Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

Special Issue on Enterprise Modeling and Knowledge Graphs

An Agile and Ontology-based Meta-Modelling Approach for the
Design and Maintenance of Enterprise Knowledge Graph
Schemas

ok
Emanuele Laurenzi -2

4 FHNW - University of Applied Sciences and Arts Northwestern Switzerland. Riggenbachstrasse 16, 4006 Olten, Switzerland.

Abstract. Enterprise Knowledge Graphs (EKGs) are increasingly created and used by organizations for
structuring knowledge of a particular application domain and consequent exploitation through analysis,
reasoning and integration of information extracted from different data sources. Yet, one of the main challenges
is designing and maintaining EKG’s schema, which requires high expertise in ontology engineering and the
addressed application domain. Various approaches and tools offer visual aids, but they target ontology
engineers and neglect the domain experts. Domain-specific modelling languages (DSML), in contrast, offer
concepts that domain experts easily understand because of their tailored graphical notations. DSMLs can
be created with a meta-modelling approach, which does not require ontology expertise but can be adopted
for the equivalent creation of EKG schema. This paper presents an approach that extends the traditional and
sequential meta-modelling approach with an agile one, allowing domain-specific adaptations of modelling
languages and testing them on the fly. In this way, the domain experts are facilitated to be in the engineering
loop. Moreover, the approach foresees automatic mechanisms to ensure that an EKG schema is designed
while performing the visual domain-specific adaptations. The approach has been developed by following
the Design Science Research methodology, which led to the creation of a prototypical tool called AOAME.
The latter has been used to implement real-world scenarios to evaluate the proposed approach’s utility.
The correct design of the approach has been evaluated by tracing the prototype functionalities back to the
requirements.

Keywords. Agile and Ontology-based Meta-Modelling * Enterprise Knowledge Graphs * Domain-specific
Adaptations

Communicated by Robert Buchmann, Georg Grossmann, Andreas L. Opdahl. Received 2022-09-22. Accepted on
2023-10-01.

1 Introduction

Knowledge Graphs (KGs) Chaudhri et al. (2022)
have matured as a topical technique that is in-
creasingly adopted by enterprises for structuring

can be used as input to improve predictions of
Machine Learning, and (2) they can represent
knowledge extracted by Machine Learning in a
formal and explainable manner (Peng et al. 2023;

knowledge and its subsequent analysis and reason-
ing as well as for integrating information extracted
from different data sources.

KGs also play a central role in Artificial Intelli-
gence systems, as (1) their structured knowledge

* Corresponding author.
E-mail. emanuele.laurenzi @fhnw.ch

Van Harmelen and Teije 2019).

At its core, a Knowledge Graph (KG) consists
of a directed labelled graph in which domain-
specific meanings are associated with nodes and
edges (Chaudhri et al. 2022). While a node
represents any real-world entity, an edge label
captures the relationship of interest between the

http://dx.doi.org/10.18417/emisa.19.6
emanuele.laurenzi@fhnw.ch

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

two nodes. Nodes and relationships can be cat-
egorized by types, which supplement them with
meaning. Edges also capture the subclass rela-
tionship among entity types, which is known as
a taxonomy. Entity types and their relationships
form the schema of a knowledge graph and can be
defined as an ontology (Peng et al. 2023).

In this paper, the terms "knowledge graph
schema" and "ontology" are treated as synonyms
and used interchangeably.

Nodes, relationships and their types are typi-
cally expressed in an ontology language, which
makes knowledge machine-interpretable, thus re-
ducing ambiguity, deriving meaningful informa-
tion that is specific to an application’s domain and
enabling knowledge automation.

Differently from a generic KG, Enterprise
Knowledge Graphs (EKG) Gomez-Perez et al.
(2017) address domain-specific problems (Kejri-
wal et al. 2019), where concepts belong to a realm
of business enterprise. They are the equivalent
of ‘lightweight’ Enterprise Ontology because the
expressivity of the ontology language is rather
low, e. g., like the W3C standard RDF(S) (W3C
2014).

Haase (2019) argues that EKGs became a key
technology to enable enterprise data management,
which serves as an integration hub across enter-
prise data sources. With the ever-increasing avail-
ability of data and the adoption of data-driven
approaches in companies, the establishment of
EKG schemas is becoming a competitive advan-
tage. In fact, EKG schemas not only provide
meaning to data, but they enable quick reuse and
repurposing of content for flexible and timely
support of business decisions.

Despite the several benefits, the creation of
schemas for EKGs remains a highly complex en-
gineering effort (Abu-Salih 2021; Kejriwal 2019;
Li et al. 2020; Meissner and Thor 2021; Xiaohan
2020). Existing visual editors like Protégé! or
Stardog? can support this activity but target on-
tology experts only. However, the engineering of

Uhttps://protege.stanford.edu/
2 https://www.stardog.com/

an EKG does not only require high expertise in
knowledge engineering but also domain expertise.
It is not common to find both expertise in one
person, which commonly leads to several back
and forth between the knowledge engineers and
the domain experts, hence a time-consuming prac-
tice. Moreover, entity types and their relations are
likely to change over time because of the high cor-
relation to an addressed enterprise reality. Hence,
maintaining a schema for an enterprise knowledge
graph is as important as its creation to ensure high
quality and meaningful use over time (Abu-Salih
2021).

To tackle this challenge, this paper presents
an approach that includes domain experts in the
creation and maintenance of the EKGs schemas.
For this, the approach builds on techniques and ap-
proaches from the Enterprise Modelling discipline.
Specifically, techniques of meta-modelling and
semantic lifting of meta-models were investigated
by consulting literature, interviewing modelling
experts from the industry and analysing two cases
through a case study strategy. Findings led to
suggest a novel approach that, on the one hand,
allows performing domain-specific adaptations of
modelling languages. Modelling languages (e. g.,
BPMN (OMG 2011)) are equipped with syntax
and semantics and can be easily understood by do-
main experts because of their graphical notations.
Domain-specific adaptations are performed by a
language engineer to tailor modelling languages
to a particular addressed enterprise reality, which
results in so-called Domain-Specific Modelling
Languages (DSMLs). Concepts and relations of
a DSML are automatically specified in an ontol-
ogy language, while domain-specific adaptations
are performed. Thus, the language engineer can
add or remove concepts and properties and test
them visually. This has the advantage (1) of not
requiring ontology expertise and (2) of including
the domain expert in the engineering process of
the DSML language. As a result, once the DSML
is ready, the schema of the EKG is ready, too.

The paper is structured as follows. First, Sect. 2
presents the background, including the definitions
of relevant terms and then related work with a

http://dx.doi.org/10.18417/emisa.19.6

Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

Special Issue on Enterprise Modeling and Knowledge Graphs

focus on a stat-of-the-art of those approaches that
combine meta-models and models with ontolo-
gies or knowledge graphs. The remaining sections
conform to the Design Science Research phases.
Sect. 3 describes the awareness of problem phase,
which includes findings from expert interviews
and the analysis of two cases as well as the de-
sign requirements are reported. Sect. 4 describes
the agile and ontology-based meta-modelling ap-
proach. Next, Sect. 5 elaborates on the agile
and ontology-based meta-modelling tool AOAME,
which instantiates the proposed approach. Sect. 6
deals with the evaluation, and Sect. 7 points out
the limitations of the approach. Finally, Sect. 8
concludes the paper and points to future work.

2 Background and Related Work

This section provides an overview of definitions
around the most relevant concepts of this work
and the related work. The main theory-based re-
quirements (TBRs) for the design of the proposed
artifact are pointed out.

2.1 Knowledge Graphs

The term Knowledge Graph became popular in
academia and research with the advent of the
Google Knowledge Graph (Singhal 2012) as an
aid of the Google search engine for better query re-
sults. As of today, there is no common agreement
on the definition of the term in research, but rather
subjective attempts to provide a description of it
(Ehrlinger and Woss 2016). Many authors active
in the Al research discipline (e. g., (Chaudhri et al.
2022)), see the idea behind Knowledge Graphs as
not new and KG are regarded as the extension of
the knowledge representation technique Semantic
Network (SN) with some differences at a com-
putational level, e. g., differences in scalability
(thousands of objects vs. billion of objects in
KGs), and in development methods (top-down
only for SN). Ehrlinger and Woss (2016) define a
KG as a “large network of entities, their semantic
types, properties, and relationships between enti-
ties". Knowledge Graphs also relate to Semantic
Web technologies, which include inference en-
gines, semantic rules and queries and lightweight

W3C ontology languages such as RDF (R. et al.
2014) and RDFE(S).

Knowledge graphs can be distinguished into
generic and domain-specific ones (Ehrlinger and
Woss (2016)). The generic KGs are open-world,
cross-domain, or domain-independent. Exam-
ples for these, are DBPedia3 , Cyc*, BabelNet> ,
CliGraph® .

According to Li et al. (2020), most of the ex-
isting KGs are domain-specific. Domain-specific
KGs address domain-specific problems Kejriwal
et al. (2019). A domain-specific knowledge graph
can be defined as follows: ‘“an explicit concep-
tualisation to a high-level subject-matter domain
and its specific subdomains represented in terms
of semantically interrelated entities and relations’
(Abu-Salih 2021). Enterprise Ontology Dietz
(2006) is regarded as domain-specific ontologies
that represent concepts and relations that describe
the realm of an enterprise. Examples of enterprise
ontologies can be found in (Bertolazzi et al. 2001;
Fox et al. 1996; Leppéanen 2007; Uschold et al.
1998). ArchiMEO Hinkelmann et al. (2020) is
an example of a lightweight enterprise ontology,
which contains concepts and relations of enter-
prises and standard modelling languages, specified
with RDF(S) (W3C 2014). Lightweight enter-
prise ontologies, in contrast to highly expressive
ontologies (e. g., defined in some OWL languages
(Allemang and Hendler 2011)), can be regarded
as Enterprise Knowledge Graphs (EKGs).

’

2.2 Enterprise Modelling for Enterprise
Knowledge Graphs (EKGs)

Enterprise Modelling (EM) is a pivotal field in
Information Systems (IS) research (Frank 2014).
An enterprise can be defined as a highly complex
heterogeneous socio-technical information sys-
tem, whose parts are interrelated within a nexus of
interdependencies on different abstraction levels
(Vernadat 2003). Similarly, Giachetti (2010) de-
fines an enterprise as a "complex socio-technical

3 https://wiki.dbpedia.org/

4 https://www.cyc.com/

5 https://babelnet.org/

6 http://caligraph.org/ontology/Scientist

http://dx.doi.org/10.18417/emisa.19.6

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

system that comprises interdependent resources
of people, information, and technology that must
interact with each others and their environment
in support of a common mission". EM strives
to cope with such complexity through models.
Benyon et al. (1999) define a model as "a rep-
resentation of something, constructed and used
for a particular purpose". The "representation of
something" reverts to an often commonly agreed
abstraction, which describes and represents the
relevant aspects of a "system under study” (SUS,
also known as the "Universe of Discourse", "sub-
ject" or "domain") (Efendioglu et al. 2017). There
exist many different kinds of models like graphical
models, mathematical models, logical models or
formal-based models like enterprise ontologies
(Dietz 2006).

2.2.1 Enterprise Models

Enterprise models are graphically represented
and capture relevant-enterprise aspects, which in-
clude data structure and organisation (i. e., static
phenomena of Information Systems), as well as
behavior, i.e., dynamic phenomena of Informa-
tion Systems (Vernadat 2003). Specifically, these
aspects can relate to activities, processes, infor-
mation, resources, people, goals, and constraints
of one or many interlinked businesses (Fox and
Gruninger 1998). The ultimate goal of enter-
prise models is of creating value for an enterprise
(Sandkuhl et al. 2018). These externalize en-
terprise knowledge for the support of common
understanding, inter-subjective communication,
documentation, analysis and operations (Vernadat
2003), e. g., answering queries, simulating behav-
ior, and performing reasoning as well as business
transformation (Zachman 1987). Examples of
enterprise models are business process models
and enterprise architecture models.

Bridgeland and Zahavi (2009) discusses eight
ways where enterprise models generate business
values: communication between people, train-
ing and learning, persuasion and selling, analysis
of a business situation, compliance management,
development of software requirements, direction
in software engineering, knowledge management

and reuse. To better understand the value of mod-
els, Karagiannis and Woitsch (2015) elaborated
on the knowledge space that relates to a model.
This consists of the content, form, use and inter-
pretation dimensions. The use determines the
domain of discourse. The confent is the actual
knowledge contained in the model. The form
relates the formalism or representation. The in-
terpretation dimension is specified in human or
machine interpretation of knowledge. While the
human interpretation of knowledge is fostered by
graphical notations, the machine interpretation of
knowledge can be enabled by expressing it in a
logic-based formalism.

2.2.2 Modelling Language and
Meta-Modelling for Enterprise
Models

Enterprise models are created with modelling

languages. Karagiannis and Kiihn (2002) define

a modelling language with three specifications:

notation, syntax and semantics. Abstract syntax

refers to the class hierarchy of modelling con-
structs together with their relations and attributes,
through which the language terminology is defined.

Modelling constructs are syntactic elements typ-

ically expressed through a graphical or textual

notation. The notation is the concrete syntax of a

modelling language, through which it is possible

to create a model. Graphical notations should
be cognitively adequate to ensure users’ under-
standing of models (Moody 2009). A graphical
notation is also known as a visual connector and is
used in conjunction with modelling elements to de-

sign a model (Karagiannis and Buchmann 2018).

Thus, both modelling elements and modelling re-

lations are regarded as modelling constructs. The

semantics allows determining the truth value of
elements in the model with respect to the underly-

ing reality being conceptualised (Parreiras 2012).

In other words, the semantics defines the meaning

of syntactic elements.

