Additionally, the head of the
department "Organisation and IT", the managing
director and dean from the faculty for mathemat-
ics, physics, computer science and natural science,
a representative and a professor from different
computer science chairs are part of the steering
committee. To advocate the interests of the lead
users, two permanent representatives of the circle
of lead users are invited to join the semiannual
meetings of the steering committee.

3.2 The Software Engineering Process
Within MaCoCo (Gerasimov et al. 2020a), we fol-
low an agile, model-driven software engineering
process with an intensive, iterative requirements
elicitation process. We have adapted the Scrum
(Schwaber 1997) method, an agile, lightweight,
and iterative framework to manage product devel-
opment (Figure 1).

RELEASE

New

Release

Yes

Features

tests & 

integrations

AGILE
DEVELOPMENT

Continuous visibility 

and review by 

developers, 

stakeholders

Initiate Project

Define

Requirements

Product

Figure 1: Agile software development method

In an initial workshop with all lead users, we
collected, evaluated, discussed, clustered, and
prioritized general problems, requirements, and
functions. We have focused on financial and staff
management as they form the basic features of the
system. The compendium of these requirements
for the product is represented in the product back-
log. Before each Scrum iteration, the team selects
a manageable portion of the product backlog and
adds it to the sprint backlog. This portion is in-
tended to be completed within one iteration cycle
(sprint).

After selection, we added details to the require-
ments for an upcoming sprint and designed the
corresponding parts of the system. This included
detailed use cases with user interface prototypes
and the relevant data structure within the first years
of the project. Single users were interviewed to dis-
cuss our concepts for user interfaces and how they
could interact with the system. Hereafter, these
concepts were discussed, validated, and adapted
with other users. More complex functionalities
needed a longer preparation time, which resulted
in a process where the preparation of the function-
ality details was finalized in one to two sprints

http://dx.doi.org/10.18417/emisa.19.3


International Journal of Conceptual Modeling
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3

6 Arkadii Gerasimov, Peter Letmathe, Judith Michael, Lukas Netz, Bernhard Rumpe

after which their implementation was started in
the following sprints.

Once the concepts were stable enough, they
were iteratively implemented. This includes, mod-
eling the data structure and user interfaces (do-
main models) as well as handwritten additions,
or more rarely, additions or adaptations of the
generator. We are testing the developed product
changes incrementally within the implementation
and perform manual user interface tests before
showing the product to users. The user feedback
is collected and a version of the product is either
released or kept unpublished for further develop-
ment. When the target quality is reached, the new
functionality can be released. If not, we collect
requested changes and create a plan to incorporate
the adaptations into our software. The next itera-
tion of the agile process starts by implementing
planned changes in multiple development cycles.

Within the development team, we are organiz-
ing bi-weekly meetings to discuss current issues of
the ongoing sprint and to keep track of the overall
progress. Code reviews, test-driven development,
automated test runs, and quality assessment met-
rics support the development team.

To assess the long-term needs which go be-
yond the basic functionalities and to develop the
product vision, an exploratory study utilizing ex-
pert interviews has been conducted. In this study
mainly heads of institutes, professors and deans
have been questioned regarding project manage-
ment and personnel planning. Gaps in the system
were identified and discussed, alongside the ex-
tent to which the existing SAP system supports
the required accounting and planning routines.
The participants have expressed wishes for func-
tionalities like importing data, connection to the
central SAP system, and time sheets for project
management functionalities. For some specific
features, we conducted surveys among key users
and held several workshops. Moreover, we orga-
nize monthly user meet-ups to get direct feedback.

4 Models and Languages of the
Engineering Process

MDSE is a development approach, which uses
models as primary artifacts, from which software
is produced using a code generator or other tool-
ing (Hölldobler et al. 2019). The models used in
MDSE can be defined in DSLs. Being primary
development artifacts, they are treated the same
way as code written in a general-purpose language:
They are handled using the same IDE as the ap-
plication code, included in version control, etc.
DSLs enable the involvement of domain experts
with little experience in the software development
process, as the models provide a domain-specific
abstracted view on parts of the application (Hesse
and Mayr 2008; Stachowiak 1973). The mod-
els are not intended to be defined by the user
of the application, but to assist the developer in
implementing the software.

The models are created during the analysis and
design phases or throughout the development of
the application. On basis of these models, the
complete software is planned, analyzed, and devel-
oped. They are used as a specification or guideline
for a developer. Additionally, the models are used
as documentation for parts of a system, e. g., its be-
havior and data structure, as they form an abstract
description of the intended design. A detailed
breakdown between generated and handwritten
code can be found in Table 1.

4.1 Domain-Specific Languages
A multitude of different DSLs are used to create the
MaCoCo application. They are used to describe
the exact domain and ease the communication
between a stakeholder and a developer (Domain-
specific conceptual modeling: Concepts, methods
and tools 2016; Völter et al. 2013). DSLs can be
developed to describe a generic domain, such as
data structures in general, or a very specific aspect
of an application like permission management.
Defining new DSLs is a challenging and time-
consuming task (Frank 2013, Karsai et al. 2009,
Michael and Mayr 2015), therefore DSLs should
be reused if possible. To tackle the enhanced

http://dx.doi.org/10.18417/emisa.19.3


Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3
Modeling for financial and staff management (Special Issue on Models-at-Work) 7

tooling challenge and to ensure DSL interoper-
ability (France and Rumpe 2007), we rely on a
single language workbench to either define new
or reuse existing DSLs. In the following, we intro-
duce the used languages: CD4A for defining data
structures, OCL/P for defining data input valida-
tion, and GUI-DSL for defining Graphical User
Interfaces (GUIs), where each language is defined
using the MontiCore language workbench.

CD4A

1 package de.macoco;
2 classdiagram Example {
3 class Person {
4 String name;
5 int age;
6 }
7 }

Listing 1: Example for CD4A representing class
Person with attributes name and age.

