
Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

44 Stephan Klingner and Michael Becker

Stephan Klingner and Michael Becker

Formal Modelling of Components and Dependencies

for Configuring Product-Service-Systems

The increasing entwinement of products and services in combined offers – so called Product-Service Systems

(PSS) – leads to various requirements regarding the modelling of those systems. Due to these requirements,

software support is needed for customer-specific configuration of complex PSS. To provide such software

a formal description of the structure of products and services is required. Furthermore, complex logical

interdependencies between products and services need to be described. Based on an existing service modelling

notation the following paper develops a holistic notation for PSS. To describe the interdependencies within

PSS, dependency rules are formally specified.

1 Introduction

Promoted by a growing economical relevance of

services in recent years (Hildebrand and Kloster-

mann 2007), there has been an increasing con-

vergence of products and services. Therefore,

the concept of combining products and services

in so-called Product-Service Systems (PSS) as

a bundled offer (Morelli 2002) has increasingly

gained relevance (Knackstedt et al. 2008; Mont

2002; Stille 2003). Drivers are for instance a focus-

shift of customers from the purchase of single

products or services to the more abstract pur-

chase of solutions respectively functionalities

(Baines et al. 2007; Isaksson et al. 2009). Likewise,

services are becoming more important as unique

distinguishing features compared with the com-

petition (Knackstedt et al. 2008).

Although the concept of PSS already has its place

in the scientific discussion, the level of pervasion

in industrial applications is limited so far (Baines

et al. 2007; Meier and Uhlmann 2012). This is due

to a variety of challenges, which are the result

of a more holistic and integrating view on pro-

ducts and services. Thus, the interdependencies

between products and services in PSS require

new approaches regarding the development and

design of business processes, since new depart-

ments need to be established respectively the col-

laboration between existing departments needs

to be intensified (Mont 2002).

The interdependencies between products and ser-

vices also increase complexity, since design, man-

agement, and composition of PSS is much more

sophisticated than the separate handling of pro-

ducts and services (Isaksson et al. 2009; Mont

2002). For example, modifications in the product

portfolio may require correspondent modifica-

tions in the service portfolio and vice versa. Fur-

thermore, customers also demand individualised

PSS offers, so that the challenge of customer-

individual configured offers is extended on both

products and services.

To be able to keep PSS manageable – despite

their high complexity – adequate software sup-

port is required (Dietze 2008). Besides proces-

sual aspects, a precise description of the inter-

dependencies between products and services is

needed (Becker et al. 2008). Therefore, the follow-

ing paper focuses research questions regarding

the configuration and individualisation of PSS.

To be able to offer software support for config-

uration, a complete, all-embracing modelling of

PSS is required, incorporating both product and

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 45

service model. This aim can be achieved using

three different approaches:

1. Using existing modelling approaches of the

respective domain and describing interdepend-

encies between these heterogeneous models

separately.

2. Modelling products, services, and interdepend-

encies in an all-encompassing model.

3. Reusing existing models of services and pro-

ducts by transformation into a holistic model-

ling method.

Due to the vast amount of interdependencies be-

tween products and services it does not seem

reasonable to use the first approach. Further-

more, modelling should be conducted by using

a homogeneous modelling environment (Weber

et al. 2004). Thus, it is necessary to establish an

all-encompassing model. In this paper we pro-

pose an approach for modelling PSS based on

an existing notation for modelling services. The

approach focuses formalising dependencies be-

tween products and services and allows for reuse

of existing product models.

Therefore, the remainder of this paper is struc-

tured as follows. In Sect. 2 we present the ex-

isting method for modelling services. The basic

concept of this method is component-based mod-

elling. Since the conceptual origin of component-

based modelling lies in the industrial domain,

the application of this approach for modelling

PSS seems feasible. This application is shown in

Sect. 3 by modelling a PSS example. Section 4

introduces various interdependencies between

products and services found in academic literat-

ure. As a basis for a software implementation

these dependencies are classified and formalised,

with the aim to provide a lightweight description

of interdependencies between components. To

emphasise the practical applicability of the ap-

proach, different methods of describing structure

and variability of products and software were

analysed regarding the possibility to transform

them into the holistic PSS notation. Accordingly,

in Sect. 5 we show whether and how the various

already established models can be reused. Re-

lated work about service and PSS modelling is

presented in Sect. 6. Finally, Sect. 7 concludes

the paper and gives some directions for future

research.

2 Modelling Services

By modelling services, various objectives can be

addressed. A service model may support the

description of process flows, the allocation of

resources, or the creation of customer-specific

configurations of service offers. Driven by the

increasing economical relevance of customer-

specific offers, previous contributions already

focused on methods, models, and tools for con-

figuring services (Becker et al. 2011; Böttcher and

Fähnrich 2009; Böttcher and Klingner 2011). By

also supporting the assignment of so-called key

performance indicators (KPI), the evaluation of

configurations regarding productivity aspects be-

comes feasible as well (Böttcher et al. 2011a).

Since customers demand individualised PSS of-

fers, it has to be studied to which extent the

presented method for modelling services is ap-

plicable for describing PSS. Therefore, subsequent-

ly an aggregated overview of the previous work

is given.

2.1 Concepts

In this section we introduce and interrelate vari-

ous concepts necessary for defining the meta-

model for describing services. The metamodel

was originally developed to cover four dimen-

sions for the description of services, as intro-

duced by Böttcher and Fähnrich (2009). Those

dimensions comprise a component model for de-

scribing the functionality of service elements, a

resource model to describe the components’ re-

sources and their interdependencies, a product

model to describe hierarchical dependencies be-

tween components, and a process model to specify

the possible order of component execution.

The presented metamodel as of now focuses the

description of components and logical depend-

encies between components. Thus, the resource

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

46 Stephan Klingner and Michael Becker

model is not within the focus of the following

remarks. The presented concepts of the meta-

model are formalised using propositional as well

as first-order logic. Although this might lead to

additional modelling effort at the beginning, us-

ing formal logic has two main advantages. On

the one hand, a description based on formal logic

allows for a precise and non-ambiguous defini-

tion of concepts used in the metamodel. On the

other hand, creating extensions and adaptations

of the metamodel will be simplified. This is espe-

cially relevant in the context of this paper, since

one aim was the analysis of the extensibility of

the metamodel to support PSS.

The concepts for component-based description

of services can be summarised as follows:

• Components define the functionality of single

service steps respectively service elements. The

component model is described by the set of all

components.

• Hierarchical and non-hierarchical dependencies

describe structural connections between com-

ponents as well as temporal and logical de-

pendencies. Using those relations, the afore-

mentioned product and process model can be

represented.

• Cardinalities allow for a precise description

of logical relations between hierarchically dir-

ectly connected components. In this way, the

product model can be enriched with further

semantics.

• Configurations are the composition of separ-

ate, standardised components into customer-

specific service offers.

The structured compilation of various service

components describes the service portfolio. A

portfolio is formally defined using a tuple

P = (C,K,E, card,L,T, kpi, kpiV, att, attV, var)

with

• C is a finite, non-empty set of components,

• K is a finite set of connectors,

• E ⊆ (C × K) ∪ (K × C) ∪ (K × K) is a set

of edges establishing an acyclic configuration

graph representing hierarchical dependencies

between components,

• card : K → P(N × N) is a set of cardinalities
to assign additional semantics to connectors,

• L is a finite set of logical dependencies,

• T is a finite set of temporal dependencies,

• kpi is a finite set of key performance indicators

with possible values kpiV,

• att is a finite set of attributes with possible

values attV,

• var is a finite set of external variables.

In the following description of the metamodel,

we focus components and their hierarchic de-

pendencies. Thus, temporal dependencies, KPI,

attributes, and external variables will not be ad-

dressed in this paper. Logical dependencies are

used to integrate products and services. There-

fore, they are separately covered in Sect. 4.

2.2 Components

A service component represents a well-defined,

limited functionality, which uses and modifies

resources. The functionality is provided by pre-

cisely defined interfaces. Components represent

subprocesses of a complete service (Böttcher and

Fähnrich 2009). Analogous to software compon-

ents, service components should describe logical

and functional related activities. Thus, compon-

ents should have a high cohesion and a low coup-

ling to be used efficiently (Brocke et al. 2010).

