
Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

4 Sören Balko, Arthur H.M. ter Hofstede, Alistair Barros, Marcello La Rosa, andMichael Adams

Sören Balko, Arthur H.M. ter Hofstede, Alistair Barros, Marcello La Rosa, and

Michael Adams

Business Process Extensibility

Vendors provide reference process models as consolidated, off-the-shelf solutions to capture best practices in a

given industry domain. Customers can then adapt these models to suit their specific requirements. Traditional

process flexibility approaches facilitate this operation, but do not fully address it as they do not sufficiently

take controlled change guided by vendors’ reference models into account. This tension between the customer’s

freedom of adapting reference models, and the ability to incorporate with relatively low effort vendor-initiated

reference model changes, thus needs to be carefully balanced. This paper introduces process extensibility

as a new paradigm for customising reference processes and managing their evolution over time. Process

extensibility mandates a clear recognition of the different responsibilities and interests of reference model

vendors and consumers, and is concerned with keeping the effort of customer-side reference model adaptations

low while allowing sufficient room for model change.

1 Introduction

In many industries, a company’s environment,

such as customer demand, technological innova-

tions and regulatory conditions tend to change

frequently and sometimes rapidly. Take the glob-

al financial crisis and the resulting economic

downturn as an example. Suddenly, enterprises

face a shift in customer focus towards products

and services that can immediately generate rev-

enue, banks must apply more stringent account-

ing rules, and companies must break new ground

to find financing for investments. Beyond doubt,

in each of these cases the core processes of the

affected businesses would have been severely

impacted. Thus, these business processes are

required to adjust to cope with these changes.

By being able to flexibly adapt their processes

to change, agile businesses set themselves apart

from their competitors.

Naturally, business process management suite

(BPMS) offerings need to facilitate flexibility at

low costs. At the same time, companies still

wish to benefit from standardised best practices,

represented through vendor-provided reference

processes. The business process community has

come up with numerous flexibility techniques

to incorporate change into business processes,

e.g., Rosemann and Aalst (2007), Gottschalk et al.

(2008), Reichert et al. (2005), Aalst et al. (2005),

Adams et al. (2006), Ellis et al. (1995). These ap-

proaches cover both design time and runtime

changes and provide formal frameworks to con-

strain changes. However, many established pro-

cess flexibility approaches suffer from shortcom-

ings with respect to process lifecycle manage-

ment in general, and specifically to the costs as-

sociatedwith changing business processes. Some

techniques propose that BPMS customers alter

reference processes ‘in place’ in order to cus-

tomise them to their needs (patching use-case)

(Fettke et al. 2006). Others suggest to use refer-

ence processes merely as templates for devel-

oping company-specific processes (blueprinting

use-case) (Scheer and Nüttgens 2000).

Neither of these approaches can realistically suc-

ceed in large-scale software roll-outs, involving

hundreds of reference processes with an even

higher number of customer adaptations on top.

This is because making changes to reference pro-

cesses goes along with substantial costs for car-

rying out these changes and later maintaining

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Business Process Extensibility 5

the resulting processes. Whenever a BPMS ven-

dor ships a new reference process version to

incorporate corrections or to address new re-

quirements, existing customer adaptations have

to be re-applied at great cost. Similarly, multi-

ple independently defined adaptations have to be

consolidatedwithin a single process, for instance

when two customer departments change a cross-

departmental reference process independently at

different points in time.

This paper introduces the concept of process ex-

tensibility as a new paradigm for customising

reference processes and managing their evolu-

tion over time. Process Extensibility mandates a

clear recognition of the different responsibilities

and interests of reference model vendors and ref-

erence model consumers, and is concerned with

keeping the effort of reference model adaptations

at the customer side low while allowing suffi-

cient room for model adaptation. BPMS vendors

own (i.e., define and maintain) reference process

models, while BPMS customers own and run ex-

tensions thereof. These extensions constitute

separate customer-defined ‘delta improvements’

which hook up to a reference process through

late binding mechanisms. When adhering to

some plain compatibility rules, both reference

processes and extensions can be patched (i.e.,

maintained) by their respective owners without

ever having to be ‘re-wired’. The vendor remains

in the ‘driver seat’ to update reference content,

letting customers easily benefit from state-of-the-

art best practices. Moreover, by automatically ap-

plying existing customer extensions to patched

referenced processes, the cost of rolling out new

BPMS releases can be greatly reduced.

The rest of this paper is organised as follows.

Section 2 outlines the extensibility approach and

its benefits over existing flexibility approaches.

Next, Sect. 3 provides a taxonomy to classify flex-

ibility approaches. Section 4 identifies different

extensibility types along the control flow, data

flow and resource perspectives of a process. Sec-

tion 5 discusses how an extensibility framework

can be operationalised within a BPMS server ar-

chitecture, while Sect. 6 sets an agenda for future

research in this area. The paper concludes with

a section on related work and a summary.

2 Extensibility

The general concept of making processes more

flexible by allowing deviation from their hard-

wired business semantics has been around for

some time. Requirements like customisation, ex-

ception handling, re-use, etc. have led to different

technological approaches, namely From-Scratch

Design, Patching, Blueprinting, Ad-Hoc Changing,

and Runtime Settings.

2.1 Proposal

Extensibility is a new approach to support pro-

cess flexibility which specifically addresses cus-

tomisation of reference content. Unlike exist-

ing approaches, extensibility clearly designates

responsibilities for the process and extensions

thereof. Reference processes may be patched

(bug-fixed, updated) by the vendor only. Cus-

tomers receive reference processes as read-only

shipped content which is only updated as part of

a software release.

Customers then customise reference processes

to their needs by independently defining and de-

ploying extensionswhich solely constitute ‘deltas’

(process fragments). Extensions exist alongside

the (reference) processes. At runtime, an ex-

tensibility framework dynamically invokes the

defined extension(s) for a process. Multiple ex-

tensions to a single process can be independently

defined (e.g., by different customer departments)

to be deployed in isolation (i.e., at different points

in time). As the extensibility framework automat-

ically controls the interplay between multiple

different extensions and their target (reference)

process, there is no need to statically integrate

all extensions upfront.

Both reference processes and extensions can be

‘patched’, thereby spawning new versions. Patch-

es to a reference process should adhere to some

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

6 Sören Balko, Arthur H.M. ter Hofstede, Alistair Barros, Marcello La Rosa, andMichael Adams

compatibility rules that allow the new version

to support, wherever possible, existing customer

extensions. The extensibility framework takes

care of automatically incorporating all customer

extensions that were defined atop any old ver-

sion of the patched reference process. Similarly,

extensions need to follow some compatibility

rules. These rules constrain to what extent the

business semantics of a reference process can be

deviated from. Apart from ‘safe’ implicit compat-

ibility rules, the BPMS vendor may define more

relaxed explicit constraints.

Figure 1 illustrates a vendor-shipped reference

process (left) that is customised with extensions

of the customer’sHR and Sales departments. The

initial reference process is a sequence of three ac-

tivities: ‘HR Task’, ‘Sales Task’, and ‘ERP Service’.

The first extension replaces ‘HR Task’ with a sub-

flow comprising the existing ‘HR Task’ followed

by some organisational chart lookup (‘OrgChart

Service’).