CD4A (Class Diagram for Analysis) is a tex-
tual DSL, which enables the definition of UML
class diagrams intended for analyses. They are
based on UML class diagram (Object Manage-
ment Group 2017) features and have a Java-like
syntax (Rumpe 2016). The DSL supports all com-
mon elements of UML class diagrams such as
enums, interfaces uni- or bidirectional associa-
tions with cardinalities and inheritance. We are
using CD4A models to define the domain-specific
data structure of the MaCoCo application.

Listing 1 shows the structure of the CD4A
language. Line 1 specifies the package name and
is similarly handled to the package structure in
Java. The keyword classdiagram denotes the
start, and the name has to match the filename. A
class diagram can have multiple classes, interfaces,
associations, etc. One such example definition
is the Person class in line 3. The class has
2 attributes name (4) and age (5). Visibility
modifiers such as public can be omitted and a
model can be left underspecified. The generator
then decides how to handle such cases.

OCL/P (Object Constraint Language for
Programming) is a Java-like adaption of the
OMG OCL language (Object Management Group

2014). The goal of OCL/P is to provide addi-
tional restrictions for other models by defining
constraints (Rumpe 2016). Within MaCoCo, we
use OCL/P to add constraints to classes and at-
tributes in CD4A models. Listing 2 is an example
of an OCL/P model which adds a constraint to the
CD4A model in Listing 1.

OCL/P..

1 ocl ExampleConstraints {
2 context Person inv isAgeNotNegative:
3 age >= 0;
4 }

Listing 2: Example for an OCL/P model based on the
class diagram in Listing 1

Each invariant can have a name
(isAgeNotNegative line 1) and a con-
text in which it operates. In combination with the
CD4A language, it is possible to restrict attributes
of classes in a given model. Line 3 references
the age attribute of the Person class. In the
example, the age is restricted to non-negative.
OCL/P automatically checks for type properties
and valid expressions.

GUI-DSL (Graphical User Interface
Domain-Specific Language) is a domain-specific
language for describing graphical user interfaces
(Gerasimov et al. 2020b, 2021) in a textual form.
GUI-DSL models are used in the MaCoCo project
to define web pages and their connection to the
underlying data structure. A basic example of
a textual model and its corresponding graphical
representation within the generated application
can be found in Fig. 2.

A GUI-DSL model consists of a web page
signature and a body. In Fig. 2, a web page
named Staff is declared using the keyword
webpage (line 1), the only parameter included is
staff information, which is further used as input for
a data table. The parameter itself has an implicit
connection to the data structure. The connection is
defined using additional class diagrams, in which
user data interface classes are created. These
can reference domain classes and may contain
additional attributes, whose values are loaded
using custom hand-written logic.

http://dx.doi.org/10.18417/emisa.19.3


International Journal of Conceptual Modeling
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3

8 Arkadii Gerasimov, Peter Letmathe, Judith Michael, Lukas Netz, Bernhard Rumpe

GuiDSL

1 webpage Staff(all StaffOverview
staffList){

2 card {
3 head {
4 label "Staff Overview"
5 }
6 body {
7 datatable {
8 rows <staffList {
9 column "Name", name

10 column "Birthday", birthday
11 }}}}}

Figure 2: Example GUI model

A major part of a GUIs definition is a descrip-
tion of its layout. The example demonstrates the
usage of the built-in card UI component (line 2)
with a header showing the "Staff Overview" title
(lines 3-5), and a body displaying a table filled
with staff information (lines 6-11). Each graphical
component is defined in the language including its
configuration, e. g., the text of the label, columns
of a table, or if a table is editable. In the exam-
ple, each column (lines 9-10) has a name, which
is displayed in the table header, and an attribute
name, whose value is displayed in each row.

Events and their handlers are either completely
generated or the functionality is implemented man-
ually. The generator produces code describing
common functionalities, such as navigation, copy-
ing content into the clipboard, as well as default
CRUD operations. In more complex cases where
provided default functionality does not satisfy
requirements, it can be replaced by handwritten
extensions.

4.2 Generator
The DSLs (CD4A, OCL/P, GUI-DSL) are used
to define the model input for the generator (see

Fig. 3)(Adam et al. 2018). Models are parsed
by a DSL-specific parser that is generated by
MontiCore (Hölldobler et al. 2021). The parser
converts the textual models into Abstract Syntax
Trees (ASTs). This abstract representation can
be transformed and extended. In the case of the
domain models, each class in the model is trans-
formed into multiple Java classes, (e. g., object
builder), and during transformation the OCL AST
is used as an additional input to add data valida-
tion logic into the generated classes. Once fully
transformed, the ASTs are passed on to a template
engine for each AST type. Freemarker templates
(Freemarker 2022) are used to create target code
in the specified programming language. The data
structure is generated in Java for the back end and
in TypeScript for the front end. The user inter-
faces are generated as a combination of HTML
and TypeScript code. Common code that is inde-
pendent of the domain models, i. e. the Run Time
Environment (RTE) is provided by the framework
and not generated each time.

5 Domain-Specific Models

The data structure of the MaCoCo project (Gerasi-
mov et al. 2022)4 is the primary artifact for the
generative MDSE approach. It is extended for
every use case and contains more than 100 classes
at the time of writing.

In the following, we will look at parts of the data
structure and discuss their effect on the application.
The model consists of four sub-domains.

• Financial Management: Classes describing
the financial management of a chair including
accounts, and their budgets and bookings. This
includes public budgets and third-party funding.

• Staff Management: Classes used for managing
the staff such as persons, their contracts, and
salary bookings.

4 The class diagram of the German implementation of Ma-
CoCo is available as Zenodo artifact.

http://dx.doi.org/10.18417/emisa.19.3


Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3
Modeling for financial and staff management (Special Issue on Models-at-Work) 9

Figure 3: Simplified MontiGem Generator Architecture. Showing the transformation of textual models into abstract
representation (AST) that is further transformed and used as input for different Template Engines, that
convert the AST into source code.