Frank (2013) argues that the semantics of a
modelling language consist of abstract syntax and
constraints. Constraints supplement the abstract
syntax to govern how the modelling constructs

http://dx.doi.org/10.18417/emisa.19.6

Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

Special Issue on Enterprise Modeling and Knowledge Graphs

can be combined to produce valid models. For
example, the BPMN specification OMG (2011)
expresses constraints in natural language, which
supplement the abstract syntax of BPMN. This is,
however, a semantic specification limited to what
Atkinson and Kuhne (2003) call the linguistic view.
Atkinson and Kuhne (2003) stress the importance,
in amodelling language, of not only specifying the
linguistic view but also the domain of discourse
view. The latter describes the domain knowledge,
and according to D. Harel and B. Rumpe (2004), it
is also known as the semantic domain and can be
defined independently of the syntax. Furthermore,
the authors suggest that the semantics of a mod-
elling language can be specified in two parts: (a)
the semantic domain, which provides information
regarding the domain of discourse; and (b) the
semantic mapping, which maps the abstract syntax
into the semantic domain. The semantic mapping
relates concepts from the abstract syntax to the
domain semantic and is also expressed with the
homonym name in the framework proposed by
Karagiannis and Kiihn (2002). Again according
to David Harel and Bernhard Rumpe (2000), the
semantic mapping should be made explicit and it
is not satisfactory to define it by examples because
it would not allow for analysis.

TBRI1: Consistently with these findings, the
proposed approach shall allow the definition of
the semantics of a modelling language (1) in the
abstract syntax, (2) in the semantic domain, and
(3) by making explicit the mapping of modelling
constructs from abstract syntax to a semantic
domain.

A commonly adopted technique to create or
adapt modelling languages is known as meta-
modelling Karagiannis and Kiihn (2002) and
Strahringer (1996), also known as meta-model
customization or ad-hoc customisation of meta-
models Atkinson and Kuhne (2003). The meta-
modelling hierarchy (see Fig. 1) distinguishes dif-
ferent layers of abstraction, where three layers are
commonly used to specify modelling languages
and related models (Efendioglu et al. 2017). Each
underneath layer instantiates concepts that are

specified in the upper layer. In the top layer, con-
cepts are self-represented, and there is no need
for additional upper layers. The Object Manage-
ment Group (OMG) specifies modelling standards,
like BPMN, at layer 2 (meta-model), using mod-
elling constructs of UML Class Diagram. As a
consequence, a direct instantiation of the BPMN
meta-model leads to the creation of a BPMN
model.

llllll

eeeeee

eeeeee

eeeeee

Figure 1: Meta-modelling hierarchy. Adapted from
(Efendioglu et al. 2017)

When a meta-model contains concepts that cap-
ture a particular domain, context or industry, it
can be categorised as a domain-specific modelling
language (DSML) (Zecevi¢ et al. 2017). Con-
versely, when a modelling language offers only
rudimentary constructs such as "class", "relation",
"attribute", any kind of reality can be modelled,
thus it can be categorised as a general-purpose
modelling language (GPML) (Frank 2010). UML
Class Diagram is an example of GPML.

In this work, we define a DSML as a graphical
modelling language focused on a particular prob-
lem domain that offers expressive power through
adequate cognitive notations and abstractions for
humans. A DSML in this context serves to visu-
alise, specify, construct and document aspects of
an enterprise.

The notion "domain" does not have a fixed
definition as it might refer to a paradigm, a busi-
ness sector, an application area or a single case
in an enterprise (Karagiannis et al. 2016). Frank
(2010) claims that this term has never been used
consistently in conceptual modelling. Also the

http://dx.doi.org/10.18417/emisa.19.6

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

<

difference between “‘specific-domain”, “crossed-
domain” and “general purpose” is not clearly
defined in literature. A domain can, however,
be less narrow - or narrower than others - and
this determines the difference between languages
that are less or more domain-specific, respectively.
Karagiannis et al. (2016) introduce the notion of
the "domain-specificity degree", where a higher
specificity degree means assimilating concepts in
the meta-model that target a more specific domain.

Buchmann (2022) argues that modelling should
not follow rigid standards but rather shifting speci-
ficities driven by ever-changing needs. That is, do-
main requirements can be accommodated directly
in a modelling language by adapting or extending
the meta-model and the graphical notation that is
cognitively adequate to a domain expert. The re-
sulting domain-specific models have the advantage
of increasing both the understanding of domain
experts and modelling productivity because model
constructs are tailored to an application domain
Frank (2013).

In this work, the primary purpose of DSMLs is
to retain enterprise knowledge, which can be used
as documentation and/or for knowledge automa-
tion. Therefore, literature on DSMLs for software
development or DSLs as programming languages
is not discussed as considered out of scope.

Karagiannis et al. (2016) suggest creating a
DSML starting from one or more modelling stan-
dards instead of developing it from scratch. Mod-
elling standards come with sets of proven and
well-known concepts with established syntax and
semantics, which can be borrowed. Existing meta-
modelling architectures and tools like ADOxx”
and MetaEdit+3 allow for the adaptation or exten-
sion of meta-models for the creation of domain-
specific models.

2.2.3 The Domain-Specific Adaptation of
Modelling Languages is Yet a
Challenge

The domain-specific adaptation is a term that

refers to the practice of extending or customiz-

7 https://www.omilab.org/adoxx/
8 https://www.metacase.com/products.html

ing existing modelling languages to tailor them
to the needs of an application domain. In this
sense, the approach allows increasing the degree
of domain specificity of an existing language as
domain-specific requirements are incorporated.
Karagiannis et al. (2022) contains a collection of
domain-specific conceptual models that are based
on ADOxx. Despite the availability of tools, the
domain-specific adaptation practice is still highly
challenging. The identification of an adequate
abstraction level of modelling constructs is a com-
plex task (Karagiannis et al. 2016; Wegeler et al.
2013). It requires both language development
expertise and domain knowledge, and few people
rarely have both Chiprianov et al. (2014), Cho et al.
(2012), and Mernik et al. (2005). The domain
knowledge mostly resides in users’ or domain
experts’ minds. Therefore, it is a necessity for
the language engineer to cooperate with them to
extract and make explicit the needed knowledge.
Barisic¢ et al. (2018) add that the lack of coopera-
tion with end-users while developing a DSML is
likely to cause misinterpretations, which hamper
the development process and the quality of the
DSML. This can also lead to problems in finding,
setting and maintaining a suitable scope for the
DSML (Frank 2010).

Existing DSML engineering lifecycles Atkin-
son and Kuhne (2003), Barisic et al. (2018), Cho et
al. (2012), Izquierdo et al. (2013), Kleppe (2008),
Selic (2007), Stahl and Volter (2006), and Strem-
beck and Zdun (2009) share two common charac-
teristics. On the one hand, they have sequential
phases: design, implementation and finally eval-
uation. That is, the implementation cannot start
before the conceptualisation has been completed.
As well, the evaluation phase cannot start before
the DSML has been completely implemented. On
the other hand, architectures, approaches, and
tools for the design and implementation phases
mostly address language engineers, thus making
difficult the early inclusion of domain experts.

Both characteristics, (1) the subsequentiality
of phases and (2) the non-early inclusion of end-
users, show a lack of agility as they violate agile

http://dx.doi.org/10.18417/emisa.19.6

Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

Special Issue on Enterprise Modeling and Knowledge Graphs

principles that are reported in software develop-
ment (Beck et al. 2001) and business development
(Burlton et al. 2017).

TBR2: it is an objective of this work to in-
vestigate the cause of such a lack of agility and
propose a solution. The findings aim to contribute
to the ultimate objective of creating an approach
that enables the creation and maintenance of EKG
schemas.

2.2.4 Related Work

Although relatively young as a practice, there are
already numerous scientific works that attempt to
combine enterprise models and meta-models with
ontologies or knowledge graphs.

Early attempts can be categorized in the so-
called semantic lifting Hinkelmann et al. (2016a).
Semantic lifting adds or maps ontological anno-
tations to existing enterprise meta-models and/or
models (Azzini et al. 2013; Hrgovcic et al. 2013;
Kappel et al. 2006). Some of these works are
hereby reported. Opdahl and Berio (2006) pro-
pose a Unified Enterprise Modelling Language
(UEML) intended as an intermediate language for
a wide variety of existing enterprise modelling
languages, where each concept is mapped onto a
common ontology. The latter has the benefit of
semantically anchoring the modelling constructs
of the various modelling languages. Similarly,
Briauer and Lochmann (2007) introduce the use
of different types of ontologies (i. e., upper, core,
domain and application ontologies) to semanti-
cally integrate multiple domain-specific languages.
Building on the work of Opdahl and Berio (2006),
Harzallah et al. (2012) elaborate on the support
for ontological analysis of modelling languages.
Other works with a focus on ontological analy-
ses of modelling languages and models can be
found in (Green and Rosemann 2000; Green et al.
2007; Opdahl and Henderson-Sellers 2002; Rohde
1995; Wand et al. 1999; Zhang et al. 2007). The
work of Voigt (2011) maps meta-models into a
graph structure to support the matching of different
meta-models to ultimately resolve the integration
issue across multiple heterogeneous data sources.

Fill (2011) adds ontological annotations to busi-
ness process models to support business process
benchmarking. Sandro Emmenegger et al. (2013)
annotate the meta-models with enterprise ontol-
ogy concepts to ultimately detect early warning
signals in procurement risk management. Gailly
et al. (2017) automatically annotate models us-
ing enterprise ontologies. Huang et al. (2016)
map UML Class Diagram models into knowl-
edge graph to abstract original class diagrams and
generate more hierarchical and refined class dia-
grams. Similarly, the work described by Panich
and Vatanawood (2016) transform UML Class Di-
agram models and associated sequence diagrams
into ontology languages to detect design patterns
in an early stage of software design. The work in
Hinkelmann et al. (2016b) describes an approach
that maps a BPMN meta-model extension into an
ontology to then annotate business- and [T-related
models with ontology concepts.

As already pointed out in Hinkelmann et al.
(2016a), semantic lifting keeps the graphical and
ontological representations separate, thus poten-
tially causing inconsistencies between the two
if either representation is modified. The align-
ment of both is a knowledge-intensive task that,
if manually done, is prone to errors and requires
considerable effort. In real-world scenarios, such
an alignment is a frequent activity because it
should keep up with the constant changes an en-
terprise is subject to. While this issue would
not affect GPMLs, it does impact DSMLs and
domain-specific models because they contain a
certain degree of an addressed application domain.

Recent works strive to relieve this alignment
effort, mostly by proposing automatic transforma-
tion approaches from models to ontology. Some of
these works are hereby reported. In S. Emmeneg-
ger et al. (2016) different interlinked enterprise
models are transformed into an ontology to make
automatic recommendations in workplace learn-
ing settings. Buchmann and Karagiannis (2016)
focus on legacy data sources containing domain-
specific graphical models and export them into
ontologies to make them queryable in a Linked
Data environment. The automatic transformation

http://dx.doi.org/10.18417/emisa.19.6

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

is made possible by an ADOxx-to-RDF plugin °
. A similar approach is discussed in (Karagian-
nis and Buchmann 2018). Similarly, the plugin
Archi-to-Neo4J 10 converts a model in ArchiMate
language into a property graph. Compared to this
plugin, the work of Smajevic and Bork (2021)
provides a more generic approach where any con-
ceptual model can be transformed into a property
graph (also in Neo4J). The conceptual models can
be created in EMF or ADOxx metamodeling plat-
forms, but also from the Ecore-based modeling
platforms Papyrus (for UML, SysML, and UML
profiles) and Archi (for ArchiMate). Most recently,
Bachhofner et al. (2022) proposed BPMN2KG
as a transformation tool from BPMNZ2.0 process
models into knowledge graphs.

Although the automatic transformation of mod-
els to ontology relieves the manual annotation
issue, the misalignment problem remains because
of the two separate knowledge representations
(Fig. 2 depicts the issue graphically). This is
problematic because whenever one of the two
representations changes, actions shall be taken,
making the maintainability a challenge.

2

machine interpretable

“%@@

ontology rules

human interpretable
"‘01—7@

Models wl’r«ﬁﬁ,

~

- m @/

Figure 2: Misalignment between the human- and
machine-interpretable knowledge. Adapted from
(Hinkelmann et al. 2016a)

Reality

OntoUML! attempts to address this misalign-
ment issue by incorporating ontological distinc-
tions into modelling primitives, which extend

9 https://www.omilab.org/adoxx/modules/details/?id=175
10 https://www.hosiaisluoma.fi/blog/archimate-neo4j/
Whttps://ontouml.readthedocs.io/en/latest/intro/ontouml.html

UML. The underlying foundational ontology is
based on the Unified Foundational Ontology
(UFO) (Guizzardi 2005). In Benevides and Guiz-
zardi (2009), the authors present a model-based
tool for ontology-driven conceptual modelling in
OntoUML. While these approaches make use of a
GPML, this work focuses on the use of DSMLs for
the creation of EKGs. In addition, the proposed
approach aims to create DSMLs that are speci-
fied in an ontology language, ready to be used by
inference engines.

TBR3: While creating a DSML, the proposed
approach shall ensure a continuous alignment
between human-interpretable knowledge (which
is retained in the form of modelling languages
and models) and machine-interpretable knowledge
(which is retained in the form of knowledge graphs).
In this way, enterprise knowledge graphs can be
not only created but also maintained through
enterprise modelling.

3 Analysis, Design Challenges and
Requirements

Core findings from the reviewed literature (TBR3)
point to a prerequisite for the creation and main-
tenance of enterprise knowledge graphs through
enterprise modelling, which is an approach that,
while allowing for domain-specific adaptations of
modelling languages, ensures alignment between
the human- and machine-interpretable knowl-
edge. This approach takes the name of agile and
ontology-based meta-modelling and was created
by following the phases of Design Science Re-
search (DSR) methodology (Vaishnavi and Kuech-
ler 2007): awareness of problem, suggestion, de-
velopment, evaluation, and conclusion.