The customer-specific configuration of compon-

ents is provided by assembling a set of compon-

ents into a new complete service offer (composi-

tion). To structure an existing portfolio compon-

ents can be decomposed into smaller units. These

units can be managed independently. Having a

structured set of decomposed services already

offers advantages, e.g., in terms of reduced ef-

fort, increased reusability, and increased clar-

ity (Böttcher et al. 2011b). The functionality of a

component consisting of other subcomponents

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 47

is the sum of the functionalities of all composed

subcomponents (Böttcher and Klingner 2011). A

portfolio is composed of several components rep-

resented by the set C.

Using KPI is a widely-used approach for assess-

ing productivity (Diewert and Nakamura 2005).

However, due to the nature of services, the meas-

urement of productivity is very complex. For

example, as Maroto and Rubalcaba (2008) state

increasing productivity might decrease customer

perceived service quality. In addition, custom-

ers can influence service productivity to a great

extent (Ojasalo 2003). As Harmon et al. (2006)

state, service variability adds to the complex-

ity of measuring productivity, too. Using the

approach presented here, we do not tackle the

first two challenges. However, decomposing ser-

vices in more fine-grained components reduces

their complexity. Using these more focused com-

ponents simplifies identification of relevant KPI.

Therefore, we introduce the assignment of KPI to

single components using the mapping KPIValue.

KPIValue : C × kpi→ kpiV

Hierarchical dependencies between components

as shown in the next section allow for the com-

bination of KPI (aggregation). In doing so, pro-

ductivity of more complex components consist-

ing of more fine-grained components can be as-

sessed by aggregating existing KPI. Therefore,

the value of a KPI (kpiV) assigned to a compon-

ent might either be a constant number or a cal-

culation referencing KPI of other components.

Since productivity considerations are not the fo-

cus of this work, the interested reader may find

additional details in (Böttcher and Klingner 2011).

2.3 Hierarchical Dependencies

As stated above, decomposing services into more

fine-grained components has advantages itself.

Previously monolithic and very complex services

are split into less complex subparts. The res-

ulting benefits include an efficient way to offer

high flexibility regarding customer requirements.

Particularly in view of an increasing competit-

ive pressure, defining components is a suitable

approach to handle the dichotomy of standard-

isation and individualisation (Pine 1999; Sundbo

1994). However, defining components alone is not

sufficient to describe complex services. Addition-

ally, to allow for configuration of services, it is

necessary to define the structure of components.

To define composition of complex services of fine-

grained components, hierarchical dependencies

between components need to be established. In

industrial engineering, using so-called gozinto-

graphs (Vazsonyi 1954) is a common approach

for representing these dependencies. In software

engineering, using feature models (Mendonca et

al. 2009) is a widespread approach. Therefore,

it seems reasonable to adapt these approaches

for service modelling. Opposing to software re-

spectively product components, service compon-

ents represent parts of processes. Executing cor-

responding activities results in realising a well-

defined functionality (Geum et al. 2011). There-

fore, the decomposition of service components

in fine-grained subcomponents can be seen as an

application of process refinement.

Hierarchical dependencies are represented using

a directed, acyclic configuration graph. The set

of nodes of the graph is established by the union

of components and connectors. An example for

such a configuration graph and, thus, for the

decomposition of a complex service is depicted

in Fig. 1. The left-hand side shows a component

PV Service representing a portfolio containing

services for photovoltaic installations. On the

right-hand side, this component is expanded to

depict its hierarchical dependencies with other

components. In the graphical notation provided

by the metamodel, components are represented

using rectangles. Hierarchical dependencies in

the configuration graph are represented by paths

between components, i.e., in the example the

subcomponents of PV Service are Installation,

Monitoring, and Maintenance.

In addition to components, Fig. 1 contains one

connector, too. Being aware of the definition of

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

48 Stephan Klingner and Michael Becker

Figure 1: Expanding a complex service

edges in the service portfolios, components must

not be connected directly with each other. In-

stead, they must be connected using connectors.

This constraint is necessary to assign semantics

to the hierarchical dependencies between com-

ponents. Additional details about the semantics

are presented in the next section.

The configuration graph is restricted by several

other constraints besides prohibition of direct

connection between components. We mentioned

above that it needs to be acyclic. This is neces-

sary because a component must not contain itself.

To define additional constraints, we use the two

mappings prenodes and postnodes representing
predecessors and successors of a node.

prenodes : C ∪ K→ P(C ∪ K)
∀v1 ∈ C ∪ K : prenodes(v1) =
{v2 ∈ C ∪ K : ∃e ∈ E : e = (v2, v1)}

postnodes : C ∪ K→ P(C ∪ K)
∀v1 ∈ C ∪ K : postnodes(v1) =
{v2 ∈ C ∪ K : ∃e ∈ E : e = (v1, v2)}

First, connectors need to have at least one suc-

ceeding node. This is necessary for a reason-

able configuration. Leaves of the configuration

graph should consist only of components. These

components can be seen as atomic services that

cannot be detailed any further.

∀k ∈ K : |postnodes(k)| ≥ 1

To facilitate traceability of configuration decisions,

connectors must have exactly on preceding node.

∀k ∈ K : |prenodes(k)| = 1

Figure 2: Standardised components without clones

Contrary, this restriction does not hold for com-

ponents. Decomposing services results in fine-

grained components that are candidates for stand-

ardisation. To facilitate reuse it should be pos-

sible to use standardised components in more

than one case. For example, imagine the (highly

simplified) case shown in Fig. 2. On the left-

hand side the component Service A consists of

a subcomponent Invoicing. Due to several legal

regulations, electronic invoicing is a highly stand-

ardised service. However, if we were not able to

reuse the invoice component in any way, it is nec-

essary to design this component over and over

again. This is shown on the right-hand side of

Fig. 2. Not only does this result in additional ini-

tial effort. Furthermore, changes in the invoicing

component (e.g., adding new subcomponents or

adapting KPI) need to be propagated everywhere

it is used.

To address this problem, we allow components

to have more than one incoming edge. This is

depicted in Fig. 3. The component Invoicing is

a subcomponent of both Service A and Service

B. We call components with more than one in-

coming edge clones. A clone facilitates reuse of

a standardised component because it needs to

be modelled only once. Using a clone simplifies

modifications since modifications in the respec-

tive component need to be conducted only once.

During configuration (see Sect. 2.6) clones are

copied throughout the configuration graph, i.e.,

the example in Fig. 3 has an equal configuration

graph to the example in Fig. 2. This is necessary

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 49

Figure 3: Reuse of standardised components with clones

Figure 4: Motivation for cardinalities

to distinguish between the specific components

that are selected during configuration.

2.4 Cardinalities

Using simple hierarchical dependencies is not

enough to define complex relations between com-

ponents. For example, it is not possible to define

whether succeeding components of a component

are optional or mutual exclusive. An example is

depicted in Fig. 4. Here, invoicing might either be

conducted electronically or paper-based. How-

ever, simple hierarchical dependencies do not

support distinguishing between different types

of composition.

Additional semantics for composition can be as-

signed using cardinalities to connectors. Cardin-

alities allow for the specification of the number

of necessary succeeding nodes selected during

configuration. A cardinality is represented using

a tuple (min,max). The first value, min, specifies
the number of nodes that needs to be selected at

least for a configuration to be valid. Furthermore,

max specifies the maximum number of nodes

that are allowed to be selected during configu-

ration. To ensure satisfiability of cardinalities,

several constraints as shown in Tab. 1 restrict

their usage.

The constraint MINMAX specifies that the min-

imum number of nodes necessary to select must

not be greater than the maximum number of

nodes that are allowed to select. Defining a car-

dinality violating this constraint would result in

a configuration graph without any valid configu-

ration. Another constraint to ensure satisfiability

of cardinalities is POSTNODES. It defines that
the maximum number of allowed nodes to select

during configuration must not be greater than

the amount of succeeding nodes. Together with

the MINMAX constraint, POSTNODES does also

restrict the number of minimum nodes necessary

to select during configuration.

As can be seen from the definition of the mapping

card, it is possible to assign an arbitrary number

of cardinalities to a single connector. In doing so,

cardinalities are connected using logical disjunc-

tions, i.e., only one of the specified cardinalities

needs to be satisfied during configuration. To

provide clarity, cardinalities of a connector must

not overlap. This is ensured by the OVERLAPS
constraint.

To increase usability of connectors and cardinal-

ities in practice, we provide a set of predefined

connectors as shown in Tab. 2. Every of these

connectors consists of exactly one cardinality.

Connector KALL specifies that during configu-

ration every succeeding node of the connector

needs to be active. When using KONE exactly

one succeeding node needs to be active. Finally,

for highest configuration freedom, the KANY con-

nector can be used. It specifies that an arbitrary

number (including none) of succeeding nodes can

be active during configuration.