As part of a new release, the vendor ships a

patched reference process that conditionally per-

forms an automated ‘CRM Service’ instead of the

(manual) ‘Sales Task’. The patched reference pro-

cess is compatible with any extensions defined

on its predecessor version. The extension frame-

work needs to automatically route the patched

reference process to existing extensions, where

applicable (here ‘HR Task’ → ‘HR Extension’).

Independently to the vendor shipment, the cus-

tomer may have replaced the manual ‘Sales Task’

with an automated ‘Sales Service’. The earlier

defined ‘HR Extension’ was also refined to in-

troduce a four-eyes principle. That said, patches

may be applied to both the original reference

process and a customer extension.

Extensibility is a prerequisite for proper process

lifecycle management where the reference con-

tent vendor and the customer represent distinct

parties having different requirements and obliga-

tions:

Vendor The vendor is responsible for (1) deliver-

ing correct reference processes (‘shipped con-

tent’) that represent generalised best practices.

The vendor also needs to (2)maintain that con-

tent, i.e., ship patches when bugs are detected

or requirements change. Finally, (3) the vendor

should provide the means to have its content

‘customised’ to a customer’s needs. From a

vendor perspective, it is vital to ensure that

reference process change is controlled.

Customer Customers engage their IT team to

customise a BPMS release (they may also hire

contractors to do so). In regard to reference

processes, that includes (1) changing settings

which deviate in the customer’s landscape, (2)

reducing complexity by removing function-

ality that is not needed, and (3) adding new

functionality for requirements which are not

yet covered.

End users essentially perform processes (i.e.,

start new instances or are involved in pro-

cess activities). There are often multiple end

user roles that (1) interact with the same pro-

cess but (2) have their distinct customisation

requirements. For instance, a legal depart-

ment could ask for fine-grained loggingwithin

audit-sensitive processes, whereas the IT de-

partment may be interested in being notified

of technical process failures.

Extensibility offers controlled flexibility for the

different parties that design, customise, and run

processes and is motivated by the specific con-

cerns these parties typically have. For instance,

the vendor must be able to easily patch shipped

content without introducing extra, per-customer

development costs or significantly increasing the

cost of ownership at the customer. Also, the

vendor will want to disallow arbitrary changes

to this content to avoid inconsistencies by the

customer which are very difficult to support. In

turn, customers are essentially concerned with

running their businesses while keeping IT costs

down. While flexibility does have its merits, cus-

tomers also want to build their business on best

practices. Besides, customers have a vital inter-

est in correct, law-conforming processes where

customisations are guaranteed not to distort the

reference functionality.

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Business Process Extensibility 7

BPMS Vendor BPMS Customer

(initial reference process) (initial HR dept. extension)

(patched reference process) (customer-patched HR dept. extension) (initial sales dept. extension)

Figure 1: Extensibility Example

Technically, the vendor ships reference processes

that incorporate ‘extension points’, which are

pre-planned artifacts where customers can incor-

porate their extensions. Extension points virtu-

ally apply to any dimension of modelling busi-

ness processes, including control flow, data flow,

resources, rules, security, etc. We will describe

different extensibility types in Sect. 4.

2.2 Expected Benefits

Extensibility comes with a number of expected

advantages over existing flexibility approaches.

It (1) offers a lifecycle model for controlled flex-

ibility taking into account obligations and con-

cerns of different parties involved in designing,

customising and using business processes. It

helps to avoid errors at the customer side and

reduces maintenance costs (Controlled Change).

Customers automatically (2) benefit from best

practices within shipped reference processes. In

particular, the vendor can set extension points

in a way that the basic business objective of

the reference process cannot be tampered with

by customer-defined extensions (Best Practices

Adoption). Reference processes may (3) be sub-

ject to patching. Extensions defined on an old

version of some process transparently apply to

any new version. Reference processes can thus

be fixed without losing (or having to manually

re-apply) their extensions (Supportability).

Instead of using reference processes as templates

for newly created processes, extensions (4) con-

sume fewer resources at runtime. This is because

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

8 Sören Balko, Arthur H.M. ter Hofstede, Alistair Barros, Marcello La Rosa, andMichael Adams

an extension solely constitutes a small ‘delta’. As

a side effect, this approach is ideally suited for

process outsourcing where reference processes

are remotely run at SaaS providers (Resource

Consumption). Extensibility allows multiple peo-

ple (at the customer side) to (5) independently

define ‘additive’ extensions to the same refer-

ence process. This greatly improves separation

of concerns between different business depart-

ments. As a result, multiple extensions can be

independently defined at different points in time

(Multiple Extensions).

If desired, vendors may (6) ship their processes

as ‘black boxes’, only exposing interfaces and

extension points. This may be desirable if, for ex-

ample, details in the reference content constitute

significant intellectual property that is not to be

disclosed (Intellectual Property). Reference pro-

cesses may also be purely documentary models

that are not directly executed in a proper BPMS

runtime but rather serve as a blueprint to imple-

ment applications, i.e., the processes are hard-

coded in applications. The customer (7) may still

want to extend these ‘application processes’ with

proper process models. With some application

instrumentation to add extension points, extensi-

bility may even help in bridging these platform

and paradigm differences (Application Extension).

Finally, the (8) meta-process of defining exten-

sions is of interest itself, as it reveals how a cus-

tomer deals with business change. Mining the

logs of a meta-process could help the customer

optimising its business by getting answers to

questions like: Which line of business is most of-

ten subject to change? Which user roles require

most change to reference processes? (Flexibility

Mining)

3 Taxonomy

Common process flexibility approaches can be

classified with respect to a number of dimen-

sions, the most important being (1) the primary

use-case, which outlines the main purpose and

most frequent usage, (2) the parties (vendor, cus-

tomiser, end user) that are affected, (3) the func-

tional role descriptions of each participant, (4)

the lifecycle stages (design time, runtime) of the

process, (5) the constraints that restrict what can

be done, and (6) the scope (process type, instance,

version) within which the flexibility technique

operates. Existing flexibility techniques can be

classified with this taxonomy, which aids in un-

derstanding their differences. It also outlines the

contribution of extensibility to the overall pic-

ture. We specifically discuss the differences be-

tween from-scratch modelling of new processes,

patching existing processes, re-using a vendor-

provided template to develop a new business pro-

cess (blueprinting), configuring a reference model

to customers’ specific settings (configuration),

performing ad-hoc changes of process instances

at runtime, modifying (technical) runtime set-

tings, and extending reference processes:

From-Scratch Modelling Modelling a business

process ‘from scratch’ is typically the result of

analyzing and documenting existing processes.

Most importantly, there is no pre-existing ref-

erence process to build upon. Instead, a new

process is modeled and then successively re-

fined, following a top-down approach. Alter-

nately, bottom-up approaches start with mod-

elling detailed process fragments which are

later aggregated into larger end-to-end busi-

ness processes.

Strictly speaking, this approach is not tradi-

tionally regarded as a flexibility approach, be-

cause there is no initial (reference) process

model. However, modelling a (reference) pro-

cess from scratch is a prerequisite for any

other flexibility technique. It is usually busi-

ness analystswho startmodelling from scratch.

Both the vendor and its customers may per-

form this use-case for reference processes and

customer processes, respectively. Newly

modeled processes are not subject to any con-

straints, except for the inherent restrictions of

the chosen modelling language.

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Business Process Extensibility 9

Patching This is a design time approach where

a model undergoes changes, typically to ad-

dress new or changed requirements or to fix

bugs. The vendor may have to patch reference

processes for these reasons. Customers may

want to patch their processes to incorporate

various changes in their business. Patching

is closely related to versioning, where the af-

fected process will be labeled with a new ver-

sion number.

