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A Business Process Modelling Tool with Continuous

Validation Support

In this article, we want to present the prototype of a modelling tool that applies graph-based rules for

identifying problems in business process models. The advantage of our approach is twofold. Firstly, it is

unnecessary to compute the complete state space of the model in order to find errors. Secondly, our technique

can be applied to incomplete business process models. Thus, the modeller can be supported by direct feedback

during the model construction. This feedback does not only report problems, but it also identifies their reasons

and makes suggestions for improvement.

1 Introduction

Validation of business process models has been
studied for a long time. In a recent paper, Wynn
et al. (2009) write that ‘process verification has
matured to a level where it can be used in prac-
tice’. Although this is good news, we argue that
many of the current approaches do not yet support
the business process modeller in an optimal way.
The reason for this argument is that most valida-
tion methods are applied only after the model has
already been completed. For example, most meth-
ods which transform a business process model
into an analysable Petri net have problems with
incomplete models.
In this article, we present a validation approach
that gives the modeller an immediate feedback
about modelling errors. A prototypical imple-
mentation of our approach has been integrated
into the business process modelling editor bflow
(www.bflow.org). It locates not only ‘technical’
errors (such as deadlocks in the control flow), but
also parts of the model that can be regarded as
‘bad style’. The modeller not only receives the in-
formation with which the model has problems, but
our tool also shows the locations of error causes
in the visual representation and suggests how to
fix these problems. A rule language allows the
users to add their own rules, for example, rules for
checking company-wide style guidelines.

The principle behind our approach is called ‘con-
tinuous validation’. It can be compared to tech-
niques such as continuous compilation and con-
tinuous testing, which are integrated into modern
software development systems. In our approach,
continuous validation can help to detect and fix
errors at a early stage in process modelling.

2 Basic Concepts and Definitions

2.1 Event-Driven Process Chains

There exist several languages for graphical busi-
ness process modelling. In this paper, we use
Event-Driven Process Chains (EPC, van der Aalst,
1999) to demonstrate our approach. However, the
underlying principles can also be applied to other
languages such as BPMN (as shown in Laue and
Awad, 2009).

We would like to start with a semi-formal descrip-
tion based on the meta model given in Fig. 1. EPC
models are finite directed coherent graphs consist-
ing of non-empty sets of nodes and arcs. Nodes
are either functions (activities which need to be
executed, depicted as rounded boxes), or events
(representing pre- and postconditions of functions,
depicted as hexagons) or connectors. Arcs be-
tween these elements represent the control flow.
A function has exactly one incoming and exactly
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one outgoing arc. An event has at most one in-
coming and at most one outgoing arc. An event
without incoming arcs is called a ‘start event’, and
an event without outgoing arcs is called an ‘end
event’.

The connectors are used to model parallel and
alternative executions. There are two kinds of
connectors – splits and joins. Splits have one in-
coming and at least two outgoing arcs, joins have
at least two incoming arcs and one outgoing arc.

AND-connectors (depicted as V) are used to model
parallel executions. When an AND-split is exe-
cuted, the elements on all outgoing arcs have to
be executed in parallel. An AND-join connector
waits until all parallel control flows on its incom-
ing arcs are finished. XOR-connectors (depicted as

X ) can be used to model alternative executions: An
XOR-split has multiple outgoing arcs, but only one
of them will be processed. An XOR-join waits for
the completion of the control flow of one of its in-
coming arcs. If a flow arrives from more than one
arc, most definitions for a formal EPC semantics
regard it as a synchronisation error. The control
flow is not forwarded in this case. OR-connectors
(depicted as V ) are used to model parallel execu-
tions of one or more flows. An OR-split starts
the processing of one or more of its outgoing arcs.
That is, after an OR-split with n outgoing arcs,
at least one of those arcs and at most all n arcs
become active. An OR-join waits until all control
flows that can reach this join are finished.

Fig. 2 shows a simple order process modelled as
EPC. Note that splits and joins neither necessar-
ily occur pairwise nor form necessarily a well-
structured model. In fact, the notation allows
arbitrary combinations of connectors which are
often the cause of modelling errors.