The Problem Awareness phase dealt with deep-
ening the understanding of domain-specific adap-
tations through traditional meta-modelling and
related challenges (addressing (TBR2)), with re-
spect to real-world application domains. Hevner
et al. (2004) emphasize the importance of elicit-
ing requirements from an outside environment to
ensure the relevance of the final designed artifact.
For this, two research sub-objectives were posed:

http://dx.doi.org/10.18417/emisa.19.6

Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

Special Issue on Enterprise Modeling and Knowledge Graphs

(1) understanding the need for domain-specific
adaptations from the industry and (2) understand-
ing the lack of agility and the misalignment issue
caused by the semantic lifting of meta-models and
models in real-world scenarios.

3.1 Expert interviews and findings

The first research sub-objective was achieved by
conducting four semi-structured interviews with
four senior consultants and modelling experts. To
ensure a high quality of data collection, the inter-
viewees were selected according to the following
criteria: senior position; modelling is a daily busi-
ness activity to address the client’s problems; at
least two years of experience with enterprise mod-
elling languages in consulting projects; diversity
in enterprise modelling expertise, i. €., each expert
has a different enterprise modelling focus, e. g.,
process modelling, enterprise architecture mod-
elling; diversity on the adopted modelling tool,
i.e., each expert uses a different modelling tool
in project consulting; the consultant’s company
operates worldwide or has world-wide recognized
partners. Each interviewed fell into one of the
following roles: enterprise architect, business pro-
cess modeller, workflow modeller, and enterprise
modeller. In total three companies were involved:
two experts from the BOC Group'? , one expert
from Camunda®® and one expert from KnowGrav-
ity* .

Details about the interview analysis can be
found in Laurenzi (2020). Results led to the
identification of three levels of complexity of
domain-specific adaptations. From levels 1 to 3,
the adaptation complexity increases. Namely:

* At level one, there is the simplification of a
modelling language. That means aspects in
the abstract syntax that do not match with the
elicited requirements are removed. The abstract
syntax refers to the knowledge captured by the
meta-model, i. e., modelling elements, relations
and attributes (including types and values).

12 https://www.boc-group.com/en/
13 https://camunda.com/
4 https://www.knowgravity.com/

* At level two, we find the change of abstract
syntax and notation. Changing attribute values
is mainly used to restrict the possible range
they can get, which is a way to constrain the
modelling language. Changing the graphical
notation means that it can be replaced with a
new one.

* Level three adds complexity to level two such
that the abstract syntax is extended as well as
new graphical notations are provided. That
is, the meta-model is extended or constrained,
which requires a higher level of expertise than
the previous two. The meta-model extension
also includes cross-reference relations for con-
necting concepts from different modelling lan-
guages or modelling views.

3.2 Case study analysis and findings

The second research sub-objective, was achieved
by creating and analyzing two cases. A case
study strategy (Yin 2018) was followed to ensure
scientific rigour. Each case focuses on one differ-
ent application domain and was derived from a
different research project:

e patient transferal management (PTM), i.e., a
digital healthcare application domain), based
on the Swiss research project Patient-Radar (E.
Laurenzi et al. 2017).

* business process as a service (BPaaS) (Woitsch
et al. 2016), i.e., Cloud Computing applica-
tion domain), based on the European research
project CloudSocket?® .

The meta-modelling tool ADOxx was used in
both cases. The focus on ADOxx can be justified
with two main reasons: (1) it is one of the most
widely used meta-modelling tools in research and
for research projects where numerous companies
worldwide have been involved; (2) ADOxx has
been used for the semantic lifting of meta-models
and models in numerous research projects. The

15 www.cloudsocket.eu - project in the European Union’s
Horizon 2020 Framework Programm under grant agreement
No 644690

http://dx.doi.org/10.18417/emisa.19.6

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

generic architecture for the meta-modelling plat-
form was first described in Karagiannis and Kiihn
(2002) and later further refined in Fill and Kara-
giannis (2013).

In both cases, domain-specific adaptations of
modelling languages were performed to accom-
modate new domain requirements, along with
semantic lifting activities. The AMME engineer-
ing lifecycle proposed in Karagiannis (2018) was
followed as it embraces agile principles. Fig. 3
depicts the lifecycle (top of the figure) and its
instantiation (bottom of the figure) for the BPaaS
case.

The detailed description of the analysis of the
cases can be found in Laurenzi (2020).

The analysis of the two cases led to the confir-
mation of a lack of agility in DSMLs engineering
approaches, and revealed the below list of seven
problems (Fig. 4 shows the position of each prob-
lem along the language engineering lifecycle):

* Problem I: Language engineers and domain
experts have different types of expertise. This
might result in misinterpretation of require-
ments. As a consequence, the quality of the
new version of DSML is hampered. This prob-
lem manifests particularly at the beginning of
the project, as the language engineers have little
knowledge about the addressed domain. Fur-
ther engineering iterations are required until a
DSML is good enough to be released, which is
time-consuming.

* Problem 2: Extracting, documenting, priori-
tizing, and categorizing requirements is time-
consuming and prevents the quick advance of
the engineering lifecycle.

* Problem 3: The longer the list of requirements
and the more dependencies among require-
ments, the more time-consuming their mainte-
nance (i. e., synchronization and update).

* Problem 4: Aligning requirements from the
Create phase to the Design phase is time-
consuming.

* Problem 5: Starting the Develop phase only
after the Design phase is finished is not conve-
nient as changes can arise while implementing
the language. One reason for changes is due to
the inability of meta-modelling tools to accom-
modate the desired conceptualisation.

* Problem 6: The sequential re-iteration of all
engineering phases before a new version of a
DSML is deployed is time-consuming. That
is, a new version of the language cannot be
evaluated until the whole lifecycle is ended.

* Problem 7: In the Formalize phase, each new
requirement originating from the Design Phase
(see 7a) or Develop phase (see 7b) leads to
adapting the formalized meta-model, which is
a tedious, intensive and time-consuming engi-
neering task requiring high expertise.

Additional findings revolve around the use of
traditional meta-modelling architecture for the
domain-specific adaptations of modelling lan-
guages and mapping of meta-models and models
to ontology, i. e., semantic lifted DSMLs. Fig. 5
depicts the four main issues, which are described
as follows:

1. Issue I: The early inclusion of users (or domain
experts) in the development of DSMLs is hin-
dered by the separation of the two components
meta-modelling and modelling.

2. Issue 2: Long waiting time since a new
feedback-based requirement is generated un-
til it is accommodated in the language and
tested. A DSML can be tested through the
creation of models only after it is deployed (i. e.,
sequentiality of phases). Usually, from the De-
ploy/Validate phase, new requirements arise,
which we call feedback-driven requirements.

3. Issue 3: Performing domain-specific adapta-
tions leads to a loss of the semantic mapping
with the ontology.

4. Issue4: Issue 3 propagates to the instance level,
causing a misalignment between models and
ontology instances. For example, in the BPaaS
case, there was the need to adapt the require-
ments of cloud services frequently, which led

http://dx.doi.org/10.18417/emisa.19.6

Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

11

Special Issue on Enterprise Modeling and Knowledge Graphs

Abstract
Methodology

N
OMLAB e

Formalize Develop

=)
&

¢)

Semantic
2 Lifting 1

BPaaS$ for machine ‘ Analysis
interpretation ! Business
Scenarios
Derive
Competency

Instantiations ! Questions

4 Prototype

‘Matchmaking 2
', Prototype
Q‘uestionnaire
» J 3
Prototype

\ N
\ N \
\
<
\
\
y
d Evaluate
\
' Prototypes
v
\
\

\
™

for BPaa$

)
i

Domain

analysis
X

Requirements
Elicitation

a)Identify Modeling
Languages
(b)Remove unneeded
constructs
(c)Extend modeling
constructs

BPaa$ meta-modeﬁ

Implement the

new BPaa$

(d)Integrate .
TR meta-model in Evaluate the
o ADOxx new DSML
BPaa$
(e)Add additional Implement
semantics grachical
notations in

L

BPaaS$ for human
interpretation

ADOxx

» Information flow

77777777 » Instantiation of phase

Figure 3: Two AMME Lifecycle instantiations for the human and machine interpretation of BPaaS DSML

Problem 5

N =) =)
Problem
ali 7b

Problem WP Problem WHEMP Problem
1,2,3 4 7a

Problem 6

Figure 4: Main problems hindering agility of DSML en-
gineering faced during the development of DSMIAPTM
and BPaaS DSML

velop Deploy

~N
[%

to a constant manual update of the schema in
the knowledge graph.

3.3 Main Design Challenges and
Requirements

This sub-section presents the two main design
challenges and a list of requirements to be fulfilled
by the new agile ontology-based meta-modelling
approach in terms of domain-specific adaptations
and the continuous alignment between the two
knowledge representations: the graphical and the

ontology one. Each requirement was conceived
with a triangulation approach by considering (1)
complexity levels derived from the interviews’
findings; (2) findings from the two cases; and
(3) literature review. The details about the tri-
angulation approach can be found in Laurenzi
(2020).
Design challenges:

1. Design Challenge 1: The agile and ontology-
based meta-modelling approach shall promote
tight cooperation between domain experts and
language engineers by avoiding the separation
between the language engineering and mod-
elling components.

2. Design Challenge 2: The agile and ontology-
based meta-modelling approach shall avoid se-
quential DSML engineering phases while per-
forming domain-specific adaptations of mod-
elling languages.

Requirements (req. from 5 to 8 derive from
TBRI):

http://dx.doi.org/10.18417/emisa.19.6

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

12

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

Language Engineering
Roles

<Abstract Syntax>

<Notation>

5@ -

Language Engineers

o expertise barri&

Domain Experts

Modelling
= I - ep
i = i
£ B b - - . X&i -
i misalignment

Create

Long waiting time for
feedback-driven

e requirements

Demgn

!

Formalize

Ontology % Schema)
W

m|sal|gnment

Figure 5: Issues with the traditional meta-modelling architecture when developing semantic lifted DSMLs

1. Requirement I: The agile and ontology-based
meta-modelling approach shall enable the lan-
guage engineer to simplify a modelling lan-
guage;

2. Requirement 2: The agile and ontology-based

meta-modelling approach shall enable the lan-
guage engineer to change abstract syntax and
notation;

3. Requirement 3: The agile and ontology-based

meta-modelling approach shall enable the lan-
guage engineer to extend abstract syntax and
add new notation;

4. Requirement 4: The agile and ontology-based

meta-modelling approach shall enable the lan-
guage engineer to integrate concepts that belong
to different modelling languages or different
modelling views.

5. Requirement 5: The agile and ontology-based

meta-modelling approach shall enable the lan-
guage engineer to create new semantic domain
concepts.

6. Requirement 6: The agile and ontology-based

meta-modelling approach shall enable the lan-
guage engineer to create new semantic map-
pings between concepts from an abstract syntax
(linguistic view) to a semantic domain (domain
view).

7. Requirement 7: The agile and ontology-based
meta-modelling approach shall enable the lan-
guage engineer to modify the semantic mapping
between concepts from an abstract syntax (lin-
guistic view) to a semantic domain (domain
view).

8. Requirement 8: The agile and ontology-based
meta-modelling approach shall enable the lan-
guage engineer to delete the semantic mapping
between concepts from an abstract syntax (lin-
guistic view) to a semantic domain (domain
view).

4 Conceptualization of the Agile and
Ontology-Based Meta-modelling
Approach

The two design challenges were addressed by
proposing an agile meta-modelling approach that
integrates language engineering and modelling
into one component (see right side of Fig. 6). Thus,
activities of language engineering, modelling and
evaluation can be interleaved and iterated. Such
an approach addresses the first challenge as it
creates the conditions for the language engineer
and domain expert to cooperate tightly while en-
gineering a DSML. To address the second design
challenge, language adaptations are performed
on the fly. That is, language adaptations are ap-
plied in a piecemeal manner as demands arise.

http://dx.doi.org/10.18417/emisa.19.6

Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

Special Issue on Enterprise Modeling and Knowledge Graphs

While language engineers apply adaptations to the
DSML, domain experts can visualise the results
in real time, and thus they can provide immediate
suggestions. The sequential approach is therefore
avoided as modelling and evaluation activities do
not have to wait until a new DMSL is deployed to
be performed.

Such an approach also has the benefit of avoid-
ing propagation of changes throughout the whole
engineering lifecycle, i.e., Create, Design, For-
malise, Develop and Deploy/Validate phases Kara-
giannis (2018). Instead, new requirements can be
directly implemented into the DSML in a manner
that results are immediately available for testing.
The accommodation of requirements through di-
rect implementation also overcomes some of the
problems listed in sub-Sect. 3.2:

* The two problems about the documentation of
requirements (see problems 2 and 3);

* The problem about the alignment between the
Create and Design Phase (see problem 4);

* The problem about waiting for the design phase
to be finished until the implementation starts
(problem 5).

* The formalisation of the meta-model can be
done through the direct implementation of
the requirements into an ontology-based meta-
model. Such an approach overcomes problem
7.

4.1 An Example of the Tight Cooperation
in the Integrated Component

In the following, an example is described to clar-
ify the idea of an agile meta-modelling. In the
example, we assume the request from a physician
(i. e., domain expert) to introduce the concept of
an acute hospital as a special class of hospital.
The language engineer can accommodate such a
request by extending the class “Hospital” with a
class “Acute Hospital”, in the integrated compo-
nent (see Fig. 7).

The two attributes, name, and address are inher-
ited from the class Hospital. New attributes are
then added in the new class, such as a list of main
acute treatments and a graphical notation. As

soon as the extension is accomplished, the graph-
ical notation of the modelling construct appears
among the modelling constructs of the language,
which can be selected to be instantiated as a model
element. The physician can now visualise the new
concept and use it. In this way, models can be
created to include the new concept. For instance,
the new concept can be integrated into the context
of an organisational model which includes roles
and employees. Such straight implementation
of the concept and its immediate use creates the
conditions for the physician to provide immedi-
ate suggestions for adaptations, should he or she
have them. Eventually, these suggestions lead to a
more accurate representation of the concept. For
instance, new treatment activities might be added,
or existing ones deleted, as well as potential de-
sired changes to the graphical notation. Thus, the
language engineer and the domain expert tightly
cooperate to carry out engineering, modelling and
evaluation activities until a satisfactory version of
the DSML is achieved.