Both IT (process developer) and business (do-

main expert) users may want to patch a pro-

cess. Patching is a design time operation but

will only take effect after deploying the patch-

ed process version into the BPMS runtime en-

gine. There are some constraints that limit

what can be changed when patching a process.

Firstly, interface compatibility must be pre-

served such that client processes do not have

to be adapted to cope with change. Secondly,

existing extension points must be retained in

the patched version such that extensions trans-

parently apply to the patch.

Blueprinting Vendor-supplied reference proc-

esses often constitute best practices rather

than ready-to-run processes. Blueprinting uses

reference processes as a ‘master’ for newly

modeled processes. Technically, the reference

process is physically copied to a blank process

model where it is further refined. While be-

ing fully flexible in what changes can be done

from there on, BPMS vendors will not be able

to support those changes. That is, customers

will have to manually apply all changes in a

new reference process version in their derived

processes (copies). Altogether, blueprinting

is a design time operation where customers

adapt vendor-delivered reference processes to

their needs (as opposed to extensibility which

relies on late binding mechanisms). Unlike

patching, customers perform modifications on

physically separate copies of the template and

rather create new variations that are indepen-

dent from (and do not overwrite) the original

process.

Configuration This is an evolution of blueprint-

ing because it allows a controlled derivation of

a customised model (called an individualised

model) from a configurable reference model.

A configurable process model allows certain

types of refinements and these refinements

can only restrict the reference model behavi-

our. By enforcing these constraints, it is possi-

ble to preserve the correctness of the reference

model (e.g., with respect to soundness) dur-

ing configuration, such that all individualised

models are correct. It is most suited when the

reference model originates from the consoli-

dation of a number of process variants for a

specific industry domain. In this way the vari-

ation points can be automatically identified

with the points in the model where multiple

variants exist. In this approach vendors ship

reference models with variation points, and

customers use these points to configure the

model to their specific needs.

Ad-hoc Changing Sometimes end users have to

deviate from the behaviour of the process in-

stances they are involved in. This is often the

case of human-driven processes, which end up

running into exceptional situations, such as

a designated task processor being absent or a

completion deadline overdue. End users need

to (implicitly) alter the process model for their

specific instance, thus deviating from its orig-

inal business semantics. Those changes will

typically be done in a lightweight modelling

environment, targeted to end users. Typical

changes include modifying task assignments,

setting back processes (to re-do a task), intro-

ducing tasks to have additional people work

on an issue, and so on.

Constraints for ad-hoc changes relate to role-

related restrictions and instance migration.

That is, ad-hoc changes alter the models of

running process instances. Consequently, ad-

hoc changes must allow for automatically mi-

grating the instance state to the altered model.

Typically ad-hoc changes affect a single pro-

cess instance only. The altered process model

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

10 Sören Balko, Arthur H.M. ter Hofstede, Alistair Barros, Marcello La Rosa, andMichael Adams

is kept temporarily, i.e., for the lifetime of that

instance. Only optionally, an ad-hoc change

may be applied to more than a single instance,

making it necessary to permanently persist

the changed model to the process repository.

Ad-hoc changes will mostly be conducted by

a process administrator. In selected cases, pro-

cess end-users (e.g., task owners) may be of-

fered some limited ad-hoc change operations

(e.g., altering a task assignment, re-doing a

task, etc.).

Runtime Settings Some environmental settings

hold globally for all processes and, when

changed, need to immediately apply to both

running processes and newly starting in-

stances. Those settings include modifications

to organisational charts, security policies and

other non functional aspects. In most cases,

these settings are not even part of any process

model such that there is essentially no design

time aspect here. Those changes are typically

done by system administrators.

Extensibility constitutes a separate flexibility ap-

proach where customers define process exten-

sions as deltas (process fragments) on top of ref-

erence processes. Similar to blueprinting and

configuration, the primary use-case is adoption

of best practices. In doing so, the customer may

decide to adapt a given set of best practices to

suit their specific business needs. Various cus-

tomer roles may define process extensions, each

with different objectives. Domain experts from

specific organisational lines (e.g., Sales, Procure-

ment, Manufacturing, etc.) may independently

define extensions to adjust a cross-organisational

process to their needs. In turn, the IT department

may want to incorporate extensions which allow

for better monitoring of running processes. A

customer typically defines extensions in a de-

sign time environment, even though that does

not rule out the option of having a runtime user

interface to let end users specify extensions in

an ad-hoc fashion. Extensibility applies to all

future model versions, and is subject to some

constraints, either originating from implicit com-

patibility rules or explicitly from modeled exten-

sion points within reference processes.

Alongside other restrictions, the vendor may pre-

define places and types of extensions within the

reference model. Most importantly, extended ref-

erence models are fully supportable in a sense

that the reference model can be patched (by the

vendor) to incorporate bug fixes, etc. Any cus-

tomer extension defined on top of that process

will transparently apply to the patched version,

thus dramatically reducing costs of ownership

for the customer who does not have to re-do

all the afore-defined extensions on top of the

patched reference model version (as opposed to

template re-use).

Table 1 classifies existing flexibility techniques

according to the dimensions introduced and po-

sitions extensibility as a new approach.

4 Extensibility Types

Conceptually, extensibility is open to different

process perspectives. This section identifies dif-

ferent extensibility types along the control flow,

data flow and resource perspectives of a business

process. Without loss of generality, we use a

BPMN-like notation to illustrate these use-cases.

4.1 Control Flow Perspective

Many extensibility use-cases do in some way

alter the control flow by adding or replacing pro-

cess fragments by customer extensions. Exten-

sions may also skip or even re-arrange existing

reference process branches. Multiple variants ex-

ist,most notably for how to spawn (conditionally,

(a)synchronously, etc.) andmerge back extension

flow (with or without synchronisation).

In this paper, we consider two types of con-

trol flow extensibility: Usage Extensibility and

Structural Extensibility. Usage extensibility is the

most straightforward way of creating control

flow extensions and applies to activities, denot-

ing atomic tasks, either performed automatically

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Business Process Extensibility 11

Table 1: Process Flexibility Taxonomy

Approach Use-Case Party Role Lifecycle Constraints Scope

Designing Business Vendor, Business analyst Design – new
from process Customer Process time process
Scratch analysis architect

Patching Changing Vendor, Process Design Extension/ new
requirements, Customer developer, time interface version
Bug fixing Domain expert compatibility

Blueprinting Best practice Customer Process Design – new
adoption, developer, time process
customisation Domain expert

Configuration Best practice Customer Process Design Correctness new
adoption, architect, time preservation process
customisation Domain expert

Ad-Hoc Handling of Customer Process Runtime Instance single
Changing exceptional administrator, migration, instance

cases Task owner Role-related

Runtime System-wide Customer System Runtime – all
Settings settings administrator running

instances

Extensi- Best practice, Vendor, Domain Design Compatibility All
bility adoption, Customer expert, Time, rules future

customisation IT department Runtime versions

or by a human actor, or referencing nested sub-

flows. The idea is to have an extension replacing

an activity A of the reference flow by another

activity A′. Technically, the to-be-replaced and

replacing activities A and A′ need to expose com-

patible data flow interfaces, in order for the ex-

tensibility framework to seamlessly perform the

replacement without human intervention at run-

time.