A state of an EPC is a binary marking of its ele-
ments, i.e., some elements of an EPC are marked
as active by placing tokens on them. A state is
a start state if only start events are marked. A
sequence of states is an execution of the business
process model. Its semantics is defined by a tran-
sition relation, i.e., a set of rules that define under

which circumstances a state S1 in this sequence
is allowed to be followed by a subsequent state
S2. Several different definitions exist for transition
relations but because of space restrictions we will
omit a detailed discussion. The interested reader is
referred to Kindler (2004); Wynn (2006); Mendling
(2007).

2.2 Control Flow Errors

The ‘soundness’ property is the primary correct-
ness criterion for business process models. It has
been defined by van der Aalst (1999) by the fol-
lowing three properties:

1. In every state that is reachable from a start
state, there must be the possibility to reach a fi-
nal state, i.e., a state without a subsequent state
according to the transition relation ‘(option to
complete)’.

2. If a state has no subsequent state (according
to the transition relation that defines the pre-
cise semantics), then only end events must be
marked in this state ‘(proper completion)’.

3. There is no element of the EPC that is never
marked in any execution of the EPC ‘(no need-
less elements)’.

Violations of the soundness criterion usually indi-
cate an error in the model. A typical example is a
deadlock situation with an XOR-split whose out-
going arcs are later joined by an AND-join. This
example would lead to a violation of the second
property: It is possible that no further progress
in the execution of the EPC can be made, but the
elements at the incoming arcs of the AND-join
are still marked because the AND-join has to wait
until ‘all’ incoming arcs have been traversed.

3 Existing Validation Methods

Lindland et al. (1994) point out that ‘modelling is
essentially making statements in some language’.
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Figure 1: EPC metamodel

For this reason, they use linguistic concepts for
assessing the quality of models. They propose a
framework that distinguishes between three qual-
ity goals:

• ‘Syntactic Quality’, i.e., how far the model ad-
heres to the syntactical rules of the modelling
language

• ‘Semantic Quality’ which includes validity (all
statements made in the model are correct) and
completeness (the model contains all statements
about the domain that are relevant)

• ‘Pragmatic Quality’ which addresses the re-
quirement to chose the best (i.e., most compre-
hensible) way to express some meaning

In this chapter we discuss existing validation meth-
ods and available tools for each of these quality
goals.

3.1 Syntactic Quality

The syntax of a graphical model defines in which
way the modelling elements can be arranged in
order to build a valid model. For EPC models,
the syntax is mainly described by the metamodel
shown in Fig. 1. However, some syntactical re-
strictions are not captured by the metamodel, for
example that it is forbidden to have a cycle in the

model which consists only of connectors. There-
fore, validating the syntactical correctness of an
EPC is more than assuring its compliance with the
metamodel.

In Mendling and Nüttgens (2003), Mendling and
Nüttgens have evaluated the ability of several
XML tools to check the semantic correctness of
EPC models. They came to the result that the
language ‘Schematron’ can check the most, but
not all syntactic requirements. In particular, this
language cannot validate although the graph is
strongly connected, that no cycles are formed by
connectors only and that for each modelling el-
ement e there is a path from a start event to e,
as well as from e to an end event. After the
publication of Mendling and Nüttgens in 2003,
more sophisticated XML checking tools have been
developed that can be used to validate all syn-
tactic requirements for EPC models, namely In-
cox (Opočenská and Kopecký, 2008) and the Con-
straint Language in XML (CliCML Jungo et al.,
2006). By adding the syntactic requirements as
OCL constraints to the metamodel, it is also possi-
ble to use OCL tools for validating the syntactic
correctness of a model.

In Gruhn and Laue (2007a), it was shown that the
rule based approach that is used for validation
in bflow is able to validate all semantic require-
ments for EPC models. We see an advantage of
this approach in the fact that syntactic quality is
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Figure 2: An example EPC

validated using the same approach that can is ap-
plied for reasoning about semantic and pragmatic
quality.

3.2 Semantic Quality

The problem to overcome when verifying the se-
mantic quality of business process models (like
EPCs) is that the modelling language has been in-
troduced ‘without defining their semantics’. For
this reason, the first step in a verification process
is usually to transform the model into a formal-
ism with well-defined semantics. In fact, the rules
for such a transformation ‘define’ the semantics
of the model. Petri nets are the natural choice
for that purpose. They have been used by several
authors (van der Aalst, 1999; van Dongen et al.,
2005; Mendling, 2007)1. Other formalisms include
abstract state machines (Eshuis, 2002) and Pi cal-
culus (Puhlmann, 2007).