2.5 Extensions

Based on formalised description of components

and their interdependencies, further extensions

are possible. To fulfil additional requirements

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

50 Stephan Klingner and Michael Becker

Table 1: Constraints for specifying cardinalities

Name Formalisation

MINMAX ∀k ∈ K,∀(m,n) ∈ card(k) : m ≤ n
POSTNODES ∀k ∈ K,∀(m,n) ∈ card(k) : n ≤ |postnodes(k)|
OVERLAPS ∀k ∈ K,∀(m,n) ∈ card(k) : �(m�,n�) ∈ card(k) : m ≤ m� ≤ n ∧m ≤ n� ≤ n

Table 2: Predefined connectors

Name Formalisation

KALL ∀k ∈ KALL : card(k) = {(|postnodes(k)|, |postnodes(k)|)}
KONE ∀k ∈ KONE : card(k) = {(1, 1)}
KANY ∀k ∈ KANY : card(k) = {(0, |postnodes(k)|)}

gathered from practice, the model was exten-

ded with attributes and variables (Becker et al.

2011). Variables represent certain aspects of the

service environment. They describe characterist-

ics which may influence the validity or efficiency

of customer-specific configurations but are not

part of the service model itself. For instance,

certain service components (or their character-

istics) of a call centre service might depend on

the expected number of incoming calls per day.

Those characteristics are customer-specific and

must be adapted for each customer. By using

variables, individual characteristics can be edited

independently from the model. Values need to

be set only during configuration. Thus, contrary

to pre-defined customisation points within the

model, the flexible integration of variables allows

for a higher abstraction regarding the modelled

environment respectively domain.

Further characteristics of components can be de-

scribed using non-functional properties. For ex-

ample, a call centre has a limited capacity of pro-

cessed calls per hour. Therefore, non-functional

properties have great impact on the selection

of components. Non-functional properties are

represented as attributes of components.

More extensions, e.g., for describing resource

consumption of components, are possible. Since

they are defined based on a formal structure, they

can be integrated easily into the existing meta-

model.

2.6 Configuration

Specifying portfolios using the above defined

concepts is the basis for establishing customer-

individual configurations of services. The config-

uration is carried out to generate service variants

best matching customer requirements. Due to

the formalisation of the portfolio, it is possible to

evaluate configurations regarding their validity.

Furthermore, by aggregating KPI, different valid

configurations can be compared based on their

productivity.

During configuration, components are selected

according to the constraints introduced by the

portfolio definition. A configuration is estab-

lished by the set of selected components. Hitherto,

we do only consider hierarchical dependencies,

i.e., the configuration needs to be valid regarding

connectors. To evaluate the validity, we use the

set of activated nodes. A component is activated

when it is selected and vice versa.

∀c ∈ C : c ∈ selected↔ c ∈ activated

It is possible to establish configurations using a

top-down approach, a bottom-up approach, or

a combination of both approaches. Top-down

approaches start with the topmost component.

Accordingly, succeeding components are selected

to fulfil cardinalities of the connectors. There-

fore, top-down configurations refine components.

To support top-down configurations, succeeding

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 51

connectors of an active component need to be

activated automatically.

∀c ∈ C,∀k ∈ postnodes(c) :
c ∈ activated→ k ∈ activated

On the other hand, bottom-up configurations

start with selecting specific services, i.e., select-

ing leaf components in the configuration graph.

Thus, customers having detailed requirements

are able to select services they need and the

overall configuration is established by applica-

tion of dependencies between components. We

support this type of configuration by activating

nodes with at least one activated direct succeed-

ing node.

∀n ∈ C ∪ K :
∃n� ∈ postnodes(n) : n� ∈ activated→
n ∈ activated

Figure 5 depicts a top-down configuration exam-

ple. The left-hand side shows a situation where

no component is selected, i.e., before the begin-

ning of the configuration. In the centre of the

figure, the topmost component Service B is selec-

ted. Consequently, the succeeding connector is

selected, too. To establish a valid configuration,

the connector needs to be satisfied according to

its defined cardinalities. This may be achieved

by selecting component Invoicing as shown on

the right-hand side in Fig. 5. By selecting this

component, again the succeeding connector is

activated and has to be satisfied by selecting the

correct combination of Sign Invoice and Send In-

voice.

A connector is valid if one of its cardinalities is

satisfied, i.e., the amount of activated succeeding

nodes must be tested against the cardinalities.

∀k ∈ K ∩ activated : ∃(m,n) ∈ card(k) :
m ≤ |postnodes(k) ∩ activated| ≤ n

3 Modelling PSS

Heretofore, the presented metamodel is used to

model complex services. However, due to its ori-

gins in industrial and software engineering, it

is feasible to use the metamodel for represent-

ing products, too. Especially in industrial engi-

neering, modularisation based on components

is a widespread approach. Therefore, we model

products as we model services presented above.

However, it is necessary to keep in mind that

decomposition of services means process refine-

ment while decomposition of products means

decomposing physical product parts (e.g., screws,

barrels etc.). With this approach, it is possible

to manage complex products using the configu-

ration graph as shown above. Furthermore, the

same constraints for validity apply.

A complex PSS consists of a product portfolio,

a service portfolio, and integration of these two

parts (Becker et al. 2008). To evaluate adaptability

of our approach we next give examples for both

portfolio types situated in the area of a photo-

voltaic (PV) installation. Building on this, Sect. 4

gives some insights about the integration of both

portfolios by specifying dependencies.

Above, we defined a service portfolio as a tuple.

Analogously, product portfolios are represented

using the same definition. However, the set of

temporal dependencies between product com-

ponents is always empty since temporal depend-

encies only make sense in process terms. To

define a complete PSS we use a tuple P = (P,S,D)
with the product and service portfolios P and S,
respectively and the set D of dependencies be-

tween these portfolios.

3.1 A Product Example

The product portfolio of the PV installation con-

sists of several physical parts. In our example, an

installation has four PV Modules. A real system

would allow for different types of panels, e.g.,

by giving a selection between various panel ma-

terials or sizes. However, for comprehensibility

reasons we do not elaborate on that. A panel

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

52 Stephan Klingner and Michael Becker

Figure 5: Automated activation of nodes during configuration

has several cells that convert light energy into

electrical energy.

Since panels produce direct current and electrical

grids use alternating current a PV Inverter is nec-

essary for converting. Furthermore, PV invert-

ers provide special functionality like maximum

power point tracking. In our example, custom-

ers can optionally install a LAN Interface and an

RS485 Interface for monitoring the performance

of the installation.

Besides necessary technical components, the pro-

vided PV installation also needs to be attached to

a roof. This is achieved by using the component

Substructure. According to the roof character-

istics, different substructures are necessary. For

example, installations on flat roofs have different

requirements than installations on pitched roofs.

Each substructure has eight Roof Hooks. Hooks

are used for mounting panels to the roof. They

are an essential and very important part, since

hooks support the whole installation. Finally,

four Mounting Profiles are necessary to attach PV

panels. In our example, we only use one pro-

file. However, in reality profiles with different

characteristics are available, e.g., different ma-

terials (usually steel or aluminium) or different

shapes. Figure 6 is a graphical representation of

the product portfolio.

Modelling the product portfolio makes use of

clones as described above. Thus, we can assure

that the components are equal and modifications

need to be done only once. For comprehensib-

ility reasons, we depict clones as overlapping

nodes. Besides using clones it would also be pos-

sible to annotate components that are necessary

multiple times. For example, the component roof

hook could be annotated with an amount of eight.

However, using clones allows for greater flexib-

ility, since a cloned component has a real world

counterpart while annotated components do not.

Using the definition from above the product port-

folio P can be formalised as follows. For the sake

of brevity we use component identifiers rather

than full component names. Furthermore, since

we are focusing dependencies between products

and services and not performance evaluation, we

omit KPI and attributes.

P =(CP,KP,EP, cardP,LP,TP)
CP ={P1,P2,P3,P4,P5,P6,P7,P8}
KP ={K1P ,K2P ,K3P}
EP ={(P1,K1P), (K1P ,P2), (K1P ,P3), (K1P ,P3),

(K1P ,P3), (K1P ,P3), (K1P ,P4), (P2,K2P),
(P4,K3P), (K2P ,P5), (K2P ,P5), (K2P ,P5),
(K2P ,P5), (K2P ,P5), (K2P ,P5), (K2P ,P5),
(K2P ,P5), (K2P ,P6), (K2P ,P6), (K2P ,P6),
(K2P ,P6), (K3P ,P7), (K3P ,P8)}

cardP ={(K1P , (6, 6)), (K2P , (12, 12)),
(K3P , (0, 2))}

LP =∅,TP = ∅

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 53

Figure 6: Product portfolio of the PSS PV Installation

3.2 A Service Example

The service portfolio for the PV installation can

be distinguished between installations at cus-

tomer and at provider site. For installations at

customer site the provider offers services for in-

stallation, maintenance, and monitoring. Installa-

tion includes delivery and construction, i.e., either

customers or service technicians from the pro-

vider construct the PV installation.