• Project Management: Classes describing
projects, work packages, what persons are as-
signed to them, and how much effort they spent
on projects.

• Application Settings: Classes describing the
individual user interface configurations and
system-wide settings.

5.1 Financial Management
The financial data structure of the MaCoCo
project (Fig. 4) is organized around the
FinanceAccount class (Fig. 4a), where every
account can have a Budget, which in turn can
have multiple sub-budgets. Quite early in the de-
velopment process, the ability to attach Notes to
accounts was requested, as chairs need the ability
to attach unstructured information in a lightweight
manner. At the same time, the account was further
specified and subsequently divided into three
subclasses that extend ExtendedAccount.
FinanceAccount defines basic account infor-
mation, whereas ExtendedAccount contains
further details. The inheriting three classes
IndustyProject, ThirdPartyFunds, and
Other implement the primary use cases for
accounts that appear in the financial management
of institutes. Finally, classes for two additional
purposes were added: Synchronization with SAP
and communication between faculty and institute.
Accounts that are imported from SAP are stored

in a separate subclass from FinanceAccount:
ExternalAccount to prevent overwriting of
existing information in the first step, but allow for
comparison in the second step.

The last account type that was added to Ma-
CoCo is FacultyAccount. The corresponding
use case refers to the requirement that university
institutes have to spend the money they receive on
a specific account type until the end of a year. To
ensure this, the deanery of one faculty observes
these accounts and reminds the institutes to do so
in a self-defined communication process which
we had to implement within the application. The
class contains additional information to manage
this communication between an institute and the
deanery. A FacultyAccount is linked to an
institute to provide context to faculty users, as
one faculty typically communicates with multiple
institutes.
Within the MaCoCo project all financial flows
are described with booking objects. The data
structure around the Booking class is shown
in Fig. 4b. Similar to the FinanceAccount
class a booking is defined by a lightweight abstract
class BookingEntry which is extended by the
Booking class. Every booking has to be part of
either a budget or a sub-budget, which is linked to
a class (connecting the Class Diagram in Fig. 4a
with Fig. 4b). Multiple extensions of the basic
BookingEntry class are needed to meet the

http://dx.doi.org/10.18417/emisa.19.3


International Journal of Conceptual Modeling
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3

10 Arkadii Gerasimov, Peter Letmathe, Judith Michael, Lukas Netz, Bernhard Rumpe

(a) Account-Classes

(b) Booking-Classes

Figure 4: Class Diagram for Finances

different requirements of the application. In or-
der to facilitate account synchronization between
local accounts and SAP down to a booking level,
the Booking class was extended to store addi-
tional information for the synchronization process.
Bookings and accounts that are received from an
external source and matched to internal data are
tracked within the Group class.

The financial data structure is linked to the other
sub-domains of the MaCoCo project using several
classes: An account can be directly linked to a
Project Sect. 5.3, enabling referencing from
the project to corresponding finances. In order
to keep object loading efficient, the association is
only unidirectional from a project to an account,
as in most use cases the account is relevant in the
context of a project, but not otherwise.

The financial data structure is also linked to the
staff management Sect. 5.2 via the account and
budgets. An account can be defined as a source
of financing for a JobPosition. Similarly, the
budgeting of a JobAllocation is linked to a
budget, providing a target for the assignment of
staff bookings.

5.2 Staff Management
The infrastructure for staff management (Fig. 5) is
centralized around the Person class describing
a staff member. The essential information about
staff members includes their personal information,
such as name and birthday, as well as employment
type and further details such as specific employ-
ment forms, contracts, and their relation to the
financial counterpart.

The EmploymentType class is an intermedi-
ate structure that indicates the current employment
status, showing that an employee is, e. g., a sci-
entific staff member or a research assistant. The
EmploymentForm contains more detailed infor-
mation about concrete employment including the
time period when a staff member has a specific
employment status, e. g., a research assistant from
2021-01-01 to 2021-31-12, their pay level during
that time period, and their salary.

An actual physical contract is reflected in the
system via the Contract class. A contract is

http://dx.doi.org/10.18417/emisa.19.3


Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3
Modeling for financial and staff management (Special Issue on Models-at-Work) 11

Figure 5: Class Diagram for Staff

closely related to an employment form. It is active
during a certain period of time, where the time
interval needs to satisfy constraints set by an em-
ployment form. A contract serves as a connection
point to the financial sub-domain since it is used to
define the source of the employee’s salary. There
are several types of such connections, that are
defined via the CostCenter class. The finances
can be allocated in different forms, for example:
by automatic creation of bookings, by specifying
a budget for withdrawals, or by referencing the
employee’s post via the JobPosition class.

The described structure covers the core con-
cepts which were used in staff management for
a long time. With the growth of the user base
of the MaCoCo project, new requirements have
shaped new areas of resource management and
new connections towards existing areas. The staff
management has become more complex, as a
Person class can now become associated with

the MacocoUser class, indicating a connection
between the actual user of the system and a staff
member whose data is managed in the system.
This change has a notable presence in the data ac-
cess management infrastructure, as personal data
has become accessible to the corresponding user
regardless of the access rights granted to that user.

The need for additional functionalities as
a result of growing user demands led to fur-
ther expansion of the staff management in-
frastructure. Classes like ParentalLeave,
SpecialLeave, and Absence were added
to describe different types of leaves such as va-
cations and sick leaves taken by a person. The
total annual amount of vacation days allocated for
a person is handled in the AnnualLeave class.
This information provides the data basis to handle,
e. g., vacation application processes, but can also
be included in timesheets for third-party funded
projects.

New information is continuously added to the
system. The most recent changes include the addi-
tion of SecondaryEmployment and Bonus
classes handling supplementary income sources
and salary bonuses.