4.2 On-the-Fly Domain-Specific
Adaptations in the Integrated
Component

On-the-fly domain-specific adaptations are actions
that shall be performed in the component that in-
tegrates language engineering and modelling. For
this, the integrated component foresees a palette
(see left-hand side of Fig. 8) in which the graphical
notations of the DSML are displayed. The palette
is conceptualised to provide access to the language
engineering component. In the latter, the meta-
model can be adapted. Each graphical notation
is a gate to the related concept that resides in the
meta-model. For example, the left-hand side of
Fig. 8 depicts the palette displaying the graphical
notations of BPMN. From the BPMN Task one can
access the language engineering activities (see or-
ange rectangle in Fig. 8, which displays concepts,
relations, attributes and notation about the Task).
The language engineering activities shall, thereby,
allow for domain-specific adaptations of the knowl-
edge residing in the meta-model. For this, the
following three specifications should be affected:

http://dx.doi.org/10.18417/emisa.19.6

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

14

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

Meta-modelling Approach

Separate language engineering and modelling components

Meta-Model

Language

]
HE . H
] T
Engineers | Notation Design |
Health Insurance |-
\ ;
7 — N
) ! ®
- Modelling E
= "
VO Environment ;
- .

Domain e T
experts

Language Engineers
Domain Experts

Agile Meta-modelling Approach

Integrated language engineering and modelling component

~N e =~

. @ T
Model >)- =
= (M) : =

Figure 6. Integration of Meta-modelling and Modelling

Language engineering
Language Engineers USRS S
Organizational Unit <Notation>
88 e
_ agaress A || e rospaat
XXXXXX
" [\ g lbelassOf
2 a
ksl LI Acute Hospital
£ tight =)
i) . R 5 i
% cooperation T3 Acute Trestment:
S R > i
7 c H
o8 i :
pr ® ; Engineering \
; & ‘
Modelling Evaluation g
{instanceOf
Domain Experts Eﬁﬂ
e Fospal

Figure 7: Tight cooperation between language engi-
neers and domain experts

graphical notation, abstract syntax, and semantics.
The next sub-section discuss the operators that
were derived for the on-the-fly domain-specific
adaptations.

Palette

[< |

e

Figure 8: Integration of Meta-modelling and Modelling

4.3 Operators for On-the-Fly
Domain-Specific Adaptations

To perform on-the-fly domain-specific adaptations
on one or more modelling languages, a list of 10
operators has been identified. The operators allow
applying changes and extensions over the spec-
ifications of a modelling language. The list of
requirements presented in Sec. 3.3 served as a basis
for the creation of the operators. The requirements
were mapped to the four CRUD functions, which
are common in relational database applications:
Create, Read, Update and Delete. Each function
can map to a SPARQL statement: Create maps to
INSERT, Read maps to SELECT, Update maps
to UPDATE, Delete maps to DELETE. Specif-
ically, Requirements 3 to 6 are fulfilled by the
function Create, requirements 2 and 7 by Update,
and requirements 1 and 8 by Delete. There is no
requirement mapping to the function Read, which
is obvious, as the function does not fit the purpose
of changing or extending the modelling language
specifications. Each of the three functions Create,
Update and Delete, performs one specific domain-
specific adaptation, e. g., create a new modelling
element as a sub-class of an existing modelling
element, create a new sub-class relation between
two existing modelling elements, update the name
of a class etc. In this sense, domain-specific adap-
tations affect one of the following basic generic
modelling concepts: (1) Class, (2) Relationship,
(3) Attribute, (4) Attribute types and values.

http://dx.doi.org/10.18417/emisa.19.6

Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

Special Issue on Enterprise Modeling and Knowledge Graphs

The complete list of operators is described
below.

1. Operator 1: Create sub-class. This operator
aims to fulfil three requirements. It allows mod-
elling elements and modelling relations to be
extended (requirement 3). It allows the inte-
gration of modelling elements (classes) from
different modelling languages (requirement 4).
It allows extension of concepts in the semantic
domain (requirement 5).

2. Operator 2: Update class. This operator al-
lows modifying an existing modelling construct
(requirement 2), which includes attributes such
as name, comment, and graphical notations.

3. Operator 3: Delete sub-class. This operator
allows the removal of unneeded modelling con-
structs (i. e., modelling elements and modelling
relations) from the abstract syntax (requirement
1).

4. Operator 4: Create relation. This operator
allows the creation of new relations (i. e., bridg-
ing concept) between modelling elements in the
abstract syntax (requirement 4) as well as new
relations from modelling elements to seman-
tic domain concepts, i.e., semantic mapping
(requirement 6). Bridging concepts refers to
the relations that connect modelling elements
between different modelling languages or mod-
elling views.

5. Operator 5: Update relation. This operator
allows the modification of the existing relations
between modelling elements as well as relations
from modelling constructs to semantic domain
concept(s) (requirement 7).

6. Operator 6: Delete relation. This operator al-
lows the deletion of existing relations between
modelling elements as well as relations from
modelling constructs to semantic domain con-
cept(s) (requirement 8).

7. Operator 7: Create attribute: This operator
allows for adding new attributes to modelling
elements (requirement 3).

8. Operator 8: Assign attribute type or value.
This operator allows for assigning types (e. g.,

String, Integer, Boolean) or concrete values to
attributes of modelling constructs. A concrete
value is the reference to a graphical notation
(requirement 3).

9. Operator 9: Delete attribute: This operator
allows for deleting existing attributes from a
modelling element (requirement 1).

10. Operator 10: Update attribute: This operator
allows for modifying existing attributes associ-
ated to modelling constructs (requirement 2),
i. e., the name and the value type of the attribute.

A graphical depiction of each user action and
respective operator is shown in Fig. 9. Each
operator is triggered by a user action (e.g., a
domain-specific adaptation of extending a class
with a sub-class) and calls a method for the cre-
ation of an update, e. g., INSERT rdfs:subClassOf
relation between the two targeted ontology-based
modelling elements. Fig. 10 depicts Operator
1:Create sub-class and its relation to the user ac-
tion and the subsequent two updates. The second
update INSERT hasParent is used to graphically
visualize the dependency between the two graphi-
cal notations of the two modelling elements. Such
mechanisms allow the specialization of existing
concepts on-the-fly for any level of specificity that
may be required. In total, 11 updates were created
in association with each operator and subsequently
implemented in Java methods (Laurenzi 2020).

New relation to domain

Delete attribute
New modelling element ‘ ‘
reletion Update Update
relation attribute
I

New modelling element [
e Update relation to

1 “On-the-Fly"
| domain element Delete modeling | Domain Specific
I
nnnnn pt ‘ Assign attribute | »EemeNt Adaptations

ya
U"“‘E‘ type Delete modelling
New name | Assign attribute relation
[ol

Operators

Figure 9: Operators for the on-the-fly domain-specific
adaptations of modelling languages

http://dx.doi.org/10.18417/emisa.19.6

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

16

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

Integrate modelling elements from

“On-the-Fly”
different modeling languages. Yy

Domain-Specific
. Adaptations

\
Updates

Insert hasParent relation between two Palette Element instances in PO

nsert subClassOf relation between two Modeling Element classes in MLO

Figure 10: Meta-modelling operators and updates for
the ontology propagation

4.4 High-Level Ontology Architecture of
an Agile and Ontology-based
Meta-modelling Approach

To support the agile and ontology-based meta-
modelling approach, an ontology architecture is
proposed, which extends the theoretical foun-
dation of the ontology-based meta-modelling
(Hinkelmann et al. 2018). The architecture is
depicted in Fig. 11. The architecture ensures the
separation of concerns among the most relevant
aspects of a modelling language, which are:

» Abstract syntax (see def. in Sect. 2.2.2),

* Semantic domain and a mapping between con-
cepts from the abstract syntax to those of the
semantic domain (see def. in Sect. 2.2.2),

* Graphical notation (see def. in Sect. 2.2.2).

Respectively, the following three main ontolo-
gies were conceptualized:

* Meta-Model Ontology (MMO),
¢ Domain Ontology (DO),
* Palette Ontology (PO).

As Fig. 11 shows, the three ontologies reside
in the ontology-based meta-model layer. The
Meta-Model Ontology reflects the abstract syntax,
while the Domain Ontology reflects the semantic
domain. Concepts from the Meta-Model Ontology
are mapped with concepts of the Domain Ontology
(i. e., semantic mapping). Concepts in the Palette
Ontology represent the graphical notations of the
language for the palette, as well as for the graphical

models; and are linked to the concepts of the
Meta-Model Ontology. There are two different
specifications for the graphical notation: one for
the graphical models and one for the palette (see
violet and yellow arrows pointing to two different
notation types “for palette” and “for canvas” in
Fig. 11). This distinction allows showing different
graphical notations between the palette and a
graphical model. More details can be displayed in
the graphical notation of a model element than in
the corresponding notation in the palette, where
typically the space is limited.

The arrows from the model layer to the meta-
model layer shown in Fig. 11 are labelled and
indicate an instantiation relation.

Instances from the Palette Ontology should be
further instantiated for the creation of models to in-
herit graphical properties. Therefore, an ontology
language shall support the knowledge represen-
tation of an "instance of an instance". Moreover,
every model, like every modelling construct and
model element, is different from each other, thus
they should be uniquely identified. The Resource
Description Framework Schema RDF(S) supports
such representational needs and has the benefit of
being a W3C standard. RDF(S) is also commonly
adopted for the specification of knowledge graphs
(or lightweight ontologies), and if required, ad-
ditional expressivity can be added by the more
recent W3C standard Shapes Constraint Language
(SHACL) (W3C 2017). For example, SHACL can
be used to express the constraints of the BPMN
ontology meta-model (every Start Even must have
at least one outgoing sequence flow), which are
then used to validate BPMN models that are in
the form of RDF graphs. For these reasons, the
choice of the ontology language fell into RDF(S).

4.5 Specification of the Ontology-based
Meta-Model

The description of the ontology-based meta-model
is underpinned by Fig. 12.

The Palette Ontology (see blue bubbles in
Fig. 12) contains classes, object properties and
instances that specify:

http://dx.doi.org/10.18417/emisa.19.6

Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

17

Special Issue on Enterprise Modeling and Knowledge Graphs

1etaZ-mod
.g. RDFS 3.0)

Meta? — model layer

Ontology-based
meta-model layer

Graphical and én tology-
based model la j‘(er

QO class @ instance — subclassOf ----= > instanceOf — s |o:isMappedWith

po:hasPaletteThumbnail ——s po:hasCanvasThumbnail ——> po:isRelatedTo

“ Graphical correspondence |:> Instantiation

Figure 11: Ontology architecture of ACAME

* the graphical notations (for the palette and for
the graphical model) of the modelling language
(>i.e., po:PaletteConstruct).

* Knowledge for positioning the graphical nota-
tions over the palette (i. e., po: PaletteCategory).

* In detail, the class po:PaletteConstruct class

has two sub-classes: po:PaletteConnector and
po:PaletteElement.

po:PaletteConnector contains instances reflect-
ing connectors of one or more modelling lan-
guages (e.g., message flow and sequence flow
for BPMN), while the class po:PaletteElement

http://dx.doi.org/10.18417/emisa.19.6

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

18

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

contains

subclassOf

isMappedWith

hasBridgingConcept

\ hasSource

’

‘hasOrderNumber

xsd:boolean
hiddenFromPalette
xsd:string xsd:string

hasPaletteThumbnail hasModellmage

subclassOf hasParent

xsd:integer
hasHeight

isGroupedin hasWidth

xsd:integer

xsd:integer

|sPartOf
isShownlIn

Figure 12: Root concepts and relations of the Domain Ontology, Meta-Model Ontology and Palette Ontology

contains instances reflecting modelling elements
of one or more modelling languages (e. g., task
or data object for BPMN). Instances from both
classes inherit three datatype properties:

* po:paletteConstructlsHiddenFromPalette,
which is associated with a Boolean datatype
property. A “true” value means that the graphi-
cal notation for the palette will not be displayed
in the palette, and a “false” value means that it
will be displayed. The default value for each
instantiation is “false”.

* po:paletteConstructHasPaletteThumbnail,
which is associated with a string datatype prop-
erty that will contain the Uniform Resource
Identifier (URI) of a graphical notation to be
shown in the palette.

* po:paletteConstructHasModellmage, which is
associated with a string datatype property that
will contain the Uniform Resource Identifier
(URI) of a graphical notation to be shown in a
graphical model

The class po:PaletteElement has two datatype
properties:

* po:paletteConstructHasWidth, which is associ-
ated with an integer datatype property that will

contain the default value of the width of the
graphical notation for the model;

* po:paletteConstructHasHeight, which is asso-
ciated with an integer datatype property that
will contain the default value of the height of
the graphical notation for the model.

Note that the two datatype properties do not ap-
ply for modelling relations, thus they are inserted
in the palette Element class. The two proper-
ties do not regard the size of the thumbnail to
be displayed in the palette. The rationale is that
all the thumbnails in the palette should have the
same fixed width and height in order to have a
homogenous appearance. Hence, they should be
fixed values, which will be hardcoded in the user
interface and will be used for any new thumbnail.
Conversely, the image size to be shown in the
model may vary from element to element. Al-
though the two datatype properties are meant to
store default values, they may be subject to change
depending on the taste of the modeller or imposed
modelling conventions, thus they should not be
hard-coded.