Maintenance has several child components that

can be selected. In on-site maintenance service

technicians conduct a visual inspection of the in-

stallation. This is necessary to ensure security of

the installation and to provide its efficiency. Fur-

thermore, the installation is analysed for shading

effects and the proper function of the inverter

is verified. Since PV installations are exposed

to wind and weather, cleaning of the installa-

tion on a regular basis is necessary. Otherwise,

the degree of efficiency might decrease due to

dirt on the modules. To increase maintenance

efficiency, customers can select remote mainten-

ance. In doing so, the provider has the ability to

conduct several services without sending techni-

cians. Accordingly, this should result in reduced

maintenance costs.

Besides maintenance, monitoring is an important

activity to ensure installation efficiency. First of

all, recording data of the installation allows for

analysing the long term behaviour. Defining crit-

ical thresholds that must not be exceeded allows

for sending a signal in case of unexpected beha-

viour of the installation. Based on the recorded

data, it is possible to conduct an evaluation. For

example, changing the inclination angle of a PV

installation might increase its efficiency. Avail-

ability of recorded data also allows for the pos-

sibility of an efficiency comparison with other PV

installations. Therefore, the performance of an

installation can be compared resulting in gaining

additional information.

If it is not possible to construct a PV installation

at the customer site, the provider offers the pos-

sibility for an investment in off-site installations.

In doing so, customers receive the energy they in-

vested for. Though different investment models

are possible, we do not go into detail. Since the

investment is a completely different offer, cus-

tomers can only select between on-site or off-site

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

54 Stephan Klingner and Michael Becker

installations. Thus, it is not possible to combine

the component external installation with other

components from the service portfolio.

We can describe the service portfolio S (as seen in

Fig. 7) using the above presented formalisations

as follows.

S ={CS,KS,ES, cards,LS,TS}
CS ={S1,S2,S3,S4,S5,S6,

S7,S8,S9,S10,S11,S12,S13}
KS ={K1S ,K2S ,K3S ,K4S ,K5S}
ES ={(S1,K1S), (K1S ,K2S), (K1S ,S13),

(K2S ,S2), (S2,K3S), (K3S ,S5), (K3S ,S6),
(K2S ,S3), (S3,K4S), (K4S ,S7), (K4S ,S8),
(K4S ,S9), (K2S ,S4), (S4,K5S), (K5S ,S10),
(K5S ,S11), (K5S ,S12)}

cardS = {(KS1 , (1, 1)), (KS2 , (1, 3)), (KS3 , (1, 2)),
(KS4 , (0, 3)), (KS5 , (0, 3))}

LS = ∅,TS = ∅

4 Dependencies in PSS

An important requirement regarding the nota-

tion for modelling PSS is the representation of

interdependencies between elements. Thus, this

section elaborates the structure and types of de-

pendencies. Based on that, specific dependency

rules presented in literature are introduced. As

extension of the existing literature, the rules are

aggregated and formalised. Due to formalisa-

tion the (semi)automated evaluation of configur-

ations’ validity is possible. Thus, each depend-

ency rule is described both textual (supported by

different examples) and formal (corresponding to

the introduced metamodel).

In PSS different types of dependency relation-

ships are possible. According to Böttcher and

Klingner (2011), descendent dependencies (Type I)

describe hierarchical relationships within a single

configuration graph. Since Böttcher focuses only

the description of relationships within service

models, we suggest an adapted definition of the

term cross-tree dependencies for the description

of non-hierarchical dependencies in PSS.

Within the context of PSS non-hierarchical de-

pendencies can be divided into two different

types. Relationships within product or service

portfolios can be referred to as intra-tree depend-

encies (Type II). These dependencies are repres-

ented in the portfolios as the set of logical de-

pendencies LP and LS respectively. Contrary, re-

lationships between the service and the product

portfolio are described as inter-tree dependencies

(Type III). Thus, descendent as well as intra-tree

dependencies describe relationships between ele-

ments of one portfolio while inter-tree depend-

encies always include both product and service

portfolios. Figure 8 provides an overview of the

different types of dependencies. In the following,

we describe dependencies according to the PSS

PV installation of Sect. 3. All presented depend-

encies are of type III, i.e., they include product

and service elements. However, they are valid

for dependencies of type I and II as well.

Furthermore, dependencies can be classified re-

garding their configuration impact. Existing de-

pendency rules in literature are mainly limited

to the aspect of restriction, defined by so called

constraints (Faltings and Weigel 1994; Gelle and

Weigel 1996; Jinsong et al. 2005). The complex

dependencies between elements of PSS suggest

a wider understanding of rules. This includes

the introduction of new rules, such as recom-

mendations (Te’eni and Shufer 2006) or altern-

atives (Baines et al. 2007). Thus, it is possible to

identify three distinct classes of rules.

• Suggesting rules describe loose dependencies

between PSS elements. Since the application

of those rules is optional, the number of valid

configuration options is not limited.

• Restricting rules describe dependencies, which

reduce the number of valid configurations.

• Modifying rules describe changes of PSS ele-

ments.

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 55

Figure 7: Service portfolio of the PSS PV Installation

II
I

III

I Descendent Dependency
II Intra-Tree Dependence
III Inter-Tree Dependency

Figure 8: Types of dependencies of PSS

During configuration several rules may have in-

terrelations with each other. To ensure satis-

fiability, it is necessary to define these relations.

For example, elements requiring each other must

not prohibit each other, too. For this reason, we

formalised the rules as defined in (Becker and

Klingner 2012a). For practical application, we de-

veloped a Prolog listing adhering to this formal-

isation.1 This allows for automated validation of

configurations.

Using this formalisation, it is possible to establish

an order for evaluating rules. First, restricting

rules are validated in background during configu-

ration, i.e., combining elements that are restricted

is not possible. Furthermore, modifying rules are

applied. Contrary to restricting and modifying

1The listing and its application for the PV example are to
be found at http://sourceforge.net/projects/
kpstools/

rules, suggesting rules are not applied automatic-

ally. This is due to the fact that their application

is optional. Therefore, these rules are proposed

and customers can decide whether or not they

apply them.

4.1 Rule Structure

Though the rules cover a variety of application

areas, they all adhere to a specific structure. In

the next section we present a selection of rules.

However, at this point their general structure is

introduced. Based on this structure, it is possible

to define additional rules. These rules might be

necessary in several areas of application. In do-

ing so, defining new rules allows for establishing

a domain specific set of notational elements and,

accordingly, simplified modelling. In general, a

rule is a mapping from a domain D to a codomain

C:
rule : D→ C

The domain of the rules is established by a com-

ponent or a comparison of variables, attributes,

or KPI. Furthermore, elements can be combined

by a logic operation. Using the comparison, it

is possible to compare the respective elements

according to a previously defined value. There-

fore, the set comp = {<,>=} with the respective

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

56 Stephan Klingner and Michael Becker

meanings of the operators is used. Thus, a rule

states that a variable, attribute, or KPI needs to

be less than, greater than, or equal to a specific

number. The following equations for the form-

alisation of comparators show that the values of

attributes and KPI are compared with respect to

a specific component.

varComp =(var, comparator,R)
attComp =(att,C, comparator,R)
kpiComp =(kpi,C, comparator,R)

Using these definitions, it is possible to formalise

the domain of rules.

D = {C, varComp, attComp, kpiComp}

To be able to also use non-atomic domains, it is

necessary to extend and combine the elements of

the domain. Logic operations are used for an in-

ductive extension. This is necessary for practical

application, since often a combination of various

elements has impacts on other elements.

a ∈ D ∧ b ∈ D→ (a ∧ b) ∈ D
a ∈ D ∧ b ∈ D→ (a ∨ b) ∈ D

a ∈ D→ ¬a ∈ D

By means of the established definitions it is pos-

sible to define several domains. For example, a

domain could be as follows. The components A

and B are selected and the variable incomingCalls

is greater than 10’000 or the KPI price of compon-

ent C is greater than 200. This domain can be

formalised as follows.