5.3 Project Management
In the context of a university chair, a project de-
scribes an individual or collaborative undertaking
that is carefully planned to achieve a particular
(research) aim. Therefore, the Project class
can be linked to multiple Persons that work
on several Workpackages. Depending on the
funding of the project, a Person may be re-
quired to keep a timesheet, that contains several
TimeSheetEntries, defining each worked
time interval. Each time interval is linked to a
Workpackage, providing a transparent overview
of who worked when on what part of which project.
The note feature used on the accounts in Fig. 4a
was also requested for projects, resulting in the
association from Project to TextBlock. Fi-
nances are always an important aspect of any
project, therefore an account can be linked to any
project, providing access to financial information
in budgets and bookings related to this project.

http://dx.doi.org/10.18417/emisa.19.3


International Journal of Conceptual Modeling
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3

12 Arkadii Gerasimov, Peter Letmathe, Judith Michael, Lukas Netz, Bernhard Rumpe

Figure 6: Class Diagram for Project management

5.4 Application Settings
With the growing complexity of the graphical in-
terface, persisting user configuration has become a
necessity. Each user has their own preferences for
the information they would like to view, this has
triggered a few changes in the project. The tables
have become more configurable, e. g., features
like sorting, filtering, and grouping of table en-
tries were introduced. Specific view parts, called
cards, were adapted to hide information on button
clicks. Such configurations were required to be
persistent between login sessions, which resulted
in the creation of the classes CardSettings
and TableSettings within the domain model
Fig. 7.

The settings are saved on a per user basis, hence
the association to a MacocoUser class. The set-
tings also contain information about the location
of a specific table or card, such as the page where
the configuration is set. The structure of persisted
settings information was initially viewed to be
simple as it does not require any processing along-
side the business logic of the project. This is why
it was decided to save each setting as a simple
JSON string. While this approach works well

Figure 7: Class Diagram for Settings

for very basic configurations, such as cards being
expanded or not, more complex table settings have
become less robust to change with the growth of
their structure. When we change a table, e. g.,
the addition, removal, or modification of a table
column, the saved data becomes inconsistent with
the new settings structure and requires additional
effort in the migration of JSON strings, when
compared to more fine-grained object-to-object re-
lations. Moreover, new functionality continues to
add complexity to our user interface configuration,
for example, the printing of project and personal
information has been implemented and as a result,
we had to expand the setting structures to include
structures PrintSettingsForProject and
PrintSettingsForPerson.

5.5 Other Domain-Specific Models
Class diagrams have proven to be a great tool for
describing a data structure and are heavily utilized
in the project. However, other aspects such as
complex application logic or user interface are not
covered as well using the class diagrams and are
tackled using different tools.

GUI-DSL. Graphical user interfaces are one
of the most important aspects of our application
and require efficient handling from developers. In
the MaCoCo project, GUI models are utilized to
describe a large part of web pages covering all
application domains presented in this work and
more Fig. 8. The connection to the domains is
apparent: central entities of each domain, such as
account and project, spawn a multitude of views

http://dx.doi.org/10.18417/emisa.19.3


Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3
Modeling for financial and staff management (Special Issue on Models-at-Work) 13

that divide the management of the domain into
smaller activities. For example, staff management
is broken down into several sections of user in-
terfaces, each tackling different aspects, such as
browsing and updating employee information, han-
dling financial aspects, and reporting workload.
However, specific classes and interfaces of the
data structure cannot be mapped directly onto the
user interface, since each view combines different
interrelated information.

Functionalities that are loosely dependent on a
domain, such as create, read, update, and delete
(CRUD) operations, have a generated default im-
plementation. They are, however, sometimes ex-
tended using handwritten code to handle specifics
of a domain, for example, extending a contract
leads to the creation of additional bookings. In
other cases, functionality is moved to a library,
e. g., the filtering widget which handles both com-
mon queries and domain-specific parts had been
refactored to a domain-independent library com-
ponent. The domain-specific parts of the widget
remain in the model.

OCL/P. The MaCoCo project is heavily ori-
ented towards data management and consequently
has to provide a validation mechanism for the data.
Whenever a user adds or updates information in
the system, it needs to be checked against legal
and organizational standards, which require the
corresponding implementation in the code. For
this purpose, OCL/P models are utilized. They
supplement the data structure with additional in-
formation. The context of an OCL/P invariant is
always a domain class. The example in Fig. 9
shows how a simple OCL/P constraint is defined
for a class Person, and how it affects the user
interface when an incorrect value is entered in the
field corresponding to the age attribute. Such
OCL/P statements provide a simple way of con-
trolling user input in MaCoCo. It ensures that
a restriction is obeyed in different parts of the
project since the validation procedure is automati-
cally integrated by the generator both in the user
interface and the application logic. Since OCL/P
is used for input validation, the statements are
paired with corresponding error messages.

6 Results
The generated MaCoCo source code (up to March
2022) is based on 73 domain classes that are
defined in the class diagram. Further classes are
defined in 62 view models. The application has
74 pages that are based on the same amount of
GUI models and less than 10 further handwritten
pages.

The generator produces 500.573 Line of Code
(LOC) that are extended with a further 170.505
handwritten LOC (Table 1). MaCoCo uses the
MontiCore TOP Mechanism (Grönniger et al.
2006; Hölldobler and Rumpe 2017), which utilizes
inheritance to override or extend the generated
code. This keeps generated and handwritten codes
separated while integrating them into the product.
The TOP Mechanism allows for an iterative de-
velopment process, as changes or additions are
still in place during continuous regeneration. The
greatest amount of code is written and generated
in Java, however, for the HTML code, a greater
ratio is generated. This can be explained by the
fact that the HTML code used is rather static and
difficult to extend. MaCoCo contains 7435 LOC
of handwritten SCSS code in addition to inline
CSS included in HTML LOC.

gen hw
∑

ratio
Java 325.709 102.442 428.151 76.07%
TS 140.525 62.335 202.860 69.27%
HTML 34.339 5.728 40.067 85.70%
Models 0 14.251 14.251 0%
Total 500.573 184.756 685.329 74.59%

Table 1: LOC of the MaCoCo platform
(’gen’ = generated, ’hw’ = handwritten)