Figure 2 depicts a ‘Make to Order’ reference pro-

cess derived from a public SAP Solution Com-

poser1 business scenario map. ‘Make to Order’

specifies a vendor-side process in discrete indus-

tries where a good is manufactured upon an

incoming order from a customer. On the ven-

dor side, activities are performed by three differ-

ent roles: (1) sales department, (2) manufactur-

ing, and (3) quality assurance. After negotiating

delivery dates and completing the production

1http://www.sap.com/solutions/
businessmaps/composer/index.epx

planning,manufacturing ultimately produces the

good with interleaved quality checks for the pro-

duction process and final checks for the good it-

self. At customisation, this process is extended to

optionally modify those quality gates depending

on the order volume. That is, for high-volume

orders a four-eye quality check applies as part of

the final checks. For this purpose, the extension

replaces the ‘Final Quality Checks’ task by the

subflow depicted in Fig. 3 (left).

Usage Extensibility captures a wide range of cus-

tomisation use-cases and can be applied in a

straightforward way. In fact, by substituting

atomic activities with subflows, it allows the in-

corporation of structurally complex customer

extensions into reference flows. Complex struc-

tural changes that go beyond substituting activi-

ties are out of reach for Usage Extensibility. This

is due to the fact that the replacing activity or

subflow A′ is technically bound to the interface

of the activity to be replaced. In essence, A′

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

12 Sören Balko, Arthur H.M. ter Hofstede, Alistair Barros, Marcello La Rosa, andMichael Adams

Figure 2: ‘Make to Order’ Reference Process

is constrained to operate and manipulate those

fragments of the process data context which are

passed to and retrieved from A. This is because

customer extensions are dynamically invoked

through late binding mechanisms which rely on

a-priori fixed interfaces.

There are other cases where Usage Extensibil-

ity is simply inadequate and impractical to use.

Suppose one wants to extend the ‘Make to Or-

der’ process in a way that for standard goods

the ‘Material Planning’, ‘Production Scheduling’,

and ‘Firm Production Plan’ steps could be auto-

mated such that the resulting process fragment

conceptually looks like the one in Fig. 3 (right).

This scenario is obviously more challenging. An

existing reference process fragment (the ‘Ma-

terial Planning’ → ‘Production Scheduling’ →
‘Firm Production Plan’ activity chain) would need

to be optionally skipped and the alternative flow

(‘Automated Planning’ activity) would need to

be merged back into the main flow. In that

sense, the structural extensions constitute pro-

cess fragments which hook up to the reference

flow through a branching-and-merging exten-

sion point. This is thus a case of Structural Ex-

tensibility. In this context, extension points are

distinct control flow connectors of the reference

process which do have some gateway semantics.

That is, one can require the extension flow to run

in parallel, optionally or exclusively. Correspond-

ingly, the merging behaviour can be specified as

synchronising or simple merge.

4.2 Data Flow Perspective

Unlike control flow, data flow is implicitly in-

corporated into process models. It affects the

process’ data context, activity interfaces, data

mappings, decision gateways and message cor-

relations. A frequently observed requirement

revolves around Field Extensibility which deals

with compatibly complementing data interfaces

both from a service provisioning and consump-

tion perspective. That is, customers may wish to

customise the reference process in a way that it

receives/passes on additional parameters from in-

bound/to outbound messages. New clients may

interact with the process through the field-ex-

tended interface. In turn, compatibility to exist-

ing clients (provisioning) and services (consump-

tion) must be guaranteed.

Figure 4 shows an example of Field Extensibility.

It depicts a plain BPMN flow where the start and

end events identify the boundaries of an inbound

case, providing the process as a service has a

well-defined interface. A new process instance is

spawned upon receiving an inbound message on

that interface. In turn, the end event terminates

the instance and prepares the corresponding out-

bound message. When compatibly extending

that interface to accommodate additional fields,

customers (including parent processes) may pass

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Business Process Extensibility 13

Figure 3: Usage Extensibility (left) and Structural Extensibility (right)

on extra data to the process. The process may

then make use of this data in usage-extended

activities. Existing customers remain unaffected,

as they pass on their inbound messages to an

extensibility framework which adds the extra

fields, or receive their outbound messages from

an extensibility framework which strips off the

extra fields.

The subflow activity constitutes the consump-

tion case where the activity’s interface may be

field-extended in the same manner. Altogether,

Field Extensibility is concerned with preserving

compatibility despite interface changes.

Figure 4: Field Extensibility

4.3 Resource Perspective

In the resource perspective extensions are pre-

dominately concerned with user roles and other

organisational entities. To some extent, this type

of change will be dealt with as part of the Run-

time Settings flexibility approach. Nevertheless,

customisations may still want to constrain these

settings for a concrete process.

Organisational charts including role assignments

are valid for the entire organisation and do not

need to be maintained at the process level. Cus-

tomisation is only required to impose additional

restrictions that support the specific semantics

of the given process. Consider the ‘Make to Or-

der’ reference process (Fig. 2) where two quality

checks are in place: one for the manufacturing

process (Q1) and one for the produced good itself

(Q2).

From an organisational perspective, Q1 and Q2
are conducted by quality assurance (QA) engi-

neers subsumed under the ‘Quality Control’ role.

For reasons such as obtaining independent views

in these checks and also avoidingworkload peaks

and bottleneck situations it may be desirable to

explicitly require that Q1 and Q2 are not con-

ducted by one and the same person. Technically,

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

14 Sören Balko, Arthur H.M. ter Hofstede, Alistair Barros, Marcello La Rosa, andMichael Adams

the owners of both tasks are in the ‘Quality Con-

trol’ role, yet Q2 must not be carried out by the

owner of Q1. Role Extensibility describes the cus-

tomisation use-case of adding more constraints

to the task role assignments. The extensibility

framework can easily support this use-case by of-

fering a filter operation which computes a subset

of the role members according to the concrete

extension semantics. In this example, it takes the

owner of Q1 as a parameter and excludes it from

the potential processors of Q2.

5 Extensibility Framework: Technical
Considerations

In this section we describe how the extensibility

framework can be operationalised via an Extensi-

bility Service integrated into a BPMS server archi-

tecture. As a proof of concept, an Extensibility

Service may be implemented as a Custom Service

within the YAWL workflow system (Hofstede et

al. 2010). YAWL has been chosen as the exem-

plary platform since it provides an expressive

workflow language based on the workflow pat-

terns,2 together with a formal semantics (Aalst

and Hofstede 2005). It also provides a fully in-

terfaced workflow enactment engine, and a pro-

cess design tool for process model and exten-

sion creation. The YAWL environment is open-

source and follows the service-oriented architec-

ture paradigm, allowing extensibility support to

be provided by means of a complementary ser-

vice independent to the core engine. However,

while this example illustrates the Extensibility

Service within the YAWL architecture, it should

be seen as in no way limited to that environment.

Custom YAWL services interact with the YAWL

engine through XML/HTTPmessages via certain

interface endpoints, some located on the engine

side and others on the service side. Specifically,

custom services may elect to be notified by the

engine when certain events occur in the life-

cycle of nominated process instantiations (i.e.,

when a work item becomes enabled, when a

2www.workflowpatterns.com

work item is canceled, when a case completes),

to signal the creation and completion of process

instances and work items, or to notify of certain

events or changes in the status of existing work

items and cases.