Also, the class po:PaletteConstruct has five
object properties:

* aself-relationship po:palette Construct Has Par-
ent Palette Construct. This relation determines

http://dx.doi.org/10.18417/emisa.19.6

Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

Special Issue on Enterprise Modeling and Knowledge Graphs

the hierarchy among modelling constructs with
the purpose to show it in the palette.

* po:palette Construct Is Related To Modelling
Construct pointing to the class lo:Modelling
Language Construct. This object property con-
nects instances of the classes po:Palette Con-
nector or po:Palette Element (i.e., graphical
notations) with classes of the Meta-Model On-
tology (i. e., abstract syntax).

* po:palette Construct Is Grouped In Palette Cat-
egory pointing to the class po:Palette Category.
This object property specifies which Palette
Constructs are grouped into which category.

* The class po:Palette Category has the purpose
of grouping graphical notations of similar types
into categories. When a modelling language
or DSML presents many concepts that are to
be shown in the palette, grouping them into
categories is a good solution to avoid cognitive
overload. e. g., the modeller Bizagi®® foresees
several categories to group graphical notations
in the palette, e. g., for BPMN the palette it
shows five categories: (1) flow elements, (2)
connecting objects, (3) data (4) swimlanes, and
(5) artifacts.

The po:Palette Category has the following two
datatype properties and one object property:

* po:palette Category Has Order Number, which
is associated to an integer datatype property
that will contain a number. The number will
be used for ordering the categories from top to
bottom, where the value 1 corresponds to the
top element in the palette.

* po:category Is Shown In Modelling View, which
points to the class lo:Modelling View. This ob-
ject property binds a category to a modelling
view, so that for each selected modelling view
the correspondent categories are shown in the
palette. In turn, since each Palette Construct
has its category, the latter is populated with the
graphical notations of the constructs. The same

16 https://www.bizagi.com/en

category can be shared by two different mod-
elling views. This is the case of the modelling
language BPaaS, which since extends BPMN,
it also shares the same process modelling view.

The Meta-Model Ontology (see green bubbles
Fig. 12) contains classes, taxonomy of classes, and
properties (i. e., relations and attributes) describ-
ing the abstract syntax of a modelling language.
As shown in Fig. 12, the Meta-Model Ontology is
based on five classes:

* lo:Modelling Language — this class specifies
the modelling language.

* lo:Modelling View — this class specifies the
views of a modelling language. One or more
modelling views comprise a modelling lan-
guage. This knowledge is captured by the ob-
ject property isPartOf between the two classes
lo:Modelling View and lo:Modelling Language.

* lo:Modelling Language Construct — this class
generalises the concepts modelling elements
and modelling relations.

* lo:Modelling Element — this class is a sub-class
of lo:Modelling Language Construct and speci-
fies the modelling elements of a language. This
class has two object properties: isMappedWith
and hasBridgingConcept. The object property
isMappedWith reflects the formal explication
of the semantic mapping. This connects ele-
ments from the Meta-Model Ontology to those
in the Domain Ontology. The self-relation of
the Modelling Element class hasBridgingCon-
cept indicates that a modelling element has a
bridging concept targeting a modelling element
from either the same modelling language (but
different modelling view) or from a different
modelling language. This relation allows the
user to navigate between two elements when
they are instantiated in the model.

* lo:Modelling Relation — this class is a sub-class
of lo:Modelling Language Construct and spec-
ifies the modelling relations of a modelling
language. In a model, each instantiated relation
has a source and a target modelling element.
For example, a sequence activity in a BPMN

http://dx.doi.org/10.18417/emisa.19.6

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

model may have a start event as a source ele-
ment and a user task as a target element. This
knowledge representation is captured with the
two object properties hasSource and hasTarget,
which point to the class lo:Modelling Element.

The Meta-Model Ontology imports one or more
modelling languages. Each concept has the prefix
of the language it belongs to, e. g., Task in BPMN
is shown as a class bpmn:Task. The taxonomy
of classes supports the inheritance of properties
from a class to its sub-classes. In ontology lan-
guages, like RDF(S), the inheritance mechanism
is supported when specifying the rdfs property
subClassOf between classes, where the sub-class
inherits the properties specified in the class. This
is convenient when extending a modelling con-
struct as properties do not need to be re-created.
Also, the inheritance mechanism applies from the
first defined class to the last sub-class. Therefore,
when creating an instance of a class (i. e., a model
element), all the properties that were defined in
the class and the above super-classes are inherited,
creating the conditions for a modeller to specify
the properties.

The Domain Ontology Concept (see left-hand
side of Fig. 12) is the root concept for domain
ontologies containing classes and properties that
describe the semantic domain. As already men-
tioned, the semantic domain is independent of
the abstract syntax of a language and describes
a domain of discourse. Domain ontologies are,
therefore, existing ontologies that are imported
to further specify a language construct. Domain
ontologies are typically aligned with Upper On-
tologies, which are also known as Top Level
Ontologies, containing a general semantic level,
i.e., general terms like events, time, and loca-
tion. Examples of such ontologies can be found
across the literature base (Chavula and Maria Keet
2015). Similar to the work in Sandro Emmenegger
et al. (2013), where enterprise domain concepts
are extended with general concepts, the Domain
Ontology in this work extends to general and
language-independent concepts like top-level el-
ements. Thus, both concepts from a Domain

Ontology and concepts extended from the Do-
main Ontology can be mapped with concepts
from the Meta-Model Ontology. The extension
of the Domain Ontology is left to an ontology
engineer.

In order to support the interlink between the
three ontologies in the ontology architecture, the
Palette Ontology imports the Meta-Model Ontol-
ogy, which in turn imports Domain Ontology.

5 Implementation of the Agile and
Ontology-Based Meta-modelling
Approach

The approach is implemented in the modelling
tool AOAME, and is publicly available” . Fig. 13
depicts the high-level three-tier software archi-
tecture of AOAME. Apache Jena Fuseki® is a
SPARQL server providing the triplestore. The
web service is a JEE application. The graphical
user interface (GUI) is an Angular®® application
integrating the canvas library written in JavaScript,
GoJS library?° .

The triplestore contains the Meta-Model On-
tology, the Palette Ontology and the Domain On-
tology. The Domain Ontology can be extended
with external ontologies or graphs. Palette ele-
ments or connectors from the Palette Ontology
have relationships with classes in the Meta-Model
Ontology, which in turn have relationships with
the classes in the Domain Ontology. The three
ontology files can be found in GitHub? .

The GUI shows two main components: (a)
the palette (left-hand side of the GUI in Fig. 13)
in which the graphical notations of an ontology-
based meta-model are displayed; (b) the model
editor (right-hand side of the GUI in Fig. 13) in
which models can be designed by selecting the
graphical notations from the palette.

The web service (see top of Fig. 13) processes
all the incoming and outgoing requests and manip-
ulates data between the GUI and the triplestore.

17 https://aoame.herokuapp.com/

18 https://jena.apache.org/documentation/fuseki2/
1 https://angular.io/

20 https://gojs.net/

2 https://github.com/manulaur/Ontology4ModelingEnvironment

http://dx.doi.org/10.18417/emisa.19.6

Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

21

Special Issue on Enterprise Modeling and Knowledge Graphs

Web Service

User Interface ay

Fetch Update
ontologies ontologies

=)

Includes

N

Triplestore

Modeling Language Ontology

Domain Ontology

Figure 13: Software architecture of the prototypical tool AGAME

Java libraries of Fuseki have been used for the
development of two sets of APIs. One set of APIs
fetches the ontologies from the triplestore and
display them in the GUI, in a visual form (see
blue arrows 1 and 2 in Fig. 13). The other set of
APIs implements the meta-modelling operators
(see sub-Sect. 4.3), thus allowing the generation
of SPARQL statements and subsequent update of
the triplestore (see red arrows 3 and 4 in Fig. 13).

The presented software architecture, there-
fore, supports the achievement of the continuous
consistence between the human- and machine-
interpretable knowledge of modelling languages,
while being subject to domain-specific adapta-
tions.

The domain-specific adaptations are enabled
by four main features that were implemented in
the palette component, which are described as
follows:

* Feature 1. Extending a Modelling Construct:
this feature allows for the extension of both the
modelling constructs and properties.

* Feature 2. Editing a Modelling Construct: this
feature allows for the editing of both modelling
constructs and properties and for the removal
of properties.

* Feature 3. Hiding a Modelling Construct: this
feature allows hiding modelling constructs from
the palette.

* Feature 4. Deleting a Modelling Construct:
this feature allows for the removal of modelling
constructs.

For space reasons, only Feature 1 is presented.
As shown in Fig. 14, the view consists of a pop-
up window, which appears after the selection of
the extension feature (see red arrow) from the
context menu, e. g., Extend User Task. The pop-
up shows fields for and from the ontology-based
meta-model.

The description of the remaining features can
be found in Laurenzi (2020).

6 Evaluation of the Agile and
Ontology-Based Meta-modelling
Approach

Tab. 1 shows the evaluation strategy for the Agile
and Ontology-Based Meta-modelling Approach.

The prototype method type is used for both an
artificial and a naturalistic evaluation (Pries-Heje
et al. 2008). The artificial evaluation form aims
to evaluate the correct design of the approach
against the previously defined requirements. The

http://dx.doi.org/10.18417/emisa.19.6

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

22

Emanuele Laurenzi

Visualization of the
Palette Ontology

Special Issue on Enterprise Modeling and Knowledge Graphs

Visualization of the

Name of the extension:
construct to be Tab for language
extended integration

Alternative to the

Meta-Model Ontology

Current tab for
extension

Name of the
parent class

Enter description
for the new
construct

Choose to show
the new construct
as as a root
element in the

palette

Extend |User Task

New Modelling Element ntegrate with Existin

Create new sub-class of User Ta

Choose the Meta-Model
Ontology prefix
(generated SPARQL SELECT)

Enter a name for the new

construct

Choose the category to which the

[] Palette root elemem|— ctivities

new construct should belong

(generated SPARQL SELECT)

‘ Create New Modeling Element

Choose the graphical

notation to be shown in the
Model Editor

!

—-\

Abort action

Choose the graphical notation
to be shown in the Palette

Create the new construct (generates SPARQL INSERT DATA)
and go to pop-up for creating datatype and object properties

Figure 14: Visualization of "Feature 1. Extending a Modelling Construct” in the GUI of AOAME

Table 1: Evaluation strategy for the agile and ontology-based meta-modelling approach

Dimension

Characteristic values

What to evaluate

The agile and ontology-based meta-modelling approach

When to evaluate Ex post (Eval3)
Evaluation form Naturalistic Artificial
Evaluation method Prototype and illustrative scenario Prototype
0 Evaluation purpose Utility of the artifact ‘ Purpose and scope Correct design of the artifact
ow to evaluate

Artifact type Method

Evaluation criteria | Operationability of the approach ‘ Generality of the approach AOAl;/H]Eﬁfiil;fmem
u

Measurement

Evaluation Qualitative

Approach

naturalistic form is used to evaluate the utility of
the approach. Additionally, the illustrative sce-
nario method type is considered for the evaluation
of the utility of the artifact. Namely, real-world
use cases are proposed to be implemented in the
prototype. The considered evaluation criteria are
operationality and generality, which are both for
the purpose of utility. Hence, the two evaluation

criteria fit both the artifact type “method” and
the evaluation activity chosen in the “where di-
mension”: Eval3. The two evaluation criteria are
specified and contextualised to fit this research
work:

* Operationability of the approach: The ability
of the approach to preserve continuous align-
ment between the graphical and the machine-

http://dx.doi.org/10.18417/emisa.19.6

Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

Special Issue on Enterprise Modeling and Knowledge Graphs

interpretable representation while performing
on-the-fly domain-specific adaptions of mod-
elling languages.

* Generality of the approach: The ability of the
approach to be applied in different application
domains.

To evaluate the correct design of the approach
against the requirements, the criteria are contextu-
alised as follows:

* the extent to which the requirements are satisfied
by the implemented approach AOAME.

Finally, a qualitative approach is adopted to
measure the artefact with respect to the proposed
evaluation criteria. Hence, understanding the
extent to which operationability, generality and
design requirements are satisfied and descriptively
emphasised.

6.1 Evaluation of the Correct Design of
the Artifact

The evaluation is presented by elaborating on the
basis of each of the eight requirements introduced
in sub-Sect. 3.3. The description is underpinned
by Fig. 15, which provides a visual traceable map
between the requirements (see top of the figure)
and the implemented functionalities in AOAME
(see bottom of the figure). The different lay-
ers from top to bottom reflect the gradual steps
adopted in this research work. After the elici-
tation of eight requirements, ten operators were
conceived, accordingly (see mapping between re-
quirements and operators). Subsequently, each
operator is implemented by at least one SPARQL
statement. The latter allows propagating domain-
specific adaptations from the graphical to the
machine-interpretable representation of the mod-
elling language.

For space reasons, only the traceability map of
one requirement is described.

* Requirement 3: An agile and ontology-based
meta-modelling approach should enable the
language engineer to extend abstract syntax and
add new notation.

Requirement three is satisfied by two functional-
ities of Feature 1: Extending Modelling Construct.
These are described as follows:

(1) Extending Modelling Construct incorpo-
rates SPARQL 2, which allows the creation of new
modelling constructs as a specialization of existing
ones. The new modelling construct includes a new
name (i. e., Uniform Resource Identifier), label,
comment and graphical notation. SPARQL 2 sup-
ports Operator I — create sub-class and Operator
8 — Assign concept, attribute type or value.

(2) Creating New Datatype Properties incor-
porates SPARQL 4, which allows the creation of
new datatype properties for a modelling construct.
SPARQL 4 supports Operator 7 — create attribute.