We can define the user interfaces via models
very precisely and also extend the generator to
meet our requirements. However, there is still
30.73% handwritten code to adjust the generated
TypeScript code. The generator cannot provide
generic solutions for every specific use case that
require a high degree of optimization to satisfy the
high standards set by the users. Thus, every page
consists of generated base code that is extended
and optimized with handwritten code.

http://dx.doi.org/10.18417/emisa.19.3


International Journal of Conceptual Modeling
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3

14 Arkadii Gerasimov, Peter Letmathe, Judith Michael, Lukas Netz, Bernhard Rumpe

Main 
Navigation Dashboard

Finance Account

Payments

Bookings

CallForFunds

Invoices

ResourceAllocations

JobAssignments

Details

Bookings

CallForFunds

ResourceAllocation

Alignment

SAPData

JustificationFaculty

Overview

SurplusSkimming

Justification

Dashboard

Reasoning

Staff

Employees

Positions

Salary

Financing

CSVExport

EmployeeOverw

PostitionsOverw

LOUEmplOverw

CostCenterPlan

ContractsPlan

FinancialView

PositionsOverw

LOUEmplOverw

Overview

Third-party

Organization

Teaching

Projects

EffortPlanning
TimeSheet

EmployeeOverw

StudAssistant

TimeSheets

Absence

WorkTimeRecords

Absence

Import

ImportHistory

NetworkImport

FileImport

Settings

MyInstitute

MyProfile

UserManagement

Acces&Permissions

Privacy

ForgotPWD

Login

NewPWD

Dashboard

FinanceForm

EmployeeForm

EmplDashboard

Invoices

EmployeeDetails

Financing

Bookings

AbsenceCalender

CoreData

ProjectPosition

PlannedEffort

WorkPackages

TimeSheets

Billing
404Summary

Printing

StaffingPlan

Effort

Granting

Requesting

Staff Management Project Managemen Finance Management Settings
Color Coding:

Figure 8: Currently Generated Pages for the Different Segments in MaCoCo.

Fig. 10 shows a screenshot of the current state
of MaCoCo (Version 2.7.3_20220310). The page
is used to manage staff planning. In this view, an
employee (A) with the name abbreviation ’BEABI’
is mapped to a cost center (B) (in this case a global
budget). The dates from the scope of employment
are displayed in (C). Next to it, we can inspect
the planned person-month (D) for the upcoming
years. In order to improve the workflow, filtering
options (E) were added that allow the user to

OCL/P

1 ocl ExampleConstraints {
2 context Person inv isAgeNotNegative:
3 age >= 0;
4 }

Figure 9: Example OCL/P Model for age validation

filter results by employee name, cost center, and
type of employment. Additionally, the viewed
time horizon can be adjusted (F). Finally, the
table provides the same generic settings (G), as
any other table in MaCoCo, allowing the user to
group, sort, hide and rearrange columns and also
export the contents.

At the time of writing, MaCoCo was provided
to 188 chairs and institutes of RWTH Aachen
university, making up a third of all available pro-
fessorships and serving 1403 users. On an average
workday, 157 users login to the web application.
In its current state, MaCoCo is primarily designed
to support the office management in their account-
ing activities, however, the testing process for
MaCoCo timesheet capabilities is still ongoing.
Once the feature is rolled out, the number of daily
users is expected to increase dramatically, as not
only administrative staff would use the platform,
but also student assistants and doctoral candidates.

http://dx.doi.org/10.18417/emisa.19.3


Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3
Modeling for financial and staff management (Special Issue on Models-at-Work) 15

Figure 10: Screenshot of the page for the staff planning (Fig. 8, bottom right)

7 Discussion and Lessons Learned

Using a model-driven approach within a project
brings advantages as well as disadvantages to the
development process (Akdur et al. 2018). In the
following, we discuss the most important lessons
learned from developing full-size real-world ap-
plications and the return of modeling effort for
the developers and end users. For lessons learned
about the parallel development of an application
and the used generator see (Adam et al. 2020).

Retrofitting generative aspects leads to con-
stant generator refinement and occasional new
DSL engineering. The MaCoCo project started
as a greenfield approach with a completely hand-
written prototype. Within the following months,
we iteratively replaced parts of the application
with generated code (Drave et al. 2021). When
incorporating generative methods, the develop-
ers are free to choose what parts to replace with
generated code. With a growing code base, we
recognized new patterns that led to a systematical
replacement of handwritten code via generated
parts within multiple iterations. This also includes

the creation of new DSLs and corresponding gen-
erators. For example, generic structures emerged
in the user interface implementation and valida-
tion logic, which could not be easily described
using class diagrams and were therefore tackled
with models of new languages instead. See (Drave
et al. 2021) for more details on the retrofitting
process.

Using a model-driven approach reduces the
problem implementation gap and enables quick
adaptation of generated parts for the applica-
tion. A major challenge in software development
is understanding requirements and mapping them
to the implementation (France and Rumpe 2007).
Although the developer is an expert in computer
science, he might not have any expertise in the
domain the application is used for, and still has
to define how the system is to be used. Defining
models alleviates this problem by (a) providing
a single point of truth and a basis for communi-
cation between domain experts and developers.
While models are a basis for communication be-
tween domain experts and developers, this does
not mean that they must be easily understood

http://dx.doi.org/10.18417/emisa.19.3


International Journal of Conceptual Modeling
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3

16 Arkadii Gerasimov, Peter Letmathe, Judith Michael, Lukas Netz, Bernhard Rumpe

by domain users on their own. Our experiences
have shown that the textual CD4A models are nor-
mally understandable by experts in the business
management domain after a short time. How-
ever, software developers are needed for fur-
ther explanations and especially to define more
complex additions to textual models. The sec-
ond aspect where defining models alleviates the
problem-implementation gap is by (b) enabling
quick adaptations for changes that occur in the
requirements if they are covered within the mod-
els, e. g., adding attributes to a class, or defining
associations between sub-domains. If changes
are related to the handwritten code, e. g., a new
calculation in the business logic, these changes
require as much effort as in non-generative
project implementations.