Figure 5 presents a high-level architecture that

illustrates how the process execution engine in-

teractswith an extensibility service thatmanages

and executes all extensions defined atop a given

process.

Extensions are dynamically incorporated into

processes at runtime using late binding mech-

anisms managed by the Extensibility Service.

When a process instance reaches an extension

point, the process execution engine notifies the

Extensibility Service of an extension point event,

passing certain process descriptors (e.g., process

and extension point identifiers, instance data, re-

sourcing information and so on) along with the

notification.

The Extensibility Service then retrieves the

matching extension(s) (if any) from the custom-

er’s process repository. If there are multiple entry

extensions defined for the extension point noti-

fied, the Extensibility Service makes an ‘intelli-

gent’ choice using the context of the particular

process instance against a set of pre-defined busi-

ness rules. Once a matching extension has been

chosen, it is passed to the engine for execution;

once the extension completes, the Extensibility

Service notifies the engine to return focus to

the original reference process. If no extension

is found for the extension point notified, or if

no appropriate extension is found amongst the

matches given the instance context, the Exten-

sibility Service sends a decline message to the

engine, allowing the reference process to con-

tinue as originally defined.

The Extensibility Service takes responsibility for

the proper execution of an extension within the

scope of an extension point of a reference pro-

cess. If an extension is specified to merge syn-

chronously after completion, the parent process

is temporarily suspended while the extension is

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Business Process Extensibility 15

Figure 5: YAWL Architecture with Extensibility Support

executed. The executed extension is run as a sep-

arate entity within the engine, so that, from an

engine perspective, the extension and its parent

reference process instance are two distinct cases.

The Extensibility Service tracks the relationships,

data and resource mappings, and synchronisa-

tion between the two instances, so that when the

extension completes, the parent process can be

seamlessly resumed or updated as required.

A customer may designate that a particular ex-

tension point requires a number of extensions

to be executed. Such semantics may be specified

within an extension definition, so that an array

of extensions are run in parallel or sequentially

or a combination of both. In such cases, the Ex-

tensibility Service handles the flow of multiple

extension execution, only passing control back

to the parent process once all relevant extensions

have completed.

Human actors come into play at various occa-

sions. A process designer uses the design tool

to craft both process definitions and extensions,

which are stored in the customer’s process repos-

itory. These process definitions are loaded into

the runtime engine, along with the reference

process definitions and extension point config-

uration data supplied by the vendor. Customer-

defined extensions are loaded from the process

repository by the Extensibility Service on a just-

in-time basis in response to engine notifications.

The launch of a new process instance in the

engine is triggered by a process administrator

through a administration layer provide by the Re-

source Service (process management). End users

interact with processes through tasks allocated

to them, which are cached and dispatched by a

task management component of the Resource

Service.

In exceptional situations, the Extensibility Ser-

vice will notify the process administrator of a

conflicting situation that requires resolution. For

instance, a reference process may have been

patched in an incompatible way such that it does

not fit a certain extension definition. In such

cases, the process administrator may resolve the

issue by deciding to cancel the process instance

or to skip the ‘dangling extension’.

6 Open Research Challenges

In this paper, we introduce the idea of process

extensibility but do not yet cover the whole topic

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

16 Sören Balko, Arthur H.M. ter Hofstede, Alistair Barros, Marcello La Rosa, andMichael Adams

exhaustively. In fact, we believe extensibility

constitutes a whole new area of BPM research.

In this section, we present a research agenda that

gives indications for future research on concep-

tual and technical follow-up topics. Most topics

revolve around (1) fully understanding the appli-

cability and limitations of process extensibility

and (2) laying its formal and technical founda-

tions:

Extensibility Patterns To set the scene for fol-

low-up research, it is important to gain a com-

prehensive view of relevant extensibility use-

cases. These use-cases should preferably con-

stitute real-world customisation requirements

that need to be classified and mapped to exten-

sibility patterns, along the three main process

perspectives (control flow, data flow and re-

sources). As a result, BPM vendors can better

address customer requirements with respect

to recurrent extensibility use-cases.

Reference Process Conformance Any custom-

er-side extensions will alter the behaviour of

reference models in some way, which, by defi-

nition, represent best practices. Therefore, for

reasons such as conformance to legal require-

ments or industry standards, it will be neces-

sary to preserve certain core characteristics of

the reference model within the extended pro-

cess. A possibleway to address this problem is

by defining an explicit constraintmodel for ex-

tension points (i.e., places in reference models

where extensions may be safely inserted), in

order to prevent the core characteristics from

being corrupted. An alternate approach is to

develop a framework for specifying the core

characteristics of reference models, for exam-

ple formulated as pre- and post-conditions,

thus leaving the inner detail of the process

underspecified. Extensibility constraints could

then be derived from the definitions of the

core characteristics, providing a large degree

of flexibility.

Reference Process Patchability After shipment,

a reference process p is solely maintained

through patching (cf. Fig. 6, left). The ven-

dor may ship a new version p′ that all existing
extensions transparently apply. Hence, exist-

ing extensions (e1) implicitly impose compati-

bility rules which constrain to what extent a

patched reference process p′ can differ from

the predecessor version p.
Future research should formulate compatibil-

ity rules for reference process patching. That

includes providing migration instructions to

automatically handle ‘dangling extensions’

that no longer match a patched reference pro-

cess.

Reference Process Versioning Once a reference

process model is shipped to clients, it is fully

maintained by the vendor, who will ship from

time to time new versions of it (which may in-

clude bug-fixes or revised legal requirements,

for example). Any customer-side extensions

that were attached to the original version of

the reference model would transparently at-

tach to the new version. Therefore, client pro-

cess extensions must implicitly impose com-

patibility rules that constrain to what extent a

new reference model version can differ from

the previous version, while still maintaining

extension compatibility between reference

model versions. Through the enforcement of

these rules, vendors would then be able to

detect potential constraint violations, and per-

form migration plans to handle violating ex-

tensions (‘dangling extensions’) on the client

side.

Extension Merging Multiple users can indepen-

dently define extensions of the same reference

process. Those extensions may be contradic-

tory, thus situations should be investigated

in detail (i) to come up with sound execution

strategies and (ii) to detect contradictory ex-

tensions, for example incompatible field exten-

sions of the same interface.

Extension Mining Deviations from reference

processes may initially not be specified as

proper extensions. Instead, end users may

alsomake use of costly ad-hoc changes to gain

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Business Process Extensibility 17

vendor customer

p

p′

e1

e2

vendor ISV customer

e1

p e3

e2

e4

Figure 6: Reference Process Patchability (left) and Stacked Extensions (right)

the required flexibility. To liberate end users

from tedious ad-hoc changes, and thus essen-

tially saving costs, process log mining may be

employed to detect ‘manual’ deviations from

a reference process’ original behaviour and to

automatically derive extension definitions.

Extension Point Extension points are part of a

reference process and expose its extensible as-

pects. Future work should develop a concept

for specifying extension points, capturing all

extension patterns. That may include addi-

tional constraints on the extensions that are

‘plugged in’. Finally, extension points should

be self-sufficient such that reference processes

could also be shipped as ‘black box’ content,

omitting implementation details.