6.2 Evaluation of the Operationability of
the Artefact

For this evaluation activity, six use cases were
implemented through the prototype AOAME. The
use cases are chosen based on two criteria: (1)
validation of all the AOAME’s functionalities;
(2) significance in real-world applications. The
validation of all functionalities proves the op-
erationability of the agile and ontology-based
meta-modelling approach. All AOAME’s func-
tionalities and the six use cases are described in
Laurenzi (2020). The center of Fig. 16 depicts
the six use cases, and the used functionalities are
on their right- and left-hand sides. The arrows
indicate which functionality is used in which use
case.

For space reasons, only the third use case
scenario is described, which is derived from
the patient transferal management case (see sub-
Sect. 3.2).

In this use case, the transferal manager needs to
document the medical information of patients ac-
cording to the International Classification Of Func-
tioning Disability Health, i.e., ICF Standard?? .
Such medical information is required to be in the
cost reimbursement request, which must be sent
to the health insurance provider. A request that

22 https://www.who.int/standards/classifications/international-
classification-of-functioning-disability-and-health

http://dx.doi.org/10.18417/emisa.19.6

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

24

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

-
Requirements

Operator 2
Operator 10

\Qperabars

l Operator 4 / Operator 6

Operator 5

e
= “7,/’-{ SPARQL 6]

[SPARQL 8 }

So——— sparaL7 | ((seara10
\SPARQL statement; //

Editing bridging connectors/semantic

=

ye==

=
View to create a

Deleting datatype prt ope erties/bridging datatype property

connectors/semantic mappings -

Editing datatype properties

- g
Editing modeling constructs Hiding modeling constructs

SPARQL7 J\ mappings

Views to delete datatype property/bridging
connector/seman

Creating semantic mappings
==

Extending modeling constructs
via integration Creating Domain Ontology concepts

Figure 15: Requirement mapping for the correct design of the artifact

includes medical information of patients that does
not comply with the standard is rejected. There-
fore, the transferal manager needs quick access
to such medical information while preparing the
request for the patient’s case. The ICF Standard
is a specific document, and as such, it is added
as a specialisation of the concept Data Document.
The latter belongs to the Document and Knowl-
edge Modelling View of the DSMLAPTM (.e.,
Domain Specific Modelling Language for Patient
Transferal Management) (E. Laurenzi et al. 2017)
(see bottom of Fig. 17). On the other hand, the
preparation of the cost reimbursement request is
a BPMN User Task called *Prepare KoGu’, i.e.,
KoGu is the acronym of cost reimbursement in
German language. The request itself is modelled
with a data object called KoGu Data Object, which
is an input for the task Prepare KoGu. Both the
user task and the data object belong to the Process
Modelling View of DSML4PTM (see upper part
of Fig. 17). Next, given the need for the transferal
manager to quickly access medical information, a
bridging connector "is part of" is added between
the ICF Standard document and the KoGu Data
Object (see Fig. 17). In this use case, we assume

that both the ICF Standard and the connection to
the KoGu Data Object are not yet available from
the DSML. Thus, domain-specific adaptations are
to be performed.

The AOAME’s functionalities "Extend mod-
elling construct”, "Create semantic mapping",
"Create bridging connector”, and "Created
datatype property" are used to implement the
third use case. Use Case 3 is from the Patient
Transferal Management case (see sub-Sect. 3.2).

Fig. 18 depicts the conceptual solution of this
use cases both (a) before and (b) after the domain-
specific adaptations, which are on top and bot-
tom of the figure, respectively. The available
elements and relations before the language adap-
tation are: dkmm:DataDocument from the Doc-
ument and Knowledge Meta-Model (DKMM);
dsmldptm:KoGuDataObject from DSML4PTM,
and the parent class bpmn:DataObject from
BPMN. The concept dsmi4ptm:KoGuDataObject
extends the bpmn: Data Object. Medical informa-
tion regarding the ICF Standard is also available.
They already exist in the ICF Ontology. Since
this contains domain knowledge and is not a lan-
guage per se, it is imported and integrated into

http://dx.doi.org/10.18417/emisa.19.6

Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

25

Special Issue on Enterprise Modeling and Knowledge Graphs

Extend modeling constructs via
integration

Create Domain Ontology concept for the
semantic mapping

Add existing sub-classes to User Task

oo Use Case 1: —
Adding Discretionary Task
= Create semantic mapping
Create bridging connector Use Case 2: B ‘
_— Extending BPMN Group ——
== Use Case 3:)
Adding and referencing “ICF Extend modeling construct
Create datatype property Standard” document
A e ﬁ;;sub-c]asso’uwrﬁsk
Create New Attribute
o Use Case 4: —
= Deleting “ICF Standard”
i document and/or properties |
Delete modeling construct .
. o ° :; : ° : Delete datatype property/bridging connector/semantic mapping
] Use Case 5: \
=1 = Editing properties of “ICF —
S Standard” document
o - Eant ctProperty) I
Edit annotation properties -
o Use Case 6: .
— Hiding “ICF Standard” ’
document
)) Edit bridging connector/semantic mapping
== Edit
Edit datatype property N h l
s oo Hide modeling construct i o
Edit Attribute (V Edit Bridging Connector (Object Property)
) ' []
==
A - |
Figure 16: Use cases implemented through AOAME'’s functionalities
the Domain Ontology. Further properties could * The BPMN Ontology.
also be considered in the ICF Standard, e. g., the The DKMM Otology, which contains the class
patient progress status as well as general concepts hierarchy, attributes and relations of the Docu-
like the physical location, which is defined in the ment and Knowledge Meta-Model (DKMM).
Top Level Ontology. However, they are left out to « The DSML4PTM Ontology, which contains the
avoid stretching too much the use case. class hierarchy, attributes and relations of the
The bottom of Fig. 18 shows the expected result DSML4PTM. DSMLA4PTM extends, among
after performing the domain-specific adaptations. others, BPMN and DKMM.
The result contains the following new resources. « The Meta-Model Ontology. The three lan-
The set of ontologies required to implement guage ontologies BPMN and DKMM and

Use Case 3 is the following: DSMLAPTM are imported and integrated in

http://dx.doi.org/10.18417/emisa.19.6

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

(a) Process Modeling View

0000
*

is part of

B1405110
B730

D330g467

ICF Standard

Figure 17: Bridging connector ’is part of between the
ICF Standard document and KoGu Data Object

the Meta-Model Ontology. Modelling elements
from the three ontologies are entered as sub-
classes of lo:Modelling Element while mod-
elling relations are entered as sub-classes of
lo:Modelling Relation. The modelling language
DSMLAPTM has several modelling views, i. e.,
process modelling view, document and knowl-
edge modelling view, organisation modelling
view, Decision Modelling View and the control
element modelling view. The green quadrant
in Fig. 19 shows an excerpt of the Meta-Model
Ontology containing concepts of both DKMM
and BPMN.

* An excerpt of the ICF Ontology, which con-
tains a few concepts of the National Centre for
Biomedical Ontology.

* The Domain Ontology. The ICF ontology is
imported into the Domain Ontology. The or-
ange quadrant in Fig. 19 shows an excerpt of
the Domain Ontology containing concepts of
the ICF Standard.

e The Palette Ontology. The two classes
po:Palette Connector and po:Palette Element
contains the instances for displaying the graph-
ical notations of BPMN. Such instances are
already linked to the respective classes in the
Meta-Model Ontology. The blue quadrant
Fig. 19 shows an excerpt of the Palette On-
tology, which contains two palette elements
po:Data Document and po:Data Objects. As
the figure shows, the two instances are linked
with the homonym classes, which belong to
the modelling languages DKMM and BPMN,
respectively.

This set of ontologies is uploaded to the triple-
store in order to populate the palette. The selected
modelling language for the palette is DSML4PTM
(i. e., Domain Specific Modelling Language for
Patient Transferal Management), and the selected
modelling view is "Document and Knowledge
Modelling View".

Fig. 20 depicts the user actions that are per-
formed to implement Use Case 3, where step 12
shows the final result.

The query result shown in Fig. 21 proves that
the machine-interpretable representation of the
modelling language is consistent with the graphi-
cal representation. Therefore, the functionalities
of Feature 1, "Creating New Bridging Connec-
tors" and "Creating New Datatype Properties”, are
validated.

6.3 Evaluation of the Generality of the
Artifact

The generality evaluation criteria refers to the
ability of the proposed agile and ontology-based
meta-modelling approach to be applied in different
application domains. For this, the approach is
implemented to support the innovation process of
Design Thinking (Emanuele Laurenzi et al. 2020).
The approach is also extended with ontology-
based case-based reasoning for the retrieval of
successful business model canvases, where the
ontology-based canvases would be modelled in
AOAME (Peter et al. 2020). In Mancuso and
Laurenzi (2023), the approach has been used to

http://dx.doi.org/10.18417/emisa.19.6

Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

Special Issue on Enterprise Modeling and Knowledge Graphs

(a) Before the domain-specific adaptations

Modeling Language Ontology

Document and Knowledge Meta-Model

BPMN

To be extended dkmm:Data_Document

7y
subClassOf

DSML4PTM
dsml4ptm:KoGuDataObject

%?e\atech

| IsRelatedTo

hasPaletteThumbnail

Palette Ontology

KoGu.png

hasModellmage

po:Palette - §
Element g |
7 o

ins 2
tanceor £
hasModellmage

hasPaletteThumbnail

DataObject.png

hasModellmage

(b) After the domain-specific adaptations

Modeling Language Ontology

Document and Knowledge Meta-Model

J1uBWRS MaN

d

{SEVVIR]

Domain Ontology
dkmm:Data_Document

A

BPMN

;/\ bpmn:DataObject ///\‘

—

1d
Buigpug man

N

rdfs:subklassof
1

icf:ICFCategory ‘ icf:BodyFunction

International Classification Of Functioning
Disability Health Ontology N N \
< \Mlatiun > rdfs:subFlassof
pation ——— - :
DSMUPTM ™ ——

[icfiActivitiesAndParticipation s
. N - IsMappedWithEnvironmentFactors. | . /
‘ e O T e e CEO S } ctur T I dsml4ptm:ICFStandard WM,'/% dsml4ptm:KoGuDataObject
- ures_H ub /
e | ey :
e & |
. - vy AT | \ g R
icf:ICFQualifier icf:Performance .@@ | hasTimestamp ;i E) ”)
Standard 3"?‘ / \\ g 3/ /
£ B
This concept describes the medical data N & /
NeW conforming to the ICF Standard and is part of BT [
“ﬂbuxei the KoGu data object . |
3

IsRelatedTo

IsRelatedTo (J } /
[wresion] ||
Palette Ontology | | /

hasModellmage

KoGu.png

hasPaletteThumbnail

po:DataObje hasModellmage DataObject.
png

ICFstandard-
dkm.png

DataDoucme
nt-dkm.png

hasModelimage

‘hasPaletteThumbnail

Figure 18: Conceptual solution (a) before and (b) after adding and referring ICF Standard document

create ontology-based user stories to support the

Scrum methodology.

7 Limitations of the approach

models. Currently, we deal with it in two ways:
(1) a functionality export both a model and related
ontologies at any time; (b) unless a class is not
a terminal node of a meta-model (i.e., the last
sub-classes in the taxonomy) it cannot be deleted

An open issue of the presented research approach
is the possible inconsistencies that meta-modelling
operators can cause to existing models. This might
occur when an adaptation of a DSML deletes mod-
elling elements that are already used in existing

from the GUIL

Another limitation concerns those projects
where a new ontology-based meta-model needs

http://dx.doi.org/10.18417/emisa.19.6

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

28

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

Meta-Model Ontology

/
/

__[© bpmnFlowObject L\
=

N
AN

bpmn:Event

T omsgr | <

/| —
/ bpmn-TextAnnotation

/ /
/ bpmn:Group
T
/
7
[/
/
,’/
*
 poDataObject
\\
—
Y e
po-PaletteElement

L .
\ bpmnGateway

\ .
S i
bpmnLane

L \\
bpmn:DataObject bpmnPool

Palette Ontology

Domain Ontology

[% ickb_BodyFunction |

Figure 19: Excerpt of the Palette Ontology, Meta-Model Ontology and Domain Ontology related to the modelling

languages DKMM, BPMN and ICF

to be created, which requires some ontology engi-
neering effort.

8 Conclusion

This research work started by stressing the cur-
rent struggle to include domain experts in the
design and maintenance of enterprise knowledge
graphs (EKGs) schemas. For the resolution of this
problem, it was investigated the adoption of a meta-
modelling technique and semantic lifting, which
are common in the Enterprise Modelling disci-
pline. Findings from literature, expert interviews
and case analysis pointed (1) to the need to inject
agility into the current meta-modelling technique
and (2) to a shift of the paradigm from semantic
lifting to an ontology-based meta-modelling. The
latter replaces a meta-model with an ontology,
thus specifying an abstract syntax of a modelling
language in an ontology language. The proposed

approach built on this paradigm by proposing oper-
ators for the domain-specific adaptations of mod-
elling languages, which are able to ensure the spec-
ification of a domain-specific modelling language
in an ontology language, even while adapting the
language. In this sense, the continuous align-
ment between human- and machine-interpretable
knowledge is achieved. Since concepts ina DSML
can address a specific enterprise domain, they can
be equivalent to an EKG schema. Therefore, the
domain-specific adaptations allow the design and
maintenance of EKGs schemata by adding and
removing concepts, properties of and relationships
among concepts. Because modelling languages
have an established syntax, semantics and graph-
ical notation, they can be easily understood by
domain experts. The domain-specific adaptations
and their immediate test in the single integrated
meta-modelling and modelling component enable
the tight collaboration between language engi-
neers and domain experts. A domain expert with
language engineering know-how can also attempt

http://dx.doi.org/10.18417/emisa.19.6

Enterprise Modelling and Information Systems Architectures

Vol. 19, No.

6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

29

Special Issue on Enterprise Modeling and Knowledge Graphs

[Domain Specific Modeling

Extend Data Document

(a) Fill in all

New Modeling Element ntegr

with Existing Elements

[Document Knowledge Mo.