The learning curve for a MDSE project is
steep but can be mitigated via practical train-
ing. A system that is implemented using a model-
driven approach utilizes one or several modeling
languages, introducing additional effort for new
employees trying to come into the project. In
the university context, frequent rotation in a de-
velopment team is not uncommon, as students
and Ph.D. candidates are only working for a lim-
ited time until they graduate. MaCoCo being a
university project and having its implementation
based on multiple modeling languages has certain
drawbacks and benefits. Student assistants that
have to get started with the platform need to learn
an unfamiliar modeling language and the concept
of model-driven development. However, a prac-
tical environment helps new employees to adapt
quickly (Ciccozzi et al. 2018). Once they get
familiar with the system, they have little problems
extending the implementation with their own code,
as they can simply extend the models. As most of
the code is generated, the few extension points for
handwritten code are easily located. Moreover, we
engage new developers to review other handwrit-
ten implementations to improve their own code
design.

A generative approach enables fast integra-
tions of system-wide adaptations. The source
code in MaCoCo can be divided into two groups:

Domain dependent and generic code. Generic
code, such as utility classes is easily adapted and
affects all generated code that relies on it. As the
domain-dependent code is generated, new solu-
tions and optimizations can be integrated through-
out the entire code base with little or moderate
effort. In several stages of the project, generic
changes were added to the generated code, e. g.,
changes to the caching, security, and access control
on domain objects. These changes were integrated
into the generator and are therefore generated not
only in the existing target code but also for any
future feature implementations.

Generating security and access control en-
sures consistency in their implementation. Ac-
cess control should be applied with a holistic
approach to the system in order to minimize gaps
and inconsistencies that can lead to unwanted ac-
cess to restricted data (Clavel et al. 2008). We
use a generator to apply permission checks and to
control access to every object in the database. The
ability to see both the data structure and the rules
for data access that a model provides enables a
clear specification with a single point of reference
on how security and privacy concepts are realized
in the application.

A model-driven approach provides testing
support. Having a rapidly growing system, it
is important to test all functionalities thoroughly.
The effort spent towards testing increases as the
business logic and relations between different
parts of the application becomes more complex.
Considering the fact that major parts of the system
are described using models, the tests can also be
derived using the same models (Mussa et al. 2009).
A good example in the MaCoCo case is the usage
of OCL/P models for validation of user input.
The validation logic is mostly generated from the
OCL/P constraints and in order to test it, one could
potentially derive test data from the constraints,
as they effectively define different cases, in which
information can be considered valid or invalid
(Sartaj et al. 2019). For example, if a person’s age
has to be non-negative, one would use a negative,
positive, and zero value as test cases, which can be
inferred from a corresponding OCL/P constraint.

http://dx.doi.org/10.18417/emisa.19.3


Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3
Modeling for financial and staff management (Special Issue on Models-at-Work) 17

Since the models define a basis for most of the
functionalities of the system, additional utilities
can be generated for testing purposes, such as stubs
and mocks. It is fairly simple to produce a husk
of an actual system component if the component
is to be generated anyway. For example, GUI
models can be used to create mock-up web pages
to simplify testing the interaction between a client
and a server. By modeling the scenarios further,
test cases can be generated completely (Bünder
and Kuchen 2019).

Another interesting aspect is the automatic cre-
ation of tests, that fail unless implemented by a
developer. When used in a context of continu-
ous integration, such generated tests support
ensuring that no functionality inadvertently or
purposefully remains untested for a long time.
Such an approach requires careful planning to
avoid unnecessary alarms, which can occur if a
test is generated for a trivial function not requiring
any tests.

A model-driven approach provides migra-
tion support. During the development of an
information system, changes in the data structure
are unavoidable and when combined with an agile
approach, which implies release cycles, the pro-
cess of data migration becomes necessary (Brodie
and Stonebraker 1995; Hick and Hainaut 2003).
However, if the data structure is completely mod-
eled, the changes in the models can be observed
to assist with the migration process. Furthermore,
when changes in the model can be derived, the
generation of a migration script becomes possi-
ble. Our practical experience has shown that
model-driven approaches can support this, but
should not be used to fully automate data mi-
gration. In our opinion, it is too risky to use
migration scripts on data of a running system
without additional manual checks. The task is
difficult to automate completely, as some changes
depend on the semantic context and should be
handled differently. When adding new informa-
tion one might want to choose a specific default
value. Taking the MaCoCo contract class as an
example, if it receives a new flag indicating its
status as officially confirmed or only planned, then

an opposing default value can be implemented,
such as: true if the flag state is confirmed
and false if its state is planned. Either way,
tracking the changes in the data structure is easier
when a model-driven approach is involved and
new possibilities for simplifying the migration
process emerge.

Using a code generator allows development
effort to be shifted, e. g., from GUI details to more
complex business logic. The longer software is
maintained, the greater its source code will get
with each additional use case that needs to be
implemented. In the case of the data-centric
MaCoCo application, further extensions to the
graphical user interface are developed to satisfy
user demands for new features. With the help
of the generator, these requests are processed
systematically by adding new parts to the GUI
and domain models. This saves us time, which
we use for the implementation of more complex
business logic or optimizations in the persistence
layer. Another benefit is that the developer does
not need to know the exact structure of added code,
as it is provided by the generator.

The refactoring process changes when using
code generation. Small changes to the generator
can be used to systematically update the applica-
tion, as the implementation is largely generated
and, thus, a result of the generator’s configura-
tion. Changing the algorithm on how specific data
is cached in an application as large as MaCoCo
would require changing hundreds of classes by
hand. As each class is different, this would be
a time-consuming refactoring task. By adapting
the template used to create the classes, a change
has to be performed only at a single point in the
generator and will cascade to the entire applica-
tion. However, if a change involves restructuring
interfaces, the refactoring has to be done manually
and also includes the additional effort of adjusting
the generator’s implementation.