Migration Strategies Sometimes a patched ref-

erence process version will break compatibil-

ity with existing extensions. For instance, it

may be required to expand an interface or to

drop an activity, thus potentially invalidating

customer-defined field and usage extensions

atop these reference process artifacts. Con-

sider for example the case depicted in Fig. 1

where another patch to the reference process

could drop activity ‘HR Task’, which would

implicitly invalidate ‘HR extension’. Prefer-

ably, resolution strategies will automatically

migrate these ‘dangling extensions’ without

manual customer intervention. For instance, a

usage extension to an activitywhich is dropped

may simply be discarded if the extension did

not have any side effects (e.g., a stateless, syn-

chronousWeb Service call). In other cases, res-

olution may not be as straightforward, though.

Based on extensibility patterns, future research

should identify automatic resolution strategies

(if applicable) for ‘dangling extensions’.

Stacked Extensions In large software rollouts,

3rd party contractors may be involved. For

instance, a contractor may be responsible for

customising reference processes through some

baseline extensions. The customer itself may

further refine these contractor-defined exten-

sions by providing other extensions on top of

it. In this way, a transitive extension chain

may emerge. Figure 6 (right) depicts a sce-

nario where both a contractor and the cus-

tomer define extensions atop a reference pro-

cess p. Customer extensions (e3 and e4) can

both refer to a contractor extension (e1) or the

reference process directly. Future work needs

to devise an extensibility framework architec-

ture that supports these scenarios.

Business Process Outsourcing Both Software-

as-a-Service and Cloud Computing promise sig-

nificant cost savings through scaling effects.

In this regard, Business Process Outsourcing

has become the corresponding catchphrase

for the BPM realm. The idea is to externalise

execution of processes to 3rd party hosting

providers. In terms of extensibility, one might

host the reference process at the vendor side,

making invocations to extensions which run

on the customer side. Future work should

yield an extensibility framework architecture

supporting distributed execution environments

that tackle challenges like performance, avail-

ability, transactionality, failover, authorisation,

etc.

Authorisation Issues Role awareness is a key

differentiator of extensibility, as opposed to

other process flexibility approaches. Conse-

quently, authorisation becomes an issue inas-

much as certain operations (like view, patch,

extend, run) may be constrained to certain

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

18 Sören Balko, Arthur H.M. ter Hofstede, Alistair Barros, Marcello La Rosa, andMichael Adams

roles. For instance, the reference process may

solely be patched by the vendor, but may be

extended on the customer side. More finely

grained authorisation schemes may be invoked

to further constrain the roles that may define

extensions for specific extension points. Alto-

gether, future research should define a com-

prehensive authorisation concept, supporting

the fore-mentioned use cases.

Design Time Usability The extensibility ap-

proach promises great cost savings over other

flexibility approaches. As a prerequisite, BPMS

need to include modelling tools to define ex-

tensions. These tools need to visualise rele-

vant aspects of the to-be-extended reference

process and to define and ‘wire up’ extensions

in an easy to comprehend fashion such that

the impact of those changes becomes unam-

biguously evident.

This agenda is by no means complete; our focus

is to lay the foundations for practically-oriented

extensibility support as part of a BPMS.

7 Related Work

In this paper, business process extensibility is po-

sitioned as a new area of research within the

well-explored field of process flexibility. A recent

taxonomy in process flexibility Schonenberg et

al. 2008 identified four approaches to achieving

flexibility:

• flexibility by design – where a number of alter-

native pathways are explicitly specified in the

process model at design time.

• flexibility by deviation – where at run-time

an alternative course of action can be taken

which differs from the course of action pre-

scribed by the process model.

• flexiblity by underspecification –where detailed

specification of (parts of) the process model is

avoided. As mentioned in Schonenberg et al.

(2008), this category covers both late modelling

and late binding.

• flexibility by change – where a process model

can be modified after deployment.

BPM systems such as ADEPT1 (Reichert et al.

2003a), YAWL (Aalst and Hofstede 2005) (includ-

ing its Worklet service (Adams et al. 2006)),

FLOWer (Aalst et al. 2005) and DECLARE (Pesic

et al. 2007) are classified in Schonenberg et al.

(2008) according to this taxonomy. However this

taxonomy omits configuration as a design-time

flexibility approach (configuration is discussed

later on in this section).

Patterns are a useful means to compare the capa-

bilities of different languages/systems and there

are two pattern collections in the area of process

flexibility that have recently been developed for

this purpose. On the one hand, so-called change

patterns and change support features are docu-

mented in Weber et al. (2008), while on the other

hand the flexibility taxonomy gave rise to a col-

lection of flexibility patterns (Mulyar et al. 2008).

InWeber et al. (2008), the 17 change patterns re-

fer to the ability of a system to provide high-level

adaptations at the process model and the process

instance levels, while the six change support fea-

tures ensure performed changes are correct and

consistent, traceable, and that changes are facil-

itated for users. However, the change patterns

and features listed describe high-level change

operations only, and lean towards those systems

that allow for ad-hoc inclusions, exclusions and

sequential changes that are applied by an admin-

istrator at runtime, for the most part manually.

InMulyar et al. (2008) it is claimed that the ‘ma-

jority of’ the change patterns can be ‘mapped

on’ the flexibility patterns, although the authors

do not further develop any correlation between

the two pattern sets. Neither pattern collection

addresses the issue of managing the evolution

of (reference) process models by vendors and of

their counterparts by customers. However, they

can be used as a mechanism to operationalise

our ideas.

Issues of correctness revolve around questions

of how to propagate changes without violating

correctness and consistency constraints inherent

in the process schemas, and how to synchronise

concurrent changes. The construction of tests

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Business Process Extensibility 19

that provide for the detection of potential con-

flicts between change at the type and instance

levels is given in Rinderle et al. (2004b). While

the authors concede that the formalisations are

incomplete, they demonstrate the extent of the

problems introduced when faced with the need

to ensure correctness when propagating change.

In Ly et al. (2006), the authors state it is essen-

tial to integrate semantic (or application) knowl-

edge within any framework supporting process

change in order to avoid semantic conflicts, a

view that introduces problems such as how to

formalise such knowledge, how to describe the

notion of semantic correctness after change, how

to support efficient verification and how tomain-

tain the knowledge base. Such semantic con-

straints and their systemic management provide

insights into how the approach proposed in this

paper handles these issues.

A well-researched problem in the area of dy-

namic/adaptive workflow is the migration of

process instances across different versions of

a process model. Consider e.g., early work by

Ellis et al. (1995) or Aalst (2001) dealing with

changed control-flow dependencies. A compar-

ative overview of correctness criteria used by

various approaches is presented in Rinderle et al.

(2004a). Challenges inherent in the correctmigra-

tion of a potentially large number of instances

in various states, and possibly with various ad-

hoc changes already applied, from the old to

the new models, are described in Reichert et al.

(2003b) and Rinderle et al. (2005). More recently,

Rinderle-Ma et al. (2008) investigated new, more

relaxed, correctness criteria for process migra-

tion, taking not only the control flow perspective

but also the data perspective into account. Work

in this area could be exploited and extended to

deal with (controlled) changes by the vendor, the

customer, or both. The last case in particular

poses a challenge.

Kochut et al. (2003) present correctness criteria

for concurrent process change within the scien-

tific workflow domain. Their adaptation proce-

dures are constrained by the evaluation of the

impact on running processes in terms of time,

cost and quality. Changes are categorised as ei-

ther ad-hoc (as a result of errors, rare events,

special demands) or evolutionary (new strate-

gies, reengineering efforts, alteration of external

conditions).

A framework for the specification and valida-

tion of process constraints is given in Sadiq et al.