~ Create new sub-class of Data Document

Hide

. Documents

Extend Data Document &/

Edit Data Document

Prefx Chid Elemen

dsmidptm:

~ ICF International Standard

International Classification of Functioning, Disability and Health htps://bioportal.bioontology.org/c

[Palette root element Documens

Palete
I

ICF Standard K%

¥ I stancara k

&
q KoGu Siroke Document

Cancel

required knowledge

(b) Click on «Create New
Modeling Element» button

Add Properties for ICF Standard

Datatype Semantic Me

Bridging Connector

Add Properties for ICF Standard

Datatype Bridging Connector Semantic Mapping

Add Datatype Property

IS

button

Click on “Insert Datatype Property”

Cancel

Attributes for ICF Standard

Create New Attribute

Create new DataType String, Integer, Boolean, Date

Typo ofvao
Add Datatype Property ICFstandardHasTimeStamp ~ DateTime v Seta default value (optional
New datatype property created and stored
(a) Enter name for (b) Enter type of m
 thenewdatatype — valueforthenew %
ICFstandardHasTimeStamp Range DateTime v
property datatype property
Cancel Cancel N
(c¢) Click on «Create
Attributenb
—

\ 4

Add Properties for ICF Standard

(a) Select Bridging

Datatype Semantic Mapping
Connector tab

Bridging Connectory

Add Bridging Connector (Object Property)

Insert new Bridging Connector
b

Cancel

(b) Click on “Insert new Bridging
Connector” button

Create new ObjectProperty Refers to an existing language concept

Select a Range

ogudataobjec|

searen (a) Search for and select the “KoGu

Data Object”

dsmi4ptmKoGu Data Object

-

(b) Click on “Create Relation” button

==

Add Properties for ICF Standard

(a) Select
Datatype Bridging Connector fappingy Sommiie
Mapping tab
Add Semantic Mapping (Object Property) (b) Click on
“Insert new

Semantic

Insert new Semantic Mapping

Create new ObjectProperty Refers to an existing concept -
ICFStandardisMappedWithBody -
St aRarge (b) Click on
Search (a) Search for and select the «Create Relation»
bodyfunci « -
eovincion ~ concept “body funct v

Add Properties for ICF Standard

Datatype

Add Semantic Mapping (Object Property)
_ New semantic mappings created and stored
Insert new Semaniic Mapping

ICFStandardisMappedWithBodyFunction Range

ICFStandardisMappedWithBodyStructure Range:

ICFStandardisMappedWithEnvironmentalFactors Range

ICFstandardisMappedWithActivitiesAndParticipation Range ltp /A

Cancel

4

Add Properties for ICF Standard

Datatype Brid

Semantic Mapping

Add Bridging Connector (Object Property)

Insert new Bridging Conneclor

ICFStandardisPartOfKoGuDataObject Range:htp /. ch/modelin

Cancel

New bridging connector created and stored

ngEnvironmenyDSMLAP Ty

Domain Specific Modeling... ¥

Document Knowledge Mo...

81405110

ofifgler ICF Standard

Connectors

Figure 20: Steps to extend the modelling element "Data Document” with "ICF Standard"

New modeling
element
displayed as
sub-concept of
“Data
Document”

http://dx.doi.org/10.18417/emisa.19.6

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

30

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

SELECT DISTINCT 2paletteElementlabel 2graphicalNotation4Palette ?isHidden ?paletteCategory 2?parentPaletteElement 2relatgaCkaAs PN
comment 2parentClassOflewtiodelingElement 2attribute 2valueType bridgingConnector 2modelingElement semanticMapping 2DOconcept

WHERE {
?paletteElement rdf:type po:PaletteElement .
?palettetlementlLabel .
tructHasPaletteT

?palettetlement
?paletteElement
2paletteElement
?paletteElement
2paletteElement
?paletteElement
?relatedClass

2comment
owl:DatatypePrope
ain ?relatedClass.

o Raw Response

Showing 1 to 4 of 4 entries

f 2parentClassOfNewModelingElement .

il 2?graphicalNotation4Palette .
e ?isHidden .

ry 2paletteCategory .

t ?parentPaletteElement .
onstruct 2?relatedClass .

Expected result met

Search: Show | 1000 v entries

paletteEler graphicalN isHidden ' paletteCat: p: relatedClas
a Iy a a a

v v

<@

v v v v

parentClas attribute valueType bridgingCc i icM DO p
a 2 a a a
v v v v v

<@
P,

"Internatio
nal
Classificati
on of
- Functionin
de 9
_ Disability
; and
Health

ML4PTM#
(Crstanga MPS/Di0

"ICF
Internatio
nal
Standard”

"ICFstand “false"**x "~
sd:boolea
dkm.png" n

ntology.or
g/ontologi
es/ICF?

p=classes

“ portal.bioo — - ©

Figure 21: Query results after domain-specific adaptations in Use Case 3: Adding and Referring ICF Standard

document

the engineering activity. The conceived agile and
ontology-based meta-modelling approach was in-
stantiated in the prototypical tool AOAME, which
integrates meta-modelling with modelling activi-
ties in a single component. Modelling activities
were not described as out of scope in this paper.
The implementation of a real-world scenario in
AOAME proved the operationality of the approach.
Namely, on the one hand, it was shown that from
a domain-specific adaptation, the visual approach
supports the activity and the result is shown in
the palette of AOAME. On the other hand, it was
shown that the resulting action manifests also in
the knowledge graph schema, which is specified in
the ontology language RDF(S). The approach was
also proven to be generalizable, as it has been used
in other application domains, such as innovation
processes and in the agile software development
methodology Scrum. The correct design of the ar-
tifact was proven by mapping all the requirements
with the implemented functionalities in AOAME.

Current research focuses on how to specify vi-
sual constraints in the agile and ontology-based
meta-modelling approach so as to specify them
in the W3C standard SHACL W3C (2017). Such
constraints will then be used to validate RDF
graph-based models that will also be created in
AOAME by instantiating the modelling constructs.
For example, one application regards the automatic
validation of Enterprise Architecture (EA) princi-
ples on EA models (Montecchiari and Hinkelmann
2022).

References

Abu-Salih B. (2021) Domain-specific knowledge
graphs: A survey. In: Journal of Network and
Computer Applications 185, p. 103076

Allemang D., Hendler J. (2011) Semantic Web
for the Working Ontologist: Effective Modeling
in RDFS and OWL. Elsevier

http://dx.doi.org/10.18417/emisa.19.6

Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

Special Issue on Enterprise Modeling and Knowledge Graphs

Atkinson C., Kuhne T. (2003) Model-driven Devel-
opment: A Metamodeling Foundation. In: IEEE
Software 20(5), pp. 3641

Azzini A., Braghin C., Damiani E., Zavatarelli F.
(2013) Using Semantic Lifting for Improving Pro-
cess Mining: a Data Loss Prevention System Case
Study. In: Proceedings of the 3rd International
Symposium on Data-driven Process Discovery
and Analysis. CEUR-WS.org, pp. 62-73

Bachhofner S., Kiesling E., Revoredo K., Waibel
P., Polleres A. (2022) Automated Process Knowl-
edge Graph Construction from BPMN Models
In: Database and Expert Systems Applications.
DEXA 2022. Vol. 13426 Lecture Notes in Com-
puter Science Springer, pp. 32—47

Barisi¢ A., Amaral V., Gouldo M. (2018) Usability
driven DSL development with USE-ME. In: Com-
puter Languages, Systems Structures 51, pp. 118—
157

Beck K., Beedle M., van Bennekum A., Cockburn
A., Cunningham W., Fower M., Grenning J., High-
smith J., Hunt A., Jeffries R., Kern J., Marick B.,
Martin R., Schwaber K., Sutherlan J., Thomas D.
(2001) Manifesto for Agile Software Development

Benevides A. B., Guizzardi G. (2009) A Model-
Based Tool for Conceptual Modeling and Domain
Ontology Engineering in OntoUML. In: Enter-
prise Information Systems. Springer, pp. 528-538

Benyon D., Bental D., Green T. (1999) Concep-
tual Modeling for User Interface Development.
Springer, p. 187

Bertolazzi P., Krusich C., Missikoff M., Manzoni
V. (2001) An Approach to the Definition of a
Core Enterprise Ontology : CEO. In: International
Workshop on Open Enterprise Solutions: Systems,
Experiences, and Organizations - OES-SEO 2001,
pp. 104-115

Briauer M., Lochmann H. (2007) Towards Se-
mantic Integration of Multiple Domain-Specific
Languages Using Ontological Foundations. In: 4th
International Workshop on Software Language En-
gineering (ATEM 2007) at the 10th IEEE/ACM

International Conference on Model-Driven Engi-
neering Languages and Systems (MODELS 2007).
Springer

Bridgeland D. M., Zahavi R. (2009) Business Mod-
eling: A Practical Guide to Realizing Business
Value. Morgan Kaufmann/Elsevier, p. 387

Buchmann R. A., Karagiannis D. (2016) Enrich-
ing Linked Data with Semantics from Domain-
Specific Diagrammatic Models en. In: Business &
Information Systems Engineering 58(5), pp. 341-
353

Buchmann R. A. (2022) The Purpose-Specificity
Framework for Domain-Specific Conceptual Mod-
eling In: 2nd Springer, pp. 67-92

Burlton R. T., Ross R. G., Zachman J. A. (2017)
The Business Agility Manifesto Building for
Change. In:

Chaudhri V. K., Baru C., Chittar N., Dong X. L.,
Genesereth M., Hendler J., Kalyanpur A., Lenat
D.B., Sequedal., Vrandeci¢ D., Wang K., Diego S.
(2022) Knowledge graphs: Introduction, history,
and perspectives. In: Vol. 43. John Wiley Sons,
Ltd, pp. 17-29

Chavula C., Maria Keet C. (2015) An Orchestra-
tion Framework for Linguistic Task Ontologies. In:
Metadata and Semantics Research. MTSR 2015.
Communications in Computer and Information
Science. 544th ed. Springer, pp. 3—14

Chiprianov V., Kermarrec Y., Rouvrais S., Si-
monin J. (2014) Extending Enterprise Architec-
ture Modeling Languages for Domain Specificity
and Collaboration: Application to Telecommu-
nication Service Design. In: Software Systems
Modeling 13(3), pp. 963-974

Cho H., Gray J., Syriani E. (2012) Creating Vi-
sual Domain-Specific Modeling Languages from
End-User Demonstration. In: 4th International
Workshop on Modeling in Software Engineering
(MISE). IEEE, pp. 22-28

Dietz J. L. G. (2006) Enterprise Ontology: Theory
and Methodology. Springer, p. 243

http://dx.doi.org/10.18417/emisa.19.6

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

Efendioglu N., Woitsch R., Utz W., Falcioni D.
(2017) ADOxx Modelling Method Conceptualiza-
tion Environment. In: Astes;j

Ehrlinger L., Woss W. (2016) Towards a Definition
of Knowledge Graphs. In: CEUR-WS.org

Emmenegger S., Hinkelmann K., Laurenzi E.,
Thonssen B., Witschel H., Zhang C. (2016) Work-
place Learning-Providing Recommendations of
Experts and Learning Resources in a Context-
Sensitive and Personalized Manner: An Approach
for Ontology Supported Workplace Learning. In:
MODELSWARD 2016 - Proceedings of the 4th
International Conference on Model-Driven Engi-
neering and Software Development. IEEE

Emmenegger S., Hinkelmann K., Laurenzi E.,
Thonssen B. (2013) Towards a Procedure for
Assessing Supply Chain Risks Using Semantic
Technologies. In: Knowledge Discovery, Knowl-
edge Engineering and Knowledge Management.
Springer, pp. 393-409

Fill H.-G. (2011) Using Semantically Annotated
Models for Supporting Business Process Bench-
marking. In: Perspectives in Business Informatics
Research. Springer Berlin Heidelberg, pp. 29-43

Fill H.-G., Karagiannis D. (2013) On the Con-
ceptualisation of Modelling Methods using the
ADOxx Meta Modelling Platform. In: Enterprise
Modelling and Information Systems Architectures
(EMISAJ) 8(1), pp. 4-25

Fox M. S., Barbuceanu M., Griininger M. (1996)
An Organisation Ontology for Enterprise Model-
ing: Preliminary Concepts for Linking Structure
and Behaviour. In: Computers in Industry 29(1-2),
pp- 123-134

Fox M. S., Gruninger M. (1998) Enterprise Mod-
eling. In: Al Magazine 19(3), p. 109

Frank U. (2010) Outline of a Method for Designing
Domain-Specific Modelling Languages. 42

Frank U. (2013) Domain-Specific Modeling Lan-
guages: Requirements analysis and design guide-
lines. In: Domain Engineering. Springer, pp. 133—
157

Frank U. (2014) Enterprise Modelling: The Next
Steps. In: Enterprise Modelling and Information
Systems Architectures (EMISAJ) 9 (1), pp. 22-37

Gailly F., Alkhaldi N., Casteleyn S., Verbeke
W. (2017) Recommendation-Based Conceptual
Modeling and Ontology Evolution Framework
(CMOE-+). In: Business & Information Systems
Engineering 59(4), pp. 235-250

Giachetti R. E. (2010) Design of Enterprise Sys-
tems: Theory, Architecture, and Methods. CRC
Press, p. 429

Gomez-Perez J. M., Pan J. Z., Vetere G., Wu H.
(2017) Enterprise knowledge graph: An introduc-
tion. In: Exploiting Linked Data and Knowledge
Graphs in Large Organisations, pp. 1-14

Green P., Rosemann M. (2000) Integrated Pro-
cess Modeling: An Ontological Evaluation. In:
Information Systems 25(2), pp. 73-87

Green P., Rosemann M., Indulska M., Manning C.
(2007) Candidate Interoperability Standards: An
ontological Overlap Analysis. In: Data Knowledge
Engineering 62(2), pp. 274-291