A ∧ B ∧ (incomingCalls, >, 10′000)
∨ (price,C, >, 200)

Contrary to the domain, the codomain cannot be

defined in advance since it is too heterogeneous.

Valid elements of the codomain depend on the

semantics of the specific rule. To illustrate this,

we establish various rules for the above specified

rule classes. A comprehensive overview about

rule classes, analysed rules of this work, result-

ing constraints for the codomain, and academic

references is presented in Tab. 3. For a better

understanding we explain the rules according to

the PV example given above.

4.1.1 Suggesting Rules

In the following, we present the suggesting rules

alternative and recommendation. Alternatives

represent functional equivalent components that

can be interchanged with each other. Recom-

mendations define elements that supplement a

specific configuration.

Alternative

According to Baines et al. (2007) one motivation

for providing PSS is to shift the focus from selling

products to selling functionalities. This statement

is based on the assumption that customers do not

care whether their requirements are satisfied by

products or by services.

We use the predicate surrogates to define altern-

ative components. The domain and codomain

of alternatives is restricted to a logic operation

of components. This is reasonable considering

that this rule is used to state alternative product

and service parts satisfying identical customer

requirements by providing equal functionalities.

In the PV example, the service external installa-

tion fulfils the same requirements as the product

PV Installation - energising customers. This res-

ults in the following rule.

surrogates(PV-Installation) =
External Installation

Recommendation

Recommendations are based on the assumption

that providers offer their customers additional

services when selecting specific products. For

example, Uhlmann et al. (2008) argue the produc-

tivity of a machine does not only depend on its

physical characteristics but also on the qualific-

ation of employees operating the machine and

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 57

Table 3: Rule classes and rules for defining PSS dependencies

Rule Class Rule Source Codomain

Suggesting Alternative Baines et al. (2007) component,

logic operation

Recommendation Uhlmann et al. (2008) component, comparators,

logic operation

Restricting Requirement Böhmann and Krcmar (2007);

Sun (2010)

component, comparators,

logic operation

Prohibition Faltings and Weigel (1994); Gelle and

Weigel (1996); Jinsong et al. (2005)

component, comparators,

logic operation

Modifying Modification Mont (2002) KPI modifier

on its general maintenance state. Recommending

specific components can furthermore be genera-

lised by recommending components with particu-

lar characteristics. Thus, it is possible to leave out

too fine-grained details. Finally, the environment

of a service might influence the selection of com-

ponents. Based on these dependencies, organisa-

tions are able to compile innovative portfolios.

Consequently, by recommending value-adding

services or products it is possible to exceed cus-

tomer requirements (Chase and Hayes 1991). We

use the predicate recommends to represent a re-
commendation rule.

In our PV example, the service component Clean-

ing is always recommended when customers se-

lect the product component PV Installation. This

guarantees constant performance of the install-

ation. Selecting the service component On-site

maintenance recommends the product compon-

ent RS485 because it allows for fast and stable

readout of installation data by service techni-

cians. Additionally, it is recommended that cus-

tomers should not construct the installation on

their own if the roof pitch is less than 20 or

more than 50 degrees, i.e., in these cases the ser-

vice component Construction should be selected

and performed by specialised service technicians.

These rules can be formalised as follows.

recommends(PV-Installation) = Cleaning

recommends(On-site maintenance) = RS485

recommends((roofPitch, <, 20)∨
(roofPitch, >, 50)) = Construction

4.1.2 Restricting Rules

Restricting rules reduce the amount of valid con-

figuration variants. The rules requirement and

prohibition are restricting rules. Requirements

define elements or characteristics that are neces-

sary for a specific set of selected elements. By

using prohibitions, it is possible to identify ele-

ments that must not be included in one configu-

ration.

Requirement

Requirements are one of the most frequently

mentioned dependencies in literature. Sun (2010)

defines an interface that provides a service as

service carrier. This might either be a product

or a combination of products and different ser-

vices, e.g., the PSS medical treatment contains

the service examination and the product phar-

maceuticals. An example for external variables

in the domain of a requirement rule is given by

Böhmann and Krcmar (2007) with integrating ser-

vices and products into the value creation process

of customers. We represent a requirement using

the predicate requires.

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

58 Stephan Klingner and Michael Becker

The PV example has two requirements. First, for

selecting the service component Remote mainten-

ance, the inverter needs a LAN interface. Other-

wise, providers would not be able to access the

installation from a distance. Furthermore, the ser-

vice component Efficiency comparison requires an

installed base of 100 (installed base is represented

by the variable installedBase). Thus, it ensures
that enough comparison data is available.

requires(Remote maintenance) = LAN

requires(Efficiency comparison) =
(installedBase, >, 100)

Prohibition

The rule prohibition is used to define elements

that must not occur together in a single configu-

ration. This is often the case for alternative ele-

ments that cannot be combined with each other

(i.e., for mutual exclusive alternatives). It is pos-

sible to define prohibitions using the configu-

ration graph, too. This is supported by using

KONE connectors. However, non-hierarchic pro-

hibitions must be defined explicitly using the

predicate prohibits.

The service component External installation in

the PV example is mutually exclusive to the prod-

uct component PV Installation. Thus, customers

cannot select to construct a PV installation at

their site together with the participation in an

external installation.

prohibits(External Installation) =
PV Installation

4.1.3 Modifying Rules

As the name states, modifying rules modify val-

ues of elements. Particular configurations might

result in changes of KPI of other components.

These modifications can be quantified using the

rules.

Modification

Nowadays, production companies shift towards

offering of PSS because this allows for value-

adding of existing products by offering additional

services (Mont 2002). For a detailed definition

of this relation it is possible to define on com-

ponent level which service components increase

the value of which product components and vice

versa. This value modification can reflect in

terms of quality or in terms of price, too. We

use the predicate changedValue to define gen-

eric modifications using a modifier.

The quality of the product component PV Install-

ation is increased when the construction is con-

ducted by trained service technicians, i.e., the

service component Construction is selected. The

increased quality is represented by increasing the

quality of the product component Substructure.

changesValue(Construction) =
(Substructure, quality, 1.2)

5 Transformation of Product Models

In industrial and software engineering the model-

ling and the configuration of products are already

well established (Hegge and Wortmann 1991).

Therefore, it can be assumed that in compan-

ies various models already exist. In this section

we analyse two common approaches for model-

ling regarding the possibility of reusing existing

models. Based on these findings, transforma-

tions between existing models and our presented

PSS metamodel are introduced. A corresponding

open source application was implemented.2 Due

to the open project structure, the integration of

additional modelling formats is possible.

In the following, we analyse the notations Bill

of Material (BOM) and feature modelling. Both

approaches are compared with respect to their

applicability for transformation. For a better un-

derstanding, we model the product portfolio of

the PV example in both notations.

2The application is publicly available at http://
sourceforge.net/projects/kpstools/

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 59

5.1 Bill of Material

In industrial engineering using BOM is a com-

mon method to represent logical and quantita-

tive product data (Jiao et al. 2000; Zhu et al. 2007).

BOM describe product components and their rela-

tions (Guoli et al. 2003; Stonebraker 1996). Jiao et

al. (2000) specify three mandatory aspects, which

need be considered in the model. Based on these

requirements, the essential elements of a BOM

can be derived:

• Items for defining components for structuring

a product.

• Goes-into relationships defining a connection

between parent and child component. This

connection is complemented with the number

of child components needed to create the par-

ent component.

• Employment describing the influence of the

area of application. Depending on the environ-

ment respectively the position in the product

life cycle different variants of the creation of

BOM exist.

In this paper we restrict the analysis to standard

BOM. For a more detailed description of variants,

e.g., modular BOM (MBOM), engineering BOM

(EBOM), generic BOM (GBOM) or variant BOM

(VBOM) the interested reader may refer to the

literature (Hegge and Wortmann 1991; Jiao et al.

2000; Veen and Wortmann 1992; Zhu et al. 2007).

A practical example illustrating the above men-

tioned elements of a BOM can be found in Fig. 9.

Analogue to the previous examples a PV installa-

tion is modelled. It is important to note that the

depicted BOM represents only one possible con-

figuration. The creation of further configurations

would result in various, very similar BOM with a

high level of redundancy (Hegge and Wortmann

1991).