(2005), with a view towards an appropriate bal-

ance between flexibility and control. Constraints

are split into two main classes (structural and

containment), which impose restrictions on how

fragments (or extensions to a process model) can

be composed, and on how they can be contained

in the resultant process model, respectively. The

approach relies on late-binding of fragments to

parent model ‘templates’, but it is implemented

by routing the pre-launching of each and every

process instance to an ‘expert’ user to assemble

the various process parts, and thus is untenable

for organisations that manage large numbers of

concurrent cases. However, the framework pro-

vided does present some formalisms for the de-

ployment of the systematic approach to extensi-

bility discussed in this paper.

Features of OSGi methodologies provide some

insight for approaches to implementing extensi-

bility conformance, extension points and stacked

extensions. In Gu et al. (2004), a formal, ontology-

based context model is used to develop an OSGi-

based infrastructure for managed services. The

model uses an ontology markup language called

OWL to define interaction points between ser-

vice components. The adoption of an OSGi archi-

tecture for the Eclipse 3.0 platform is discussed

in Gruber et al. (2005), taking it from a propri-

etary to a rich client platform supporting a plug-

in architecture. The architecture features a man-

ager agent that is responsible for the correct in-

stallation of (plug-in) bundles, including resolv-

ing issues of configuration, dependencies, secu-

rity and equivalence.

Reference models are models for targeted ap-

plication domains that incorporate ‘best prac-

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

20 Sören Balko, Arthur H.M. ter Hofstede, Alistair Barros, Marcello La Rosa, andMichael Adams

tice’ (Küster et al. 2006) methods in these do-

mains. Reference process models serve to cap-

ture the procedural aspects of best practices. In

the SAP R/3 environment many such models are

made available using the Event-driven Process

Chain (EPC) notation. As a reference process

model may be quite large in order to capture

all possible pathways in the various settings in

which itmay be used, the notion of a configurable

reference process models was introduced (Rose-

mann and Aalst 2007). Customising a config-

urable reference process model to a particular

setting may lead to a model in which many of

the pathways were eliminated as they are simply

not applicable. Process configuration typically

is a one-off activity where there is no provision

for further adaptation of the configured model.

Additionally, evolution of configurable reference

process models has not yet been investigated but

only identified as a topic worthy of research (La

Rosa 2009).

Methods for Reference Process Patchability will

involve issues of migration and merging. A clas-

sic treatment of model comparison, difference

discovery, merging and synchronisation can be

found in Lippe and Oosterom (1992), which de-

scribes an approach called ‘operation-based merg-

ing’. This method goes beyond the state-based,

before and after comparisons, by recording all

relevant operations performed in the form of

transformations that occur between the existing

(before) and modified (after) states. While aimed

primarily at data objects, the operation-based

merging framework presented offers a number

of primitives that may be applied to the issue

of patchability, so that efficiencies of support

for conflict resolution and consistency between

versions can be achieved.

The problem of specifically merging an arbitrary

set of process models into a configurable refer-

ence model encompassing the behaviour of all

the input models, has been investigated in La

Rosa et al. (2010). Accordingly, a configurable

reference model is created by taking all maxi-

mum common regions between a pair of process

models, and connecting these regions with those

process fragments that occur in one of the two in-

put models only. This connection is achieved via

variation points while annotations are assigned

to each element in the merged model, to keep

track of the input model the element in question

originates from. In this way one is able to trace

back from which input model(s) each element

originates, as well as to derive the input process

models from the generated reference model, by

configuring the latter. This approach can provide

a basis to operationalise the merging of different

vendor and customer patches and to trace back

each patch’s originator.

An approach to tackling challenges dealing with

a collection of so-called ‘process variants’ is doc-

umented inHallerbach et al. (2008). It is proposed

that for a process variant the change operations

that need to be applied to derive it from a base

process model are explicitly stored, rather than

keeping only the results of these operations. This

is an idea that is valuable to the area of business

process extensibility as well.

The mixture of design-time and run-time consid-

erations aswell as the requirement of supporting

restricted changes and the propagation of such

changes, position the field of business process

extensibility uniquely with respect to process

flexibility and process configuration.

8 Summary

This paper introduced the notion of process ex-

tensibility as a new paradigm for customising

reference process models and managing their

evolution over time. The main difference with

traditional process flexibility approaches arises

from the clear separation of concerns between

the reference process owner (vendor) and the

owner of extensions thereof (customer). The ten-

sion between customer freedom, when it comes

to reference model adaptation, and the ability

to incorporate with relatively low effort vendor-

initiated reference model changes, needs to be

carefully balanced.

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Business Process Extensibility 21

This paper provided an introductory exposition

to the notion of business process extensibility,

drawing from situations and examples that were

sufficient to differentiate it from the related area

of process flexibility. The approach to exten-

sibility as proposed in the paper was based on

allowing concurrent changes to vendor reference

business process models and corresponding cus-

tomer deployments through well-defined exten-

sion points in models and conflict-free model

merging. The limitation of controlled flexibility

argued in this paper is related to the ability of

the vendor to foresee where extensions to a ref-

erence model could be needed in future. In fact

once extension points are set, they should not

be changed to avoid losing synchronisation with

the customers’ derived models. By way of illus-

tration, we sketched how the approach applies

for well-defined requirements in the form of ex-

tensibility types along the control flow, data flow

and resource perspectives of a process. More-

over, discussed how such an approach could be

implemented in the context of the YAWL system.

With the initial framing of extensibility in view,

we listed a number of open research challenges

including the need for further types, reference

process model conformance and patching, min-

ing, and extension points and stacked extensions.

Future work will investigate these different chal-

lenges with the goal of proposing more compre-

hensive support for practitioners. A major part

of this will be to understand the different situa-

tions and requirements for extensibility and to

understand and predict extension needs out of

a variety of sources and potentially conflicting

model updates. We also envisage that an area for

fruitful development to apply extension points

would be through action patterns (Smirnov et

al. 2009), whereby extension points can be intro-

duced in the context of predictive model editing.

References

Aalst W. (2001) Exterminating the Dynamic

Change Bug: A Concrete Approach to Sup-

port Workflow Change. In: Information Sys-

tems Frontiers 3(3), pp. 297–317

Aalst W., ter Hofstede A. (2005) YAWL: Yet An-

other Workflow Language. In: Information

Systems 30(4), pp. 245–275

Aalst W., WeskeM., Grünbauer D. (2005) Case

Handling: A New Paradigm for Business Pro-

cess Support. In: Data & Knowledge Engi-

neering 53(2), pp. 129–162

Adams M., Hofstede A., Edmond D., Aalst W.

(2006) Worklets: A Service-Oriented Imple-

mentation of Dynamic Flexibility in Work-

flows. In: Proc. of the 14th Int. Conf. on Co-

operative Information Systems (CoopIS’06).

Lecture Notes in Computer Science Vol. 4275.