Once an EPC model has been transformed into
a Petri net, the whole range of existing tools for
analysing Petri nets is available, as introduced
in Langner et al. (1997); van Dongen et al. (2007);
Wynn (2006); Mendling (2007). The Petri net based
approach works in practice, but has two disadvan-
tages. First, often the analysis result covers only
the information whether the model contains er-
rors, without giving feedback about the reason

1The given references are not exhaustive. A more detailed
categorization of related work can be found in van Dongen
et al. (2007), Mendling (2007) and Morimoto (2008).

for an error. Even if the verification tool trans-
lates a counterexample from the Petri net back to
the EPC model, it can happen that information
will be lost. For example, Fig. 3 obviously con-
tains two synchronisation problems – one in the
outer AND-XOR control block (s1, j1) and another
one in the inner AND-XOR control block (s2, j2).
However, the synchronisation error in the inner
control block implicates that the execution always
blocks, and there will never be an execution where
both incoming arcs of the rightmost XOR-join are
enabled. For this reason, a dynamic analysis tool
that explores the state space will be unable to re-
port the problem of the outer AND-XOR control
block. The second disadvantage is that it is of-
ten impossible to locate errors in models that are
not yet completed (e.g., EPCs containing several
sub-graphs which are not yet connected with each
other).

Another well-studied method for the validation
of EPCs and similar models is the application
of reduction rules (cf. e.g., Sadiq and Orlowska,
2000). The idea of the reduction approach is to
delete repeatedly sections from an EPC which are
well-structured (for example, a control flow block
where an AND-split is matched by an AND-join)
and are thus trivially correct. If an EPC can be
reduced to a single node in this way, it is cor-
rect. Otherwise, no answer about its correctness
can be given. That is, the answer to the question
‘Are there any problems with the model?’ is ei-
ther ‘No’ or ‘Unable to decide’, which is far from



Enterprise Modelling and Information Systems Architectures

Vol. 4, No. 2, December 2009

A Business Process Modelling Tool with Continuous Validation Support 41

e1

start f1

f3

end

e2

e4

e5 f5

f4

f2

V

X

V

X

j2

j1s1

s2

Figure 3: Nested mismatched AND-splits and XOR-joins

the desired ‘No’ or ‘Yes, and the problems are as
follows...’. However, recent work by Mendling
(2007) has made a fruitful contribution. By con-
sidering typical error situations in the reduction
rules, Mendling’s approach allows us to answer
our question about errors in the model with ‘No’,
‘Yes, and the problems are...’ or ‘Unable to decide’.
In the latter case, Petri net based methods can still
be used to come at least to a ‘Yes or No’ answer.

Our work has also been influenced by the ap-
proach described in van Dongen et al. (2006). This
approach adapts ideas from Petri net theory like
the concept of handles (Esparza and Silva, 1989;
van der Aalst, 1998) to EPCs. In van Dongen et al.
(2006), the authors locate causal relationships be-
tween parts of an EPC. These relationships (called
‘causal footprints’ in van Dongen et al., 2006) are
relations like ‘after element x has been processed,
at least one of the elements in the set {y, z} has
to be processed’. Using this method, error pat-
terns can be detected and the reasons for errors
can be identified. Moreover, the method works on
incomplete models as well. Unfortunately, in the
form as described in van Dongen et al. (2006), the
approach has not yet matured for practical use. A
minor reason is that it does not work with EPCs
containing OR-connectors (but it would not be
too much effort to expand the method such that
OR-connectors could be considered). But more
important is that the computation of relationships
among elements is far too slow because too many
relations have to be considered.

Another promising approach has been described
in Vanhatalo et al. (2007, 2008). It uses decomposi-
tion of workflow graphs into single-entry-single-
exit-fragments and can quickly classify some frag-
ments as sound or unsound. A validation in Van-
hatalo et al. (2007) shows that the approach is
suitable for the majority of a sample of industrial
business processes.

3.3 Pragmatic Quality

Pragmatic model quality refers to the best choice
among several possible ways to express the same
meaning. Current business process modelling
tools provide limited support for improving prag-
matic quality. The only implementation we are
aware of is a validation built into the YAWL Ed-

itor (Wynn, 2006) which allows to find OR-joins
that should be replaced by AND-joins or XOR-
joins in order to use the modelling element that
expresses the meaning of the model in the most
comprehensible way.