To evaluate the ability to transform BOM into the

PSS metamodel based on a practical example, we

modelled a BOM of the PV installation using the

web-based application Arena3. Arena produces

3http://www.arenasolutions.com

PV System

PV Inverter PV Module Subconstruction

LAN RS485 Mounting Profile Roof Hooks

4x 8x

1x 4x 1x

1x 1x

Figure 9: BOM representation of a PV installation

Table 4: Mapping of BOM concepts to concepts of the
PSS metamodel

BOM PSS Metamodel

Item Component

Parent/Childnodes ALL-connector

Quantity Clones

an XML file describing the model which we used

as the source for transformation.

The main part of the transformation is the ex-

traction of the items, which are transformed into

components. The structure of the BOM’s items is

mostly identical to the structure of components

of the transformed model. Since BOM directly

connect product components, we have to add

connectors. All added connectors are of type

KALL because every modelled component is man-

datory. To represent the BOM-specific quantities

the concept of clones are to be used in the me-

tamodel. The limited expressiveness of BOM

inhibits the description of complex logical rela-

tionships. Therefore, the expressiveness of the

PSS metamodel can be mapped only partially, as

Tab. 4 indicates.

5.2 Feature Models

Feature models are widely-used in the area of

software engineering to describe so-called product

lines. Czarnecki and Eisenecker (2000) define the

concept of a feature as a function of the system,

which is visible for end users and a perceivable

characteristic of a concept, which is relevant for

certain stakeholders.

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

60 Stephan Klingner and Michael Becker

Figure 10: Feature model representation of a PV install-
ation

Similar to the PSS metamodel or the BOM presen-

ted above, features are arranged in a hierarchical

structure. The following three different types of

compositions can be distinguished:

• Mandatory features have to be chosen if the

respective parent feature is chosen.

• From a set of alternative features exactly one

has to be chosen to create a valid configura-

tion.

• Optional features can be chosen, but do not

have to.

Additionally to these hierarchical relationships

also non-hierarchical dependencies can be defined.

Batory (2005) introduces simple inclusion as well

as simple exclusion. Simple inclusion defines that

choosing feature A results in an automatic se-

lection of feature B. Simple exclusion determ-

ines the automatic deactivation of feature B as

consequence of choosing feature A. Those basic

dependencies can be extended by using propos-

itional formula. Czarnecki et al. (2004) present

further extensions of feature models, such as car-

dinalities and annotations of features. However,

this papers focuses only basic feature models. Fig-

ure 10 shows the representation of the product

portfolio of the PV installation as feature model.

The model was created using the Eclipse plug-

in FeatureIDE (Kastner et al. 2009). Mandatory

features are depicted by a filled circle, whereas

non-filled circles represent optional features.

Similar to BOM, the concepts of feature models

can be transformed to elements of the PSS me-

tamodel as shown in Tab. 5. The expressiveness

of feature models is comparable to the PSS me-

tamodel, so that transformations in either mod-

els can be conducted without losing expressive

Table 5: Mapping of feature model concepts to concepts
of the PSS metamodel

Feature Model PSS Metamodel

Concept Configured Product

Feature Component

Relationships Connectors

Mandatory Features Connector KALL
Optional Features Connector KANY
Alternative Features Connector KONE

power. Only cardinalities as represented by con-

nectors cannot be modelled in feature models

without using aforementioned extensions. There-

fore, the components roof hooks, mounting pro-

file, and PV module are represented by only one

feature. Missing data regarding quantities can be

added using feature attributes.

6 Related Work

Since our presented metamodel has its origins in

the domain of service engineering, in this section

we first discuss various approaches for service

modelling. This is followed by an overview of

different methods for describing PSS. A deep ana-

lysis of product modelling approaches is not in

the focus of this paper. A detailed discussion

of various approaches for modelling products is

carried out by Yang et al. (2008).

For describing complex services, Barros et al.

(2011) introduced the Unified Service Descrip-

tion Language (USDL). Besides describing service

component interaction, the focus of the USDL is

the holistic depiction of services including the or-

ganisation, responsibilities etc. Contrary to our

presented metamodel the pricing and possible

discounts for services are explicitly supported.

In the PSS metamodel prices could be indirectly

represented using KPI. USDL lacks an extensive

support for the configuration of services.

In addition to defining dependencies between

components, Dong et al. (2011) also focus con-

figuration supported by an ontology. Using the

ontology it is possible to define constraints. For

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 61

practical application, they provide interfaces to

the Java Expert System Shell.

In addition to a structural description of services,

Brocke et al. (2010) as well as Emmrich (2005) an-

alyse necessary adaptations of services in regard

to different phases of their life cycle. While Em-

mrich (2005) focuses product centred services as

well as the states and state changes of products,

Brocke et al. (2010) focus the continuous need

for customer-specific adaptation in the area of

IT-based services.

Contrary to research about services, PSS in gen-

eral and modelling PSS in particular did emerge

in academic literature only in recent years. Es-

pecially in the German-speaking world the term

hybrid service bundles is commonly used (Becker

et al. 2009; Böhmann and Krcmar 2007; Langer et

al. 2009). Early definitions of PSS were established

by Goedkoop et al. (1999) and Mont (2002). Both

works argue for a view on PSS not only consist-

ing of products and services but also of depend-

encies between these two parts. This statement is

used as a foundation for a couple of comparable

approaches to model PSS.

Becker et al. (2009) present an approach to de-

scribe PSS. They focus ex ante configuration by

providers and customer-individual configuration

based on Entity-Relationship-Diagrams. A dis-

tinctive feature of their approach is assessing

different configurations using financial schemes.

Therefore, they allow for a fine-grained compar-

ison of established configurations. Contrary to

this, our model focuses using KPI dynamically

calculated during configuration.

Originally developed for modelling products,

Weber et al. (2004) present their so-called Property-

Driven Design/Development model. They dis-

tinguish between characteristics to define the

constituent parts and the structure of a PSS and

properties to describe the product behaviour. Ad-

ditionally, they provide a process model for sys-

tematic PSS development. A process model is

also described by Uhlmann et al. (2008) where the

authors focus consideration of customer require-

ments. We can reflect parts of both approaches

using external variables (as customer require-

ments) and attributes and KPI (as characteristics).

General requirements and specific characteristics

of PSS have been established by Morelli (2002).

Further approaches analyse relations between

products and services (Sun 2010). However, they

focus relations between organisations offering

and using PSS. Immediate practical relevance is

shown by Walter (2009) with defining a PSS in

the domain technical services.

7 Conclusion

In this paper we presented a holistic modelling

method for PSS, including product and service

components as well as interdependencies between

them. Based on the postulation of similarity of

structuring products and services, an existing

metamodel for describing services was exten-

ded for the representation of products. There-

fore, various dependency rules were identified,

structured, and formally defined. Together with

the component-based modelling of the structure

these rules define the basis for the configuration

of complex PSS. By the use of these models the

management of a high number of variants be-

comes economically feasible, due to economies

of scale (Anthonysamy et al. 2011; Böttcher and

Klingner 2011).

To ensure the possibility of reusing existing mod-

els and to validate the expressiveness of the presen-

ted metamodel, approaches for transforming two

common product modelling notations to the PSS

metamodel were analysed. This was illustrated

using an example of a PV installation, which was

modelled as BOM respectively feature model.

It was shown that transformation of product

models into the PSS metamodel is feasible. On

this basis, product modelling can be improved

by extending the PSS metamodel with product-

specific details. For example, explicit definition

of quantities makes indirect and extensive mod-

elling of clones obsolete. This also allows for the

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

62 Stephan Klingner and Michael Becker

integration of quantitative dependency rules, e.g.,

if product component A is chosen more than ten

times, service component B has to be chosen. These

rules are mentioned by Jinsong et al. (2005) under

the term cardinality constraints. Additional nec-

essary extensions for the metamodel can be iden-

tified by analysing more product modelling ap-

proaches. For example, Yang et al. (2008) present

STEP-based methods and Felfernig et al. (2001)

use configuration graphs modelled with UML.

The presented PSS metamodel defines the formal

basis for the development of software tools sup-

porting the modelling and configuration of PSS.

For the subdomain of service modelling a pro-

totypical tool was already developed, based on

previous scientific findings and industrial require-

ments (Klingner et al. 2011). The extension for

PSS needs to be implemented in the future. A first

step in that direction is the integration of depend-

ency rules within the service model. These rules

allow for generation of business process models

based on customer-specific configurations (Becker

and Klingner 2012b).

Using software tools, the increased complexity

of formalised models becomes manageable. Nev-

ertheless, creating models still involves a lot of

effort. The lack of a process model for creat-

ing models corresponding to the PSS metamodel

adds to this fact. Possible negative impacts are

a suboptimal granularity of elements of the PSS.