Guizzardi G. (2005) Ontological Foundations for
Structural Conceptual Models. PhD, CTIT, Centre
for Telematics and Information Technology, p. 441

Haase P. (2019) Hybrid Enterprise Knowledge
Graphs. In: CEUR-WS

Harel D., Rumpe B. (2004) Meaningful modeling:
what’s the semantics of "semantics"? In: Computer
37(10), pp. 64-72

Harel D., Rumpe B. (2000) Modeling languages:
Syntax, Semantics and All that Stuff.. Citeseer

Harzallah M., Berio G., Opdahl A. L. (2012)
New Perspectives in Ontological Analysis: Guide-
lines and Rules for Incorporating Modelling Lan-
guages into UEML. In: Information Systems 37(5),
pp- 484-507

Hevner A. R., March S. T., Park J., Ram S. (2004)
Design Science in Information Systems Research.
In: MIS Quarterly 28(1), pp. 75-105

http://dx.doi.org/10.18417/emisa.19.6

Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

Special Issue on Enterprise Modeling and Knowledge Graphs

Hinkelmann K., Gerber A., Karagiannis D.,
Thoenssen B., van der Merwe A., Woitsch R.
(2016a) A New Paradigm for the Continuous
Alignment of Business and IT: Combining En-
terprise Architecture Modelling and Enterprise
ontology en. In: Computers in Industry Special
Issue on Future Perspectives On Next Generation
Enterprise Information Systems 79, pp. 77-86

Hinkelmann K., Laurenzi E., Lammel B., Kur-
jakovic S., Woitsch R. (2016b) A Semantically-
Enhanced Modelling Environment for Business
Process as a Service. In: ES. IEEE, pp. 143-152

Hinkelmann K., Laurenzi E., Martin A., Mon-
tecchiari D., Spahic M., Thonssen B. (2020)
ArchiMEOQ: A Standardized Enterprise Ontology
based on the ArchiMate Conceptual Model. In:
Proceedings of the 8th International Conference
on Model-Driven Engineering and Software De-
velopment. SciTePress, pp. 417-424

Hinkelmann K., Laurenzi E., Martin A., Thonssen
B. (2018) Ontology-Based Metamodeling, en. In:
Business Information Systems and Technology 4.0:
New Trends in the Age of Digital Change. Stud-
ies in Systems, Decision and Control. Springer,
pp. 177-194

Hrgovcic V., Karagiannis D., Woitsch R. (2013)
Conceptual Modeling of the Organisational As-
pects for Distributed Applications: The Semantic
Lifting Approach. In: 2013 IEEE 37th Annual
Computer Software and Applications Conference
Workshops, pp. 145-150

Huang L., Duan Y., Sun X., Lin Z., Zhu C. (2016)
Enhancing UML Class Diagram Abstraction with
Knowledge Graph In: Vol. 9937 LNCS Springer,
pp. 606-616

Izquierdo J. L. C., Cabot J., Lépez-Ferndndez J. J.,
Cuadrado J. S., GuerraE., de LaraJ. (2013) Engag-
ing End-Users in the Collaborative Development
of Domain-Specific Modelling Languages. In: Co-
operative Design, Visualization, and Engineering.
Springer, pp. 101-110

Kappel G., Kapsammer E., Kargl H., Kramler
G., Reiter T., Retschitzegger W., Schwinger W.,
Wimmer M. (2006) Lifting Metamodels to On-
tologies: A Step to the Semantic Integration of
Modeling Languages. In: International Confer-
ence on Model Driven Engineering Languages
and Systems. Springer, pp. 528-542

Karagiannis D., Woitsch R. (2015) Knowledge
Engineering in Business Process Management. In:
Handbook on Business Process Management 2.
Springer

Karagiannis D. (2018) Conceptual Modelling
Methods: The AMME Agile Engineering Ap-
proach. In: Informatics in Economy. Springer,
pp. 3-19

Karagiannis D., Buchmann R. A. (2018) A Pro-
posal for Deploying Hybrid Knowledge Bases: the
ADOxx-to-GraphDB Interoperability Case. In:
Proceedings of the 51st Hawaii International Con-
ference on System Sciences (HICSS), pp. 4055—
4064

Karagiannis D., Buchmann R. A., Burzynski P.,
Reimer U., Walch M. (2016) Fundamental Con-
ceptual Modeling Languages in OMiLAB. In:
Domain-Specific Conceptual Modeling. Springer,
pp- 3-30

Karagiannis D., Kiihn H. (2002) Metamodelling
Platforms. In: Proceedings of the Third Inter-
national Conference EC-Web at DEXA 2002.
Springer

Karagiannis D., Lee M., Hinkelmann K., Utz W.
(2022) Domain-Specific Conceptual Modeling.
Springer

Kejriwal M. (2019) Domain-Specific Knowledge
Graph Construction. Springer

Kejriwal M., Shao R., Szekely P. (2019) Expert-
Guided Entity Extraction Using Expressive Rules.
In: Association for Computing Machinery, Inc,
pp. 1353-1356

Kleppe A. G. (2008) Software Language Engineer-
ing: Creating Domain-Specific Languages using
Metamodels. Addison-Wesley Professional, p. 207

http://dx.doi.org/10.18417/emisa.19.6

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

Laurenzi E., Hinkelmann K., Reimer U., Van Der
Merwe A., Sibold P., Endl R. (2017) DSMLAPTM:
A Domain-Specific Modelling Language for Pa-
tient Transferal Management. In: ICEIS 2017 - Pro-
ceedings of the 19th International Conference on
Enterprise Information Systems Vol. 3. SciTePress,
pp. 520-531

Laurenzi E. (Feb. 19, 2020) An Agile and
Ontology-Aided Approach for Domain-Specific
Adaptations of Modelling Languages. PhD Thesis,
University of Pretoria

Laurenzi E., Hinkelmann K., Goel M., Montec-
chiari D. (2020) Agile Visualization in Design
Thinking. In: New Trends in Business Information
Systems and Technology. Springer

Leppidnen M. (2007) A Context-Based Enter-
prise Ontology. In: Business Information Systems.
Springer, pp. 273-286

Li Y., Zakhozhyi V., Zhu D., Salazar L. J. (2020)
Domain Specific Knowledge Graphs as a Service
to the Public Powering Social-Impact Funding in
the US. In: Vol. 20. ACM

Mancuso M., Laurenzi E. (2023) An Approach for
Knowledge Graphs-Based User Stories in Agile
Methodologies. In: Perspectives in Business Infor-
matics Research. BIR 2023. Lecture Notes in Busi-
ness Information Processing. Springer, pp. 133—
141

Meissner R., Thor A. (2021) Creation and Utili-
sation of Domain Specific Knowledge Graphs for
E-Learning. In: Gesellschaft fiir Informatik e.V.,
pp. 271-276

Mernik M., Heering J., Sloane A. M. (2005) When
and How to Develop Domain-Specific Languages.
In: ACM Computing Surveys 37(4), pp. 316-344

Montecchiari D., Hinkelmann K. (2022) Towards
Ontology-Based Validation of EA Principles. In:
The Practice of Enterprise Modeling. POEM 2022..
Lecture Notes in Business Information Processing
Vol. 456. Springer, pp. 66-81

Moody D. (2009) The physics of notations: Toward
a scientific basis for constructing visual notations
in software engineering. In: IEEE Transactions on
Software Engineering 35(6), pp. 756779

OMG (2011) Business Process Model and Nota-
tion (BPMN), Version 2.0

Opdahl A. L., Berio G. (2006) Interoperable lan-
guage and model management using the UEML
approach. In: GaMMa ’06: Proceedings of the
2006 international workshop on Global integrated
model management. Association for Computing
Machinery, Inc, pp. 3541

Opdahl A. L., Henderson-Sellers B. (2002) On-
tological Evaluation of the UML Using the
Bunge—Wand—Weber Model. In: Software and
Systems Modeling 1(1), pp. 43-67

Panich A., Vatanawood W. (2016) Detection of
Design Patterns from Class Diagram and Sequence
Diagrams Using Ontology. In: IEEE, pp. 1-6

Parreiras F. S. (2012) Semantic Web and Model-
Driven Engineering. Wiley-IEEE Press, p. 264

Peng C., Xia F., Naseriparsa M., Osborne F.
(2023) Knowledge Graphs: Opportunities and
Challenges. In: Artificial Intelligence Review
56(11), pp. 13071-13102

Peter M., Montecchiari D., Hinkelmann K., Gatziu
Grivas S. (2020) Ontology-Based Visualization
for Business Model Design. In: The Practice of
Enterprise Modeling. Springer, pp. 244-258

Pries-Heje J., Baskerville R., Venable J. (2008)
Strategies for Design Science Research Evaluation.
In: Proceedings of the 16th European Conference
on Information Systems, Galway, Ireland, Paper
87. National University of Ireland

R. C., Wood D., Lanthaler M. (2014) RDF 1.1
Concepts and Abstract Syntax https://www.w3.
org/TR/rdf11-concepts/

Rohde F. (1995) An Ontological Evaluation of
Jackson’s System Development Model. In: Aus-
tralasian Journal of Information Systems 2(2),
pp. 77-87

http://dx.doi.org/10.18417/emisa.19.6
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/

Enterprise Modelling and Information Systems Architectures

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

An Agile and Ontology-Based Meta-Modelling Approach (Research Article)

Special Issue on Enterprise Modeling and Knowledge Graphs

Sandkuhl K., Fill H.-G., Hoppenbrouwers S.,
Krogstie J., Matthes F., Opdahl A., Schwabe G.,
Uludag O., Winter R. (2018) From Expert Disci-
pline to Common Practice: A Vision and Research
Agenda for Extending the Reach of Enterprise
Modeling en. In: Business & Information Systems
Engineering 60(1), pp. 69-80

Selic B. (2007) A Systematic Approach to Domain-
Specific Language Design Using UML. In: 10th
IEEE International Symposium on Object and
Component-Oriented Real-Time Distributes Com-
puting (ISORC’07). IEEE, pp. 2-9

Singhal A. (2012) Introducing the Knowledge
Graph: things, not strings

Smajevic M., Bork D. (2021) From Conceptual
Models to Knowledge Graphs: A Generic Model
Transformation Platform. In: IEEE, pp. 610-614

Stahl T., Volter M. (2006) Model-Driven Software
Development: Technology, Engineering, Manage-
ment. John Wiley

Strahringer S. (1996) Metamodellierung als Instru-
ment des Methodenvergleichs: Eine Evaluierung
am Beispiel objektorientierter Analysenmethoden.
Publications of Darmstadt Technical University,
Institute for Business Studies (BWL). Darmstadt
Technical University, Department of Business Ad-
ministration, Economics and Law, Institute for
Business Studies (BWL)

Strembeck M., Zdun U. (2009) An Approach for
the Systematic Development of Domain-Specific
Languages. In: Software - Practice and Experience
39, pp. 1253-1292

Uschold M., King M., Morale S., Zorgios Y. (1998)
The Enterprise Ontology. In: The Knowledge En-
gineering Review 13(01), pp. 31-89

Vaishnavi V. K., Kuechler Jr. W. (2007) Design
Science Research Methods and Patterns: Innovat-
ing Information and Communication Technology,
1st. Auerbach Publications

Van Harmelen F., Teije A. t. (2019) A Boxology
of Design Patterns for Hybrid Learning and Rea-

soning Systems. In: Journal of Web Engineering
18(1-3), pp. 97-124

Vernadat F. B. (2003) Enterprise Modelling and
Integration. In: Springer, pp. 25-33

Voigt K. (2011) Structural Graph-based Meta-
model Matching. Dissertation, Technical Univer-
sity of Dresden, p. 199

W3C (2014) RDF Schema 1.1.. https://www.w3.
org/TR/rdf-schema/

W3C (2017) Shapes Constraint Language
(SHACL)

Wand Y., Storey V. C., Weber R. (1999) An Onto-
logical Analysis of the Relationship Construct in
Conceptual Modeling. In: ACM Trans. Database
Systems 24(4), pp. 494-528

Wegeler T., Gutzeit F., Destailleur A., Dock B.
(2013) Evaluating the Benefits of Using Domain-
Specific Modeling Languages. In: Proceedings
of the 2013 ACM workshop on Domain-specific
modeling - DSM *13. ACM Press, pp. 7-12

Woitsch R., Hinkelmann K., Maria A., Ferrer J.,
Yuste J. 1. (2016) Business Process as a Service
(BPaaS): The BPaaS Design Environment. In:
Proceedings of the CAiSE 2016 Industry Track
co-located with 28th International Conference
on Advanced Information Systems Engineering
(CAISE 2016). CEUR-WS.org

Xiaohan Z. (2020) A Survey on Application of
Knowledge Graph. In: Journal of Physics: Confer-
ence Series 1487 (1), p. 012016

Yin R. K. (2018) Case Study Research Design and
Applications, 6th. Sage Publications Ltd., p. 319

Zachman J. A. (1987) A Framework for Infor-
mation Systems Architecture. In: IBM systems
journal 26(3), pp. 276-292

Zecevi¢ L., Bjeljac P., Perisi¢ B., Maruna V., Venus
D. (2017) Domain-Specific Modeling Environ-
ment for Developing Domain Specific Modeling
Languages as Lightweight General Purpose Mod-
eling Language Extensions. In: Springer, pp. 872—
881

http://dx.doi.org/10.18417/emisa.19.6
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/

International Journal of Conceptual Modeling

Vol. 19, No. 6 (2024). DOI:10.18417/emisa.19.6

36

Emanuele Laurenzi

Special Issue on Enterprise Modeling and Knowledge Graphs

Zhang H., Kishore R., Ramesh R. (2007) Seman-
tics of the MibML Conceptual Modeling Gram-
mar: An Ontological Analysis Using the Bunge-
Wang-Weber Framework. In: Journal of Database
Management 18(1), pp. 1-19

http://dx.doi.org/10.18417/emisa.19.6