4 Immediate Validation Feedback in
Business Process Modelling

4.1 Validation Approach

From our point of view, a sophisticated validation
support of business processes should give immedi-
ate and continuous feedback to business analysts
about weaknesses and inconsistencies in possibly
incomplete models. The established modelling
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process with sequential modelling, validation and
evolution stages should be shortened as far as pos-
sible to a modelling process with integrated vali-
dation support.

We took an inspiration from existing program-
ming environments which offer continuous syn-
tax checking. Static analysis tools such as Find-
Bugs (Hovemeyer and Pugh, 2004) can also find
patterns in the code that relate to possible errors.
Fault information and warnings can be presented
to the developers while they are typing (Layman
et al., 2008).

Most current modelling tools still lack this kind of
support. A remarkable exception is the UML mod-
elling tool ARGO/UML (Robbins and Redmiles,
2000), which runs some checks (called design crit-
ics) in the background. While the architecture of
ARGO/UML allows the user to add own design
critics, the vast majority of currently implemented
checks remain on a syntactical level. In contrast,
we would like to direct the attention not only to
problems on a syntactical level but also to seman-
tic and even pragmatic issues.

Furthermore, we would like to note a difference
between our approach and existing tools like IBM
MQSeries Workflow and AristaFlow which impose
well-structuredness rules on models and allow to
create well-structured models only (which are al-
ways sound). We do not want to restrict the mod-
eller, but give him or her feedback about possible
errors and improvements.

Our intended validation support is based on the
following principles:

1. For adaptability and extensibility reasons, the
validation rules should be expressed in a modu-
lar and human readable manner. For this pur-
pose, we propose declarative validation rules
which enable the expression of additional error
patterns and modelling idioms by adding new
rules without effecting existing ones.

2. To avoid disadvantages of non localised error
messages, the validation strategy should work

on input models in a native way. The validation
rules should refer to model fragments and iden-
tify syntactic structures that may cause errors
during runtime.

3. The validation rules should be expressed fine-
grained enough to produce meaningful error
feedback.

4. Recurring model navigations and computations
of model properties should be defined as reusable
functions that are used in validation rules. The
set of helper functions represents an extensible
library that eases the definition of validation
rules in terms of an (internal) domain-specific
language.

5. A rather soft requirement is that the validation
solution should be seamlessly integrated into
the modelling tool of choice with the ability to
annotate error causes and to suggest possible
improvements.

The instantiation of these principles results in
process-specific validation rules and process-specific
helper functions. Before we describe them more
detailed, we demonstrate how the validation ap-
proach is implemented.

4.2 Declarative rules with Prolog

As described in Gruhn and Laue (2007a), the infor-
mation that is included in an EPC diagram can be
translated into logic facts, expressed in the logic
programming language Prolog.

Listing 1: Prolog facts generated from an EPC

event(i_1).
bflow_id(i\_1, ’\_nElA8C2fEd6OHrn24qlDpw’).
elementname(i_1,’Order received’).
function(i\_2).
bflow_id(i\_2, ’\_aLM6wC2fEd6OHrn24qlDpw’).
elementname(i\_2,’check order’).
xor(i\_3).
bflow_id(i\_3, ’\_kVfkgC2fEd6OHrn24qlDpw’).
arc(i\_1,i\_2).
arc(i\_2,i\_3).
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As an example, the three leftmost nodes in Fig. 2
and the arcs between them are represented by
the facts shown in Listing 1. The clauses named
bflow_id express the relationship between the
id’s used for the nodes in the Prolog program and
the id’s assigned by EMF. This allows to provide
feedback directly related to the diagram elements
where the problems occur.

A typical Prolog rule that checks for modelling
problems is shown in Listing 2. If an AND-split or
OR-split is found to be an exit from a loop, this is
reported as an error (because in such a situation
the loop could be executed infinitely often). The
clause cycle_exit (defining when a node is
called an exit from a loop) has been defined before
and can be used within the rule. Because of this
modular design, it is not difficult to add new rules.

Listing 2: Prolog rule to find loops ended by some-
thing else than an XOR split

loop_exit_error(X) :− (andsplit(X);orsplit(X)),
cycle_exit(X),

message(’ERROR’,X,’This connector ends a loop; it
should be an XOR split’),!.

4.3 Graph-based pattern matchings
with Check and XTend

The declarative validation approach based on Pro-
log rules enables the modular and intuitive ex-
pression of validation rules for business process
models. Because of the underlying generic uni-
fication algorithm the facilities to control perfor-
mance issues are limited. To support advanced
rules with complex graph computations we use
a hybrid approach provided by the framework
openArchitectureWare (oAW)2.