This might lead to higher efforts in case of ad-

aptations or to erroneous implications regarding

KPI. Particular attention needs to be paid on how

to define dependencies between PSS elements.

The methodology presented by Abramovici and

Schulte (2005) and by Thomas et al. (2008) can be

used as a feasible starting point for establishing

this process.

The practical applicability of the proposed PSS

metamodel can be further increased by defining

domain-specific components and common PSS

elements in advance. On-demand usage of these

elements could decrease the necessary effort for

creating new models. Therefore, existing best

practices and reference models of organisations

can be reused.

An additional requirement from the practice is

the representation of changes in the PSS within

a specific period of time. For example, imagine

a webshop with seasonal fluctuations, e.g., peak

load during Christmas time. As of yet, the me-

tamodel does not give any support for this. To

be able to comprehensively evaluate behaviour

and costs of such a system, the description of

these time-variable effects need to be included

in the model. Brocke et al. (2010) and Emmrich

(2005) present a few approaches in this direction.

However, extensive changes are necessary to in-

tegrate these into the metamodel.

Of particular interest in complex PSS is the inter-

action between participating organisations (Sun

2010). Currently, we only support representing

PSS elements of a single organisation, since ser-

vices provided cooperatively by two or more or-

ganisations are not in the focus. However, col-

laboration of organisations can be facilitated by

sharing PSS models. For example, product mod-

els of a manufacturer can be imported into the

service portfolio of service provider. This allows

for definition of dependencies between portfolio

elements.

Acknowledgements

The German Federal Ministry of Education and

Research (Bundesministerium für Bildung und

Forschung, BMBF) partially supported this work

in the context of the DLR projects ‘Concept and

Implementation of an Information Production

System (IPS) for Precision Farming’ (support

code 01IS12013B) and EUMONIS (support code

01IS10033D).

References

Abramovici M., Schulte S. (2005) Lifecycle

Management von Produkt-Service-Systemen

(PSS) für einen maximierten Kundennutzen.

In: Grote K.-H. (ed.) Tagungsband 3. Gemein-

sames Kolloquium Konstruktionstechnik 2005

am 16. und 17.06.2005 im Herrenkrug Park-

hotel Magdeburg. Shaker, pp. 1–11

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 63

Anthonysamy P., Rashid A., Rummler A. (2011)

Taming Unbounded Variability in Service En-

gineering. In: Muehlen M., Su J., Aalst W.,

Mylopoulos J., Rosemann M., Shaw M. J.,

Szyperski C. (eds.) Business Process Manage-

ment Workshops. LNBIP Vol. 66. Springer,

Berlin, pp. 615–619 http://dx.doi.org/10.1007/

978-3-642-20511-8_56

Baines T. S., Lightfoot H. W., Evans S, Neely A,

Greenough R, Peppard J, Roy R, Shehab E,

Braganza A, Tiwari A, Alcock J. R., Angus J.

P., Bastl M, Cousens A, Irving P, Johnson M,

Kingston J, Lockett H, Martinez V, Michele P,

Tranfield D, Walton I. M., Wilson H (2007)

State-of-the-art in product-service systems.

In: Proceedings of the Institution of Mechan-

ical Engineers, Part B: Journal of Engineering

Manufacture 221(10), pp. 1543–1552

Barros A., Kylau U., Oberle D. (2011) Unified Ser-

vice Description Language 3.0 (USDL) Over-

view. SAP Research. http://www.internet-of-

services.de/index.php?id=570

Batory D. (2005) Feature Models, Grammars,

and Propositional Formulas. In: Obbink H.,

Pohl K. (eds.) Software Product Lines. LNCS

Vol. 3714. Springer, Berlin, pp. 7–20

Becker J., Beverungen D., Knackstedt R. (2008)

Reference Models and Modeling Languages

for Product-Service Systems Status-Quo and

Perspectives for Further Research. In: Hawaii

International Conference on System Sciences,

pp. 105–105

Becker J., Beverungen D., Knackstedt R., Müller

O. (2009) Konzeption einer Modellierungs-

sprache zur softwarewerkzeugunterstützten

Modellierung, Konfiguration und Bewertung

hybrider Leistungsbündel. In: Thomas O.,

Nüttgens M. (eds.) Dienstleistungsmodellier-

ung. Physica, Heidelberg, pp. 53–70

Becker M., Klingner S. (2012a) Formalisierung

von Regeln zur Darstellung von Abhängig-

keiten zwischen Elementen von Product-

Service-Systems. Abteilung für Betriebliche

Informationssysteme, Universität Leipzig.

Leipzig, Germany. http : / / koproserv . uni -

leipzig .de/wp- content/uploads/2012/02/

report.pdf

Becker M., Klingner S. (2012b) Towards

Customer-Individual Configurations of Busi-

ness Process Models. In: Aalst W., Mylo-

poulos J., Rosemann M., Shaw M. J., Szyper-

ski C., Bider I., Halpin T., Krogstie J., Nurcan

S., Proper E., Schmidt R., Soffer P., Wrycza

S. (eds.) Lecture Notes in Business Informa-

tion Processing. Springer Berlin Heidelberg,

Berlin and Heidelberg, pp. 121–135

Becker M., Klingner S., Böttcher M. (2011)

Configuring services regarding service en-

vironment and productivity indicators. In:

Computer Science and Information Systems

(FedCSIS), 2011 Federated Conference on,

pp. 505–512

Böhmann T., Krcmar H. (2007) Hybride

Produkte: Merkmale und Herausforderungen.

In: Bruhn M., Stauss B. (eds.) Wertschöpfung-

sprozesse bei Dienstleistungen. Gabler, Wies-

baden, pp. 239–255

Böttcher M., Fähnrich K.-P. (2009) Service Sys-

tems Modeling. In: Alt R., Fähnrich K.-P.,

Franczyk B (eds.) Proceedings First Interna-

tional Symposium on Services Science. Logos,

Leipzig

Böttcher M., Klingner S. (2011) Komponentis-

ierung zur Steigerung der Dienstleistungs-

produktivität. In: Bruhn M., Hadwich K. (eds.)

Dienstleistungsproduktivität. Gabler, pp. 59–

80

Böttcher M., Klingner S. (2011) Providing

a Method for Composing Modular B2B-

Services. In: Journal of Business & Industrial

Marketing 26(5), pp. 320–331

Böttcher M., Klingner S., Becker M. (2011a) Kom-

ponentenbasiertes Produktivitätscontrolling

komplexer Dienstleistungsportfolios. In: Con-

trolling 23(10), pp. 509–513

Böttcher M., Swialkowski R., Fähnrich K.-P.

(2011b) Produktivitätsbetrachtung bei der

Komponentisierung von Dienstleistungen. In:

Gatermann I., Fleck M. (eds.) Mit Dienstleis-

tungen die Zukunft gestalten – Impulse aus

Forschung und Praxis. Campus, pp. 207–216

Brocke H., Uebernickel F., Brenner W. (2010)

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

64 Stephan Klingner and Michael Becker

Zwischen Kundenindividualität und

Standardisierung – Konzept und Referenz-

Datenstruktur eines konfigurierbaren

IT-Produktmodells. In: Thomas O., Nüttgens

M. (eds.) Dienstleistungsmodellierung 2010.

Physica, Heidelberg, pp. 231–253

Chase R. B., Hayes R. H. (1991) Beefing Up Op-

erations in Service Firms. In: Sloan Manage-

ment Review 33(1), pp. 15–26

Czarnecki K., Eisenecker U. W. (2000) Generat-

ive programming: methods, tools, and applic-

ations. ACM Press/Addison-Wesley Publish-

ing Co., New York, NY, USA

Czarnecki K., Helsen S., Eisenecker U. (2004)

Staged Configuration Using Feature Mod-

els. In: Nord R. (ed.) Software Product Lines.

LNCS Vol. 3154. Springer, Berlin, pp. 162–164

Dietze V. (2008) Festigung zwischenbetrieblicher

Kollaboration durch den Einsatz von Group

Decision Support Software – ein strategis-

cher Planungsansatz. Grin, München

Diewert W. E., Nakamura A. O. (2005) Concepts

and Measures of Productivity: An Introduc-

tion In: Lipsey R., Nakamura A. (eds.) Uni-

versity of Calgary Press chap. 2, p. 20

Dong M., Yang D., Su L. (2011) Ontology-based

service product configuration system mod-

eling and development. In: Expert Systems

with Applications 38(9), pp. 11770 –11786

Emmrich A. (2005) Ein Beitrag zur system-

atischen Entwicklung produktorientierter

Dienstleistungen. PhD thesis, University of

Paderborn, Paderborn

Faltings B., Weigel R. (1994) Constraint-

based knowledge representation for con-

figuration systems. Technical Report TR-

94/59. Department d’Informatique, Labor-

atoire d’Intelligence Artificielle, Ecole Poly-

technique Federale de Lausanne. Lausanne

Felfernig A., Friedrich G., Jannach D. (2001) Con-

ceptual modeling for configuration of mass-

customizable products. In: Artificial Intelli-

gence in Engineering 15(2), pp. 165–176

Gelle E., Weigel R. (1996) Interactive Configura-

tion using Constraint Satisfaction Techniques.