Integrating optimizations in the generated
code is difficult. Models are an abstraction of
entities that they represent. Thus the generator
developer has to make assumptions about what
implementations are needed when configuring

http://dx.doi.org/10.18417/emisa.19.3


International Journal of Conceptual Modeling
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3

18 Arkadii Gerasimov, Peter Letmathe, Judith Michael, Lukas Netz, Bernhard Rumpe

the generator to synthesize the application code.
The larger the targeted implementation gets, the
harder it becomes to configure the generator to
provide efficient code for all use cases. In our
project the generator was configured to handle
small to medium size institutes, but not large
ones. Adapting the application to handle new
requirements triggered either an adaptation of
the generator or an extensive adaptation of the
handwritten code and run-time environment. If
the general requirements of the application change,
e. g., a dramatic increase in the size of the user
count or database, then the application is not only
limited by its own architecture, but also by the
architecture of the generator, that was configured
for the initial requirements.

Models provide a good system overview and
help to avoid redundancy in the implemen-
tation. The data structure in a form of models
provides a very good overview of a system (Torchi-
ano et al. 2013). Despite the considerable growth
of the MaCoCo project over the course of several
years, any considerable changes can still be easily
tracked during the re-designing process. For ex-
ample, when the project management domain was
introduced and integrated with a financial block,
some new structures were added. However, the
requirements for both domains were overlapping
and could potentially become a source of redun-
dant specification in the system, such as attributes
holding duplicated information in different objects.
Such problems were successfully avoided since
models were used during the development provid-
ing a comprehensible summary of changes and
being the primary artifact for the implementation
of features.

Small issues in the data structure may lead
to significant problems in a generated system.
Using the data structure model simplifies certain
development activities, such as data migration.
This holds true so long as the data structure is fine-
grained, i. e. it is broken down into simpler, more
manageable parts. In MaCoCo, the user-specific
table settings consisting of several properties, such
as the number of entries displayed and column
widths, were observed as a whole, which led

to spending additional effort on data migration
when the default setup of any table was changed
between product releases. Even when a piece
of data has a simple structure, tracking down
and handling changes within the data introduces
considerable overhead if one cannot view and
manage its fragments separately.

8 Conclusion
We have shown an example of a model-driven
approach that is used to continuously develop and
maintain a full-size real-world application. We
apply it at RWTH Aachen University to create
an enterprise information system for the financial,
project, and staff management of chairs and in-
stitutes. The benefits of using such an approach
greatly exceed the drawbacks of having this layer
of abstraction. We intend to further incorporate
generative methods to systematically replace hand-
written code with generated parts, especially for
testing the application.

References
Akdur D., Garousi V., Demirors O. (2018) A
survey on modeling and model-driven engineering
practices in the embedded software industry. In:
Journal of Systems Architecture 91
Ambrosy R., Heise S., Kirchhoff-Kestel S., Müller-
Böling D. (1997) Integrierte Kostenrechnung: Un-
terwegs zu einem modernen Hochschulmanage-
ment! In: Wissenschaftsmanagement 4, pp. 204–
213
Adam K., Michael J., Netz L., Rumpe B., Varga
S. (2020) Enterprise Information Systems in
Academia and Practice: Lessons learned from
a MBSE Project. In: 40 Years EMISA: Digital
Ecosystems of the Future: Methodology, Tech-
niques and Applications (EMISA’19). LNI Vol. P-
304. Gesellschaft für Informatik e.V., pp. 59–66
Adam K., Netz L., Varga S., Michael J., Rumpe
B., Heuser P., Letmathe P. (2018) Model-Based
Generation of Enterprise Information Systems.
In: Enterprise Modeling and Information Systems
Architectures (EMISA’18). CEUR Workshop Pro-
ceedings Vol. 2097. CEUR-WS.org, pp. 75–79

http://dx.doi.org/10.18417/emisa.19.3


Enterprise Modelling and Information Systems Architectures
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3
Modeling for financial and staff management (Special Issue on Models-at-Work) 19

Brdesee H. (2021) A Divergent View of the Impact
of Digital Transformation on Academic Organi-
zational and Spending Efficiency: A Review and
Analytical Study on a University E-Service. In:
Sustainability 13(13)

Brodie M. L., Stonebraker M. (1995) Migrating
legacy systems: gateways, interfaces & the incre-
mental approach. Morgan Kaufmann Pub

Bünder H., Kuchen H. (2019) A Model-Driven
Approach for Behavior-Driven GUI Testing. In:
34th ACM/SIGAPP Symposium on Applied Com-
puting. ACM, pp. 1742–1751

Ciccozzi F., Famelis M., Kappel G., Lambers L.,
Mosser S., Paige R. F., Pierantonio A., Rensink A.,
Salay R., Taentzer G., Vallecillo A., Wimmer M.
(2018) How Do We Teach Modelling and Model-
Driven Engineering? A Survey. In: ACM/IEEE
International Conference on Model Driven En-
gineering Languages and Systems: Companion
Proceedings. ACM, pp. 122–129

Clavel M., da Silva V., Braga C., Egea M. (2008)
Model-Driven Security in Practice: An Indus-
trial Experience. In: Model Driven Architecture –
Foundations and Applications. Springer, pp. 326–
337

Drave I., Gerasimov A., Michael J., Netz L.,
Rumpe B., Varga S. (2021) A Methodology for
Retrofitting Generative Aspects in Existing Ap-
plications. In: Journal of Object Technology 20,
pp. 1–24

Domain-specific conceptual modeling: Concepts,
methods and tools. Springer

France R., Rumpe B. (2007) Model-driven De-
velopment of Complex Software: A Research
Roadmap. In: Future of Software Engineering
(FOSE ’07), pp. 37–54

Frank U. (2013) Domain-Specific Modeling Lan-
guages: Requirements Analysis and Design Guide-
lines. In: Domain Engineering. Springer, pp. 133–
157