Validation rules following this approach are ex-
pressed in the oAW Check language (see e.g., List-
ing 3). A declarative rule is introduced by a con-
text specifying a metamodel element which in-
stances are validated (e.g., epc::Connector). The set

2http://www.eclipse.org/gmt/oaw/

of model elements can optionally be restricted by
an if-clause. The keyword ERROR signals that a vi-
olated validation rule represents an error. A corre-
sponding advice is specified. WARNING provides
an alternative feedback category. The Boolean
expression after the colon specifies a validation
assertion which holds for valid models.

Listing 3: A check rule

// A join connector is is not also a split
context epc::Connector

if this.isJoin()
ERROR \emph{Connector is a split and a join as

well. Only one of them is allowed.}:
!this.isSplit();

The example given in Listing 3 assures that AND-,
OR- or XOR-connectors do not have both more
than one incoming arc and more than one outgo-
ing arc. The restriction expression as well as the
assertion expression refer to separately defined
helper functions implemented in the functional
programming language oAW XTend. XTend is de-
signed for model to model transformations. In our
case, XTend is used to express queries on the input
model to calculate properties of model elements.

Listing 4: An XTend function

// Is a connector a join−connector
cached Boolean isJoin(epc::Connector c) :

c.incomingArcs().size > 1;

The definition of the function isJoin() used in List-
ing 3 is shown in Listing 4. The type of the re-
turn value is set to Boolean. The function takes
a single argument c of type epc::Connector. The
keyword cached signals that the result of the func-
tion call is stored. A second function call with
the same argument results in the stored return
value, i.e., the function is executed only once. The
function isJoin() relies on the incomingArcs() func-
tion, which returns the set of arcs flowing into the
given argument. Similar to the function calls in
the validation rule (see Fig. 3), the function call
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is expressed with the help of the concatenation
operator .. The left hand side of this operator is
handled as the first argument of the right hand
side which allows the definition of readable ex-
pressions.

Based on basic helper functions we introduced
specific classes of functions which eases pattern
matchings. To validate well-structured EPC frag-
ments, corresponding split and join pairs need
to be identified. For this purpose, we define the
concept match as follows:

Definition 1 A split s is matched by a join
j (matches(s, j)) if there exist two directed paths
from s to j whose only common elements are s
and j.

A necessary condition for a matching split/join
pair is that the split is connected to the join. Con-
sidering the set A of arcs between the split and
the join, the existence of two different paths as-
sures that there is no single arc α which divides A
into two disjunctive subsets of preceding arcs of
α and succeeding arcs of α. We call this concept
separation. The corresponding XTend function is
given in Listing 5.

Listing 5: The function separates()

cached Boolean separates(epc::Arc arc, epc::
Connector source, epc::Connector target) :
source.arcsBetween(target)

.remove(arc)

.without(arc.from.precedingArcs({source}.
toSet()))

.without(arc.to.succeedingArcs({target}.toSet
()))

.isEmpty;

With the help of the function separates() the match
property of a given split s and a join j can be de-
rived. If s has two children n1 and n2 that are
connected to j and there is a separating arc α with
separates(α, s, j) then the paths from n1 to j and
n2 to j share a common join jc with an outgoing

arc αc which also separates s and j. Hence, the
decision of the match property (matches(s, j)) de-
pends on outgoing arcs of joins between s and
j and the search space of separating arcs can be
restricted accordingly.

Listing 6: The function matches()

cached Boolean matches(epc::Connector split, epc::
Connector join) :
split != join
&& split.children().select(c| c == join || c.

isConnectedTo(join)).size > 1
&& split.joinsBetween(join).outoutgoingArcs()

.notExists(a| a.separates(split, join));

The EPC in Fig. 3 contains two splits si and two
joins ji. Obviously, s1 matches j1 and s2 matches
j2. s1 does not match j2 because the child e1 of
s1 is not connected to j2. s2 does not match j1
because the outgoing arc of j2 separates the arcs
between s2 and j1.