In: In Second International Conference on

Practical Application of Constraint Techno-

logy, PACT-96. Menlo Park, AAAI Press, Lon-

don, pp. 37–44

Geum Y., Kwak R., Park Y. (2011) Modularizing

services: A modified HoQ approach. In: Com-

puters & Industrial Engineering 62(2), pp. 579

–590

Goedkoop M., van Halen C., Riele T. H., Rom-

mens P. (1999) Product Service systems, Eco-

logical and Economic Basics. Pre. The Hague

Guoli J., Daxin G., Tsui F. (2003) Analysis and

implementation of the BOM of a tree-type

structure in MRPII. In: Journal of Materials

Processing Technology 139(1-3), pp. 535–538

Harmon E., Hensel S. C., Lukes T. E. (2006)

Measuring Performance in Services. In: The

McKinsey Quarterly

Hegge H., Wortmann J. (1991) Generic bill-of-

material: a new product model. In: Interna-

tional Journal of Production Economics 23(1-

3), pp. 117–128

Hildebrand W.-C., Klostermann T. (2007) Dienst-

leistungsverkehr in industriellen Wertschöp-

fungsprozessen. In: Bruhn M., Stauss B. (eds.)

Wertschöpfungsprozesse bei Dienstleistun-

gen. Gabler, Wiesbaden, pp. 215–236

Isaksson O., Larsson T. C., Rönnbäck A. Ö.

(2009) Development of product-service sys-

tems: challenges and opportunities for the

manufacturing firm. In: Journal of Engineer-

ing Design 20(4), pp. 329–348

Jiao J., Tseng M. M., Qinhai Ma, Yi Zou (2000)

Generic Bill-of-Materials-and-Operations for

High-Variety Production Management. In:

Concurrent Engineering 8(4), pp. 297–321

Jinsong Z., Qifu W., Li W., Yifang Z. (2005)

Configuration-oriented product modelling

and knowledge management for made-to-

order manufacturing enterprises. In: The In-

ternational Journal of Advanced Manufactur-

ing Technology 25(1-2), pp. 41–52

Kastner C., Thum T., Saake G., Feigenspan

J., Leich T., Wielgorz F., Apel S. (2009)

FeatureIDE: A tool framework for feature-

oriented software development. In: Proceed-

ings of the 31st International Conference on

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 65

Software Engineering. ICSE ’09. IEEE Com-

puter Society, Washington DC, pp. 611–614

Klingner S., Böttcher M., Becker M., Döhler A.

(2011) Managing complex service portfolios.

In: Ganz W., Kicherer F., Schletz A. (eds.) RE-

SER 2011 Productivity of Services NextGen –

Beyond Output/Input. Conference Proceed-

ings.

Knackstedt R., Pöppelbuß J., Winkelmann

A. (2008) Integration von Sach- und

Dienstleistungen – Ausgewählte Inter-

netquellen zur hybriden Wertschöpfung.

In: WIRTSCHAFTSINFORMATIK 50 (3),

pp. 235–247

Langer S., Kreimeyer M., Müller P., Lindemann

U., Blessing L. (2009) Entwicklungsprozesse

hybrider Leistungsbündel – Evaluierung von

Modellierungsmethoden unter Berücksichti-

gung zyklischer Einflussfaktoren. In: Thomas

O., Nüttgens M. (eds.) Dienstleistungsmodel-

lierung. Physica, Heidelberg, pp. 71–87

Maroto A., Rubalcaba L. (2008) Services pro-

ductivity revisited. In: The Service Industries

Journal 28(3), pp. 337–353

Meier H., Uhlmann E. (2012) Hybride Leistungs-

bündel – ein neues Produktverständnis. In:

Meier H., Uhlmann E. (eds.) Integrierte Indus-

trielle Sach- und Dienstleistungen. Springer,

Berlin, pp. 1–21 http://dx.doi.org/10.1007/978-

3-642-25269-3_1

Mendonca M., Wasowski A., Czarnecki K. (2009)

SAT-based analysis of feature models is easy.

In: Proceedings of the 13th International

Software Product Line Conference. SPLC

’09. Carnegie Mellon University, Pittsburgh,

pp. 231–240

Mont O. K. (2002) Clarifying the concept

of product-service system. In: Journal of

Cleaner Production 10(3), pp. 237 –245

Morelli N. (2002) Designing Product/Service Sys-

tems: A Methodological Exploration English.

In: Design Issues 18(3), pp. 3–17

Ojasalo K. (2003) Customer Influence on Ser-

vice Productivity. In: SAM Advanced Man-

agement Journal (07497075) 68(3), pp. 14 –19

Pine B. J. (1999) Mass Customization: The Fron-

tier in Business Competition. Harvard Busi-

ness School Press

Stille F. (2003) Produktbegleitende Dienstleis-

tungen gewinnen weiter an Bedeutung. In:

Wochenbericht 70(21), pp. 335–342

Stonebraker P. W. (1996) Restructuring the bill

of material for productivity: A strategic eval-

uation of product configuration. In: Interna-

tional Journal of Production Economics 45(1-

3), pp. 251–260

Sun H. (2010) Product service relationship: de-

fining, modelling and evaluating. In: Interna-

tional Journal of Internet Manufacturing and

Services 2(2), pp. 128–141

Sundbo J. (1994) Modulization of service pro-

duction and a thesis of convergence between

service and manufacturing organizations. In:

Scandinavian Journal of Management 10(3),

pp. 245 –266

Te’eni M., Shufer I. (2006) Component up-

grading with dependency conflict resolution,

knowledge based and rules pat. 7140013 http:

//www.freepatentsonline.com/7140013.html

Thomas O., Walter P., Loos P. (2008) Product-

Service Systems: Konstruktion und An-

wendung einer Entwicklungsmethodik. In:

WIRTSCHAFTSINFORMATIK 50(3) (3),

pp. 208–219

Uhlmann E., Meier H., Bochnig H., Geisert C.,

Sadek K., Stelzer C. (2008) Customer-driven

development of product-service-systems. In:

Pham D. T., Eldukhri E. E., Soroka A. J. (eds.)

Innovative production machines and systems:

Fourth I*PROMS Virtual International Con-

ference. Whittles Publ.

Vazsonyi A. (1954) The Use of Mathematics in

Production and Inventory Control. I. In: Man-

agement Science 1(1), pp. 70–85

van Veen E., Wortmann J. C. (1992) New de-

velopments in generative BOM processing

systems. In: Production Planning & Control

3(3), pp. 327–335

Walter P. (2009) Modellierung technischer Kun-

dendienstprozesse des Maschinen- und Anla-

genbaus als Bestandteil hybrider Produkte.

In: Thomas O., Nüttgens M. (eds.) Di-

Enterprise Modelling and Information Systems Architectures

Vol. 7, No. 1, November 2012

66 Stephan Klingner and Michael Becker

enstleistungsmodellierung. Physica, Heidel-

berg, pp. 129–145

Weber C., Steinbach M., Botta C., Deubel T.

(2004) Modelling of product-service systems

(PSS) based on the PDD approach. In: D. M.

(ed.) Proceedings of the 8th International

Design Conference DESIGN 2004. Dubrovnik,

pp. 547–554

Yang W. Z., Xie S. Q., Ai Q. S., Zhou Z. D. (2008)

Recent development on product modelling: a

review. In: International Journal of Produc-

tion Research 46(21), pp. 6055–6085

Zhu S., Cheng D., Xue K., Zhang X. (2007) A Uni-

fied Bill of Material Based on STEP/XML. In:

Shen W., Luo J., Lin Z., Barthès J.-P. A., Hao

Q. (eds.) Computer Supported Cooperative

Work in Design III. Springer, Berlin, pp. 267–

276

Stephan Klingner, Michael Becker

Department of Business Information Systems,

University Leipzig

Augustusplatz 10

04109 Leipzig,

Germany

{klingner | mbecker}@informatik.uni-leipzig.de