Freemarker (2022) Freemarker https://freemarker.
apache.org/ Last Access: 2022-12-16

Gerasimov A., Heuser P., Letmathe P., Michael J.,
Netz L., Rumpe B., Varga S., Volkova G. (2022)
Domain Modelling of Financial, Project and Staff
Management

Gerasimov A., Heuser P., Ketteniß H., Letmathe
P., Michael J., Netz L., Rumpe B., Varga S.
(2020a) Generated Enterprise Information Sys-
tems: MDSE for Maintainable Co-Development
of Frontend and Backend. In: Companion Proc. of
Modellierung 2020 Short, Workshop and Tools
& Demo Papers. CEUR Workshop Proceedings,
pp. 22–30

Grönniger H., Krahn H., Rumpe B., Schindler M.
(2006) Integration von Modellen in einen code-
basierten Softwareentwicklungsprozess, German.
In: Modellierung 2006 Conference, pp. 67–81

Gerasimov A., Michael J., Netz L., Rumpe B.,
Varga S. (2020b) Continuous Transition from
Model-Driven Prototype to Full-Size Real-World
Enterprise Information Systems. In: 25th Ameri-
cas Conference on Information Systems (AMCIS
2020). AIS, pp. 1–10

Gerasimov A., Michael J., Netz L., Rumpe B.
(2021) Agile Generator-Based GUI Modeling for
Information Systems. In: Modelling to Program
(M2P). Springer, pp. 113–126

Hesse W., Mayr H. C. (2008) Modellierung in
der Softwaretechnik: eine Bestandsaufnahme. In:
Informatik-Spektrum 31(5), pp. 377–393

Hick J.-M., Hainaut J.-L. (2003) Strategy for
database application evolution: The DB-MAIN
approach. In: International Conference on Con-
ceptual Modeling. Springer, pp. 291–306

Hölldobler K., Kautz O., Rumpe B. (2021)
MontiCore Language Workbench and Library
Handbook: Edition 2021. Aachener Informatik-
Berichte, Software Engineering, Band 48. Shaker
Verlag

Hölldobler K., Michael J., Ringert J. O., Rumpe
B., Wortmann A. (2019) Innovations in Model-
based Software and Systems Engineering. In: The
Journal of Object Technology 18(1), pp. 1–60

http://dx.doi.org/10.18417/emisa.19.3
https://freemarker.apache.org/
https://freemarker.apache.org/


International Journal of Conceptual Modeling
Vol. 19, No. 3 (2024). DOI:10.18417/emisa.19.3

20 Arkadii Gerasimov, Peter Letmathe, Judith Michael, Lukas Netz, Bernhard Rumpe

Hornbostel S. (2001) Third party funding of Ger-
man universities. An indicator of research activity?
In: Scientometrics 50(3), pp. 523–537

Hölldobler K., Rumpe B. (2017) MontiCore 5
Language Workbench Edition 2017. Aachener
Informatik-Berichte, Software Engineering, Band
32. Shaker Verlag

Karsai G., Krahn H., Pinkernell C., Rumpe B.,
Schindler M., Völkel S. (2009) Design Guide-
lines for Domain Specific Languages. In: Domain-
Specific Modeling Workshop (DSM’09). Techre-
port B-108. Helsinki School of Economics, pp. 7–
13

Krahn H., Rumpe B., Völkel S. (2010) MontiCore:
a Framework for Compositional Development of
Domain Specific Languages. In: International Jour-
nal on Software Tools for Technology Transfer
(STTT) 12(5), pp. 353–372

Küpper H.-U. (2007) Neue Entwicklungen im
Hochschulcontrolling. In: Controlling & Manage-
ment 51(3), pp. 82–90

Küpper H.-U. (2009) Effizienzreform der
deutschen Hochschulen nach 1990–Hintergründe,
Ziele, Komponenten. In: Beiträge zur Hochschul-
forschung 31(4), pp. 50–75

Michael J., Mayr H. C. (2015) Creating a Do-
main Specific Modelling Method for Ambient
Assistance. In: Int. Conf. on Advances in ICT for
Emerging Regions (ICTer). IEEE, pp. 119–124

Müller-Bromley N. (2011) Hochschulen richtig
reformieren. In: Die neue Hochschule 1, pp. 1–2

Mussa M., Ouchani S., Sammane W. A., Hamou-
Lhadj A. (2009) A Survey of Model-Driven Test-
ing Techniques. In: 2009 9th Int. Conf. on Quality
Software, pp. 167–172

Object Management Group (2014) Object Con-
straint Language

Object Management Group (2017) OMG Unified
Modeling Language (OMG UML)

Rumpe B. (2016) Modeling with UML: Language,
Concepts, Methods. Springer International

Sartaj H., Iqbal M. Z., Jilani A. A. A., Khan M. U.
(2019) A Search-Based Approach to Generate
MC/DC Test Data for OCL Constraints. In: Search-
Based Software Engineering. Springer, pp. 105–
120

Schwaber K. (1997) SCRUM Development Pro-
cess. In: Business Object Design and Implemen-
tation. Springer London, pp. 117–134

Stachowiak H. (1973) Allgemeine Modelltheorie.
Springer-Verlag

Torchiano M., Tomassetti F., Ricca F., Tiso A.,
Reggio G. (2013) Relevance, benefits, and prob-
lems of software modelling and model driven
techniques—A survey in the Italian industry. In:
Journal of Systems and Software 86(8), pp. 2110–
2126

Völter M., Benz S., Dietrich C., Engelmann B.,
Helander M., Kats L. C. L., Visser E., Wachsmuth
G. (2013) DSL Engineering - Designing, Imple-
menting and Using Domain-Specific Languages.
dslbook.org

About SAP.. https://www.sap.com/about.html.
Last Access: [Online; accessed 16-December-
2022]

http://dx.doi.org/10.18417/emisa.19.3
https://www.sap.com/about.html