The two matching connector pairs (s1, j1) and
(s2, j2) in Fig. 3 share another essential property.
They delimit model fragments with a single en-
try and a single exit (called SESE fragments), i.e.,
there are no entries into or exits from the frag-
ments. The terms entry and exit are defined as
follows:

Definition 2 Let s be a split and j be a join. We
say that there are no entries and no exits between
s and j (sese(s, j)) if the following conditions hold:

1. Every path from s to an end event contains j.
2. Every path from a start event to j contains s.
3. Every path from s to s contains j.
4. Every path from j to j contains s.

The properties of a SESE fragment exclude addi-
tional entries and exits to the fragment. As a con-
sequence of this, the succeeding arcs of the entry
bordered by the exit correspond to the preceding
arcs of the exit bordered by the entry. A compari-
son of these two sets of arcs leads to an efficient
identification of SESE fragments (see Listing 7).
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Listing 7: The function sese()

cached Boolean sese(epc::Node source, epc::Node
target) :
source.succeedingArcs({target}.toSet())==target.

precedingArcs({source}.toSet());

With the help of the functions matches() and sese()

SESE matches can be identified as conjunction of
these two properties (see Listing 8).

Listing 8: The function seseMatch()

cached Boolean seseMatches(epc::Node source, epc::
Node target) :
source.sese(target) && source.matches(target);

The identification of SESE fragments can be ex-
tended to fragments with additional entries and
exits. For this, the set of border elements of the
succeeding arc computation or the preceding arc
computation respectively has to be extended. Con-
sidering an additional border element at the suc-
ceeding arc computation, for instance, allows the
identification of fragments with a single entry and
two exits.

The conjunction of these kinds of structures and
the match property leads to the following concepts
of blocks between a split s and a join j for which
matches(s, j) hold:

• match with exit (if there is a path from s to an
end event that does not pass j or if there is a
path from s to s which does not pass j)

• match with upstream entry (if there is a path
from a start event to j which does not pass s)

• match with downstream entry (if there is a
path from j to j which does not pass s)

By analysing the possible combination of the types
of splits and joins and possible entries into or exits
from the block between split and join, we iden-
tified the cases that can lead to an error in the
model.

4.4 Quick fixes with ECL

The validation approaches mentioned above are
able to highlight weaknesses and inconsistencies
in possibly incomplete models. The ability to sug-
gest possible solutions for errors and warnings
represents a further dimension of modelling sup-
port. We address this aspect with the Epsilon
Validation language (EVL) which is part of the
Epsilon management framework.3 EVL provides
the fix concept to specify an update transforma-
tion. Listing 9 shows an example that removes
redundant connectors having only one incoming
and outgoing control flow.

Listing 9: A rule with quick fix

context Element {
constraint RedundantConnector {

guard : self.isConnector()
check : not (self.out.size = 1 and self.\emph{

in}.size = 1)
message : ’Connector is redundant.’
fix { title : ’Delete redundant connector.’

do {
var newArc := new Arc;
var epc : Epc := self.eContainer();
var incomingArc := self.\emph{in}.

first();
var outgoingArc := self.out.first();

newArc.from := incomingArc.from;
newArc.to := outgoingArc.to;
epc.elements.remove(self);
epc.connections.add(newArc);
epc.connections.remove(

incomingArc);
epc.connections.remove(

outgoingArc); }
}

}

5 Examples

In this section, we discuss typical classes of mod-
elling errors that are identified by checking rules

3http://www.eclipse.org/gmt/epsilon/
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included in our tool.

5.1 Syntax Errors

A less complicated task is to check an EPC (or to be
precise: a construction that is supposed to be one)
for syntactical correctness. The EPC metamodel
given in Fig. 1 does not represent all syntactical re-
quirements, e.g., the non-existence of cycles made
from connectors (Nüttgens and Rump, 2002). In-
stead, the model space defined by the metamodel
has to be restricted by some additional rules. Writ-
ing such syntax rules is a rather easy task (Gruhn
and Laue, 2007a) and is supported in our approach.

Fig. 4(a) shows a syntax error which violates the
validation rule given in Listing 3. Another syntax
error is that an event or a function has more than
one incoming or outgoing arcs (see e.g., Fig. 4(b)).
Such errors are not uncommon: We found 14
of them in the 604 models of the SAP reference
model.

(a)

(b)

Figure 4: Connector with several incoming and
outgoing arcs (a), function with several incoming
arcs (b)

5.2 Control Flow Errors

Informally spoken, deadlocks and synchronisation
errors in an EPC often result from conflicting con-
nectors (for example, a combination between an
XOR-join and an AND-split which will result in a
deadlock).