Springer, Berlin, pp. 291–308

Ellis C. A., Keddara K., Rozenberg G. (1995) Dy-

namic change within workflow systems. In:

Proc. of the Conf. on Organizational Comput-

ing Systems, COOCS 1995, Milpitas, Califor-

nia, USA, August 13-16, 1995. ACM, pp. 10–

21

Fettke P., Loos P., Zwicker J. (2006) Business

Process ReferenceModels: Survey and Clas-

sification. In: Business ProcessManagement

Workshops. Lecture Notes in Computer Sci-

ence Vol. 3812. Springer, Berlin

Gottschalk F., Aalst W., Jansen-Vullers M., La

Rosa M. (2008) Configurable Workflow Mod-

els. In: Int. Journal of Cooperative Informa-

tion Systems 17(2), pp. 177–221

Gruber O., Hargrave B., McAffer J., Rapicault

P., Watson T. (2005) The Eclipse 3.0 Platform:

Adopting OSGi Technology. In: IBM Systems

Journal 44(2), pp. 289–299

Gu T., Pung H., Zhang D. (2004) Toward

an OSGi-Based Infrastructure for Context-

Aware Applications. In: IEEE Pervasive Com-

puting 3(4), pp. 66–74

Hallerbach A., Bauer T., Reichert M. (2008) Man-

aging Process Variants in the Process Life

Cycle. In: ICEIS 2008 - Proc. of the Tenth

Int. Conf. on Enterprise Information Systems,

Volume ISAS-2, pp. 154–161

Hofstede A., Aalst W., Adams M., Russell N.

(2010) Modern Business Process Automa-

tion – YAWL and its Support Environment.

Springer

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

22 Sören Balko, Arthur H.M. ter Hofstede, Alistair Barros, Marcello La Rosa, andMichael Adams

Kochut K., Arnold J., Sheth A., Miller J., Krae-

mer E., Cardoso J. (2003) IntelliGEN: A Dis-

tributed Workflow System for Discovering

Protein-Protein Interactions. In: Distributed

and Parallel Databases 13(1), pp. 43–72

Küster J. M., Koehler J., Ryndina K. (2006) Im-

proving Business Process Models with Ref-

erenceModels in Business-Driven Develop-

ment. In: Business ProcessManagement 2006

Workshops. Lecture Notes in Computer Sci-

ence Vol. 4103. Springer, pp. 35–44

La Rosa M. (2009) Managing Variability in

Process-Aware Information Systems. PhD

Thesis, Queensland University of Technol-

ogy, Brisbane, Australia

La Rosa M., Dumas M., Uba R., Dijkman R.

(2010) Merging Business ProcessModels. In:

Proceedings of the 18th International Con-

ference on Cooperative Information Systems.

LNCS Vol. 6426. Springer, Berlin

Lippe E., van Oosterom N. (1992) Operation-

based merging. In: SIGSOFT Software Engi-

neering Notes 17(5), pp. 78–87

Ly L., Rinderle S., Dadam P. (2006) Semantic Cor-

rectness in Adaptive Process Management

Systems. In: Dustdar S., Fiadeiro J., Sheth A.

(eds.) Proceedings of the 4th International

Conference on Business Process Manage-

ment. Lecture Notes in Computer Science

Vol. 4102. Springer, Berlin

Mulyar N., Aalst W., Russell N. (2008) Process

Flexibility Patterns. BETAWorking Paper Se-

riesWP 251. Eindhoven University of Tech-

nology. Eindhoven. http : / / fp . tm . tue .nl /

beta/publications/working\%20papers/Beta\

_wp251.pdf

PesicM., SchonenbergM. H., Sidorova N., Aalst

W. (2007) Constraint-Based Workflow Mod-

els: Change Made Easy. In: CoopIS, DOA,

ODBASE, GADA, and IS, OTM Confeder-

ated Int. Conf. Proc., Part I. Lecture Notes in

Computer Science Vol. 4803. Springer, Berlin,

pp. 77–94

Reichert M., Rinderle S., Dadam P. (2003a)

ADEPTWorkflow Management System: In:

Proc. of the 1st Int. Conf. on Business Pro-

cess Management 2003. Lecture Notes in

Computer Science Vol. 2678. Springer, Berlin,

pp. 370–379

Reichert M., Rinderle S., Dadam P. (2003b) On

the Common Support of Workflow Type and

Instance Changes under Correctness Con-

straints. In: et al. R. M. (ed.) Proceedings of

the 11th International Conference on Cooper-

ative Information Systems (CoopIS’03). Lec-

ture Notes in Computer Science Vol. 2888.

Springer, Catania, Sicily

Reichert M., Rinderle S., Kreher U., Dadam P.

(2005) Adaptive process management with

ADEPT2. In: Proc. of the Int. Conf. on Data

Engineering Vol. 3716. IEEE Computer Soci-

ety, pp. 1113–1114

Rinderle-Ma S., Reichert M., Weber B. (2008) Re-

laxed Compliance Notions in Adaptive Pro-

cess Management Systems. In: Conceptual

Modeling - ER 2008, 27th Int. Conf. on Con-

ceptual Modeling. Lecture Notes in Com-

puter Science Vol. 5231. Springer, Berlin,

pp. 232–247

Rinderle S., Reichert M., Dadam P. (2004a) Cor-

rectness criteria for dynamic changes in

workflow systems - a survey. In: Data &

Knowledge Engineering 50(1), pp. 9–34

Rinderle S., Reichert M., Dadam P. (2004b) On

Dealing with Structural Conflicts between

Process Type and Instance Changes. In: De-

sel J., Pernici B., Weske M. (eds.) Proceedings

of the 2nd International Conference on Busi-

ness ProcessManagement. Lecture Notes in

Computer Science Vol. 3080. Springer, Berlin

Rinderle S., Weber B., Reichert M., Wild W.

(2005) Integrating process learning and pro-

cess evolution - a semantics based approach.

In: Aalst W., Benatallah B., Casati F., Curbera

F. (eds.) Proc. of the 3rd International Con-

ference on Business Process Management.

Lecture Notes in Computer Science Vol. 3649.

Springer, Berlin, pp. 252–267

Rosemann M., Aalst W. (2007) A Configurable

Reference Modelling Language. In: Informa-

tion Systems 32(1), pp. 1–23

Sadiq S., Orlowska M., Sadiq W. (2005) Specifi-

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Business Process Extensibility 23

cation and Validation of Process Constraints

for FlexibleWorkflows. In: Information Sys-

tems 30(5), pp. 349–278

Scheer A., Nüttgens M. (2000) ARIS: Architec-

ture and ReferenceModels for Business Pro-

cess Management. In: van der Aalst W. M. P.,

Desel J., Oberweis A. (eds.) Business Process

Management. Lecture Notes in Computer Sci-

ence Vol. 1806. Springer, Berlin, pp. 366–379

Schonenberg H., Mans R., Russell N., Mulyar

N., Aalst W. (2008) Towards a Taxonomy of

Process Flexibility. In: Proc. of the CAiSE

Forum, pp. 81–84

Smirnov S., Weidlich M., Mendling J., Weske M.

(2009) Action Patterns in Business Process

Models. In: ICSOC 2009. Lecture Notes in

Computer Science Vol. 6275. Springer, Berlin,

pp. 115–129

Weber B., Reichert M., Rinderle-Ma S. (2008)

Change patterns and change support features

- Enhancing flexibility in process-aware in-

formation systems. In: Data & Knowledge

Engineering 66(3), pp. 438–466

Sören Balko

SAP AG

Walldorf

Germany

Soeren.Balko@sap.com

Arthur H.M. ter Hofstede, Marcello La Rosa,

Michael Adams

Queensland University of Technology

Brisbane

Australia

{a.terhofstede | m.larosa | mj.adams}@qut.edu.au

Alistair Barros

SAP Research

Brisbane

Australia

Alistair.Barros@sap.com