The functions match() and seseMatch() allow us to

find this type of control flow errors where the
type of the split differs from the type of the join.
From the 178 errors found by Mendling in the 604
models of the SAP reference model, 44 fell into
this category (Mendling, 2007).

Fig. 5 shows an obvious error consisting of a mis-
matched XOR-split (the left one)/AND-join combi-
nation. The two XOR-connectors inside the frag-
ment illustrate that the rule given in Listing 10
also finds errors in not well-structured models.

Listing 10: Mismatched XOR-split and AND-join

// XOR−AND−Mismatch
context epc::Connector if (this.isAndJoin())

ERROR \emph{Mismatched XOR−split...}
this.predessesors().notExists(p| p.isXorSplit() &&

p.seseMatch(this));

For an XOR-split/OR-join combination, the situ-
ation is different: OR-joins synchronise all active
incoming control flows. If there is only one such
flow (as the result of the choice at the XOR-split),
the execution continues without problems. For
this reason, most verification approaches (remark-
able exceptions are Wynn, 2006; Rump, 1999) do
not complain about such combinations.

With our declarative validation approach based
on graph patterns such situations can be handled
similar to control flow errors. To produce improve-
ment advises for mismatched XOR-split/OR-join
connectors an additionalWARNING rule similar
to the ERROR rule given in Listing 10 has to be
introduced with a changed restriction expression
(OR-joins instead of AND-joins) and an adapted
warning expression.

With the help of the XTend functions to identify
fragments with multiple entries and multiple exits
(see Sect. 4.3) similar rules can be defined.

Another subclass of rules is related to errors that
occur in iterations (circles) in an EPC. Due to space
restrictions, we do not describe them in detail.

For EPCs that occur in practice, the checks dis-
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Figure 5: Mismatched XOR-split and AND-join

cussed in this section can be performed fast; run-
ning them repeatedly as a background task is not
a problem.

5.3 Company-Wide Style Rules

The rule set in our tool is open for additional
domain-specific rules. If, for instance, a company
wants to transform EPC models directly into ex-
ecutable workflow models, it could be a require-
ment to use certain company-wide style rules for
EPCs in order to disallow unstructured EPC mod-
els.
Such domain-specific adaptations can simply be
realised in our tool by extending the predefined
rule set. An example for such a rule is given in
Fig. 6. The intention of the fragment between the
two XOR-connectors is that function f2 is exe-
cuted only if event e1 occurs which corresponds
to a single if-expression in a programming lan-
guage. However, because of a missing condition
the arc connecting the two XOR-connectors might
also be regarded as path that can always be exe-
cuted. To avoid ambiguities a distinguishing event
is desirable. With a rather simple check rule this
pattern can be found and the suggestion to insert
a negation of event e1 can be created.

5.4 Pragmatic Problems

Instead of only detecting errors and violations of
style rules, the approach described in this paper
can also be used to locate possible pragmatic prob-
lems. In this case, the user is warned about the
possible problem. It is the responsibility of the
modeller to decide whether the model should ac-

tually be modified. An example for a situation
where a warning is given is shown in Fig. 7. In
this model fragment, a decision is followed by an
XOR split, and one of two events occurs. How-
ever, for the further processing of the business
process, it does not matter which of the events
occurred. While in some cases, this can be a cor-
rect model anyway, the model in Fig. 7 indeed
seems to contain an error: Most likely, the process-
ing should stop if the customer is found not to be
credit-worthy.

5.5 Detecting Problems in Textual
Descriptions

Using the extended validation with Prolog rules,
we are able to find possible problems that are re-
lated to the texts written in the labels of events
and functions. A typical situation is shown in
Fig. 8: If a function is labelled with a text like
‘Decide whether x or y’, it should most likely not
be followed by an OR-split that would allow that
both x and y take place. Currently, the Prolog
rules implemented in the bflow* Toolbox contain
seven checks that are related to the textual labels
found in the model.

6 Validation

6.1 Correctness of our Pattern-Based
Validation Approach

We searched for error patterns described above
(and some more that cannot be described in detail
due to space restrictions) in a repository of 984
EPC models.



Enterprise Modelling and Information Systems Architectures

Vol. 4, No. 2, December 2009

48 Volker Gruhn, Ralf Laue, Stefan Kühne, Heiko Kern

Figure 6: Missing event between an XOR-split and XOR-join with a suggestion for improvement

Figure 7: The upper event should lead to different
activities than the lower one.

Figure 8: From the function’s label, we can con-
clude that the OR should be replaced by an XOR.

Those models have been collected from 130 sources
which can be categorized as follows:

• 531 models from the SAP R/3 reference model,
a widespread business reference model
• 112 models from 31 bachelor and diploma theses
• 25 models from 7 PhD thesesses
• 13 models from 2 technical manuals
• 82 models from 48 published scientific papers
• 12 models from 6 university lecture notes
• 4 models from sample solutions to university
examination questions
• 88 models from 11 real-world projects
• 88 models from 7 textbooks
• 29 models from 14 other sources

A Prolog version of the rules for checking seman-
tics errors needed only 65 seconds for analysing
‘all’ models from the repository. This means that
the checks are fast enough for being used at mod-
elling time.

We also analysed the soundness property of all

models using three well-known open source tools
that check business process models for the sound-
ness property: EPCTools, the ProM plugin for EPC

soundness analysis and the YAWL Editor.

After doing the analysis with the different tools,
we compared the results. Because of subtle differ-
ences among the tools when it comes to defining
the semantics of the OR-join there were a few
differences in the results of the tools. Details of
those differences are discussed in Gruhn and Laue
(2009a); here it is sufficient to say that in cases
of differences among the tools we looked at the
model and selected the result that complied with
the intuitive understanding of its semantics.

The comparison between our heuristic results and
the exact results showed that the heuristics worked
almost as good as the state space exploring tools:
For all models which have been categorized as not
being sound by the exact tools, our Prolog program
also found at least one pattern that (likely) shows
a violation of the soundness property, i.e., we have
had no false negatives. On the other hand, our pro-
gram warned about a possible soundness violation
for exactly one model that turned out to be sound,
i.e., we have had only one false positive. It is worth
mentioning that the model, for which this false
positive occurred, was taken from Mendling et al.
(2008) where it has been published as an example
for bad modelling that should be improved.

All of the ‘exact’ tools failed to compute the sound-
ness for some models. The reason is the state space
explosion, i.e., the huge number of possible execu-
tions that have to be calculated. This state space
explosion can be avoided by our pattern-based
approach. More details about the validation can
be found in Gruhn and Laue (2009b).
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Figure 9: Sound EPC for which our tool would report a problem

6.2 Influence of Continuous Validation
on Model Quality

To get a first impression on the effect that the
continuous validation feature may have on the
quality of models, we conducted an experiment
with a group of business administration students
at the the University of Applied Sciences Bonn-
Rhein-Sieg, Germany. We gave the students the
task to build a business process model from a case
study.

One group of 7 students used the bflow* Toolbox
with continuous validation, another group used
the same tool where the continuous validation fea-
ture has been disabled. There were 6 syntactical
errors in the 7 models of the group that used the
validation feature, but 24 such errors in the 6 mod-
els of the other group. This result indicates that
the presence of a continuous validation feature
indeed can have a positive influence on model
quality. Details of the experiments can be found
in Laue et al. (2009). Further experiments with
larger groups are planned to evaluate the effect of
continuous validation more deeply.

7 Conclusions and Directions for
Future Research

With the error patterns discussed in Sect. 5, we
can already identify the vast majority of control
flow problems in an EPC. However, the presented
validation approach basically has a heuristic na-
ture. The checks in the editor are not meant to be
a complete validation. The EPC depicted in Fig. 9
shows two weaknesses of our approach. Although
the model represents a sound EPC, the rules dis-

cussed so far produce a false error message for the
AND-join. Furthermore our rules do not create
hints according to the OR-joins which might be
replaced by two XOR-joins. We deliberately did
not try to include rules for such exotic cases.

An evaluation based on a set of 984 EPCs from
various sources shows that a limited set of rules al-
ready detected almost all control-flow errors. We
see the main advantage of our approach in the
fact that information about possible problems in
a model is immediately reported to the modeller,
even before the model has been completed. These
alerts provide suggestions for improvement and
are given in a way that does not force the mod-
eller’s attention away from the modelling task.

It will be a direction of future research to deal with
patterns where a model change could result in
more readable models – even for EPCs where the
original model did not have deadlocks and similar
control flow problems (Gruhn and Laue, 2007b).
We are also researching more problems that can
be found by analysing the textual description of
events and functions as discussed in Sect. 5.5.
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